Skip to Main content Skip to Navigation
Journal articles

EKLF-driven PIT1 expression is critical for mouse erythroid maturation in vivo and in vitro

Abstract : The PIT1/SLC20A1 protein, a well-described sodium/phosphate cotransporter and retrovirus receptor, has been identified recently as a modular of proliferation and apoptosis in vitro. The targeted deletion of the PIT1 gene in mice revealed a lethal phenotype due to severe anemia attributed to defects in liver development. However, the presence of immature erythroid cells associated with impaired maturation of the globin switch led us to investigate the role of PIT1 in hematopoietic development. In the present study, specific deletion of PIT1 in the hematopoietic system and fetal liver transplantation experiments demonstrated that anemia was associated with an erythroid cell- autonomous defect. Moreover, anemia was not due to RBC destruction but rather to maturation defects. Because Erythroid Krüppel-like Factor (EKLF)-knockout mice showed similar maturation defects, we investigated the functional link between PIT1 and EKLF. We demonstrated that EKLF increases PIT1 expression during RBC maturation by binding to its promoter in vivo and that shRNA-driven depletion of either PIT1 or EKLF impairs erythroid maturation of G1E cells in vitro, whereas reexpression of PIT1 in EKLF-depleted G1E cells partially restores erythroid maturation. This is the first demonstration of a physiologic involvement of PIT1 in erythroid maturation in vivo.
Document type :
Journal articles
Complete list of metadata

https://www.hal.inserm.fr/inserm-03146142
Contributor : Laurent Beck Connect in order to contact the contributor
Submitted on : Thursday, February 18, 2021 - 6:40:05 PM
Last modification on : Tuesday, September 21, 2021 - 4:34:01 PM

Identifiers

Citation

Anne Forand, Laurent Beck, Christine Leroy, Alice Rousseau, Valérie Boitez, et al.. EKLF-driven PIT1 expression is critical for mouse erythroid maturation in vivo and in vitro. Blood, American Society of Hematology, 2013, 121 (4), pp.666-678. ⟨10.1182/blood-2012-05-427302⟩. ⟨inserm-03146142⟩

Share

Metrics

Record views

28