Small RNA and transcriptome sequencing reveal the role of miR-199a-3p in inflammatory processes in cystic fibrosis airways - Inserm - Institut national de la santé et de la recherche médicale Accéder directement au contenu
Article Dans Une Revue The Journal of pathology and bacteriology Année : 2018

Small RNA and transcriptome sequencing reveal the role of miR-199a-3p in inflammatory processes in cystic fibrosis airways

Résumé

Cystic fibrosis (CF) is the most common lethal genetic disease, caused by CFTR (cystic fibrosis transmembrane conductance regulator) gene mutations. CF is characterized by an ionic imbalance and thickened mucus, which impair mucociliary clearance and promote bacterial colonization and the establishment of infection/inflammation cycles. However, the origin of this inflammation remains unclear, although microRNAs (miRNAs) are suspected to be involved. MiRNAs are small non-coding RNAs that bind to the 3'-untranslated regions (UTRs) of target gene mRNA, thereby repressing their translation and/or inducing their degradation. The goal of this study was to investigate the role of microRNAs associated with pulmonary inflammation in CF patients. Through the analysis of all miRNAs (miRNome) in human primary air-liquid interface cultures, we demonstrated that miR-199a-3p is the only miRNA downregulated in CF patients compared to controls. Moreover, through RNA sequencing (transcriptome) analysis, we showed that 50% of all deregulated mRNAs are linked directly or indirectly to the NF-κB pathway. To identify a specific target, we used bioinformatics analysis to predict whether miR-199a-3p targets the 3'-UTR of IKBKB, which encodes IKKβ, a major protein in the NF-κB pathway. Subsequently, we used bronchial explants from CF patients to show that miR-199a-3p expression is downregulated compared to controls and inversely correlated with increases in expression of IKKβ and IL-8. Through functional studies, we showed that miR-199a-3p modulates the expression of IKBKB through a direct interaction at its 3'-UTR in bronchial epithelial cells from CF patients. In miR-199a-3p overexpression experiments, we demonstrated that for CF cells, miR-199a-3p reduced IKKβ protein expression, NF-κB activity, and IL-8 secretion. Taken together, our findings show that miR-199a-3p plays a negative regulatory role in the NF-κB signalling pathway and that its low expression in CF patients contributes to chronic pulmonary inflammation. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Fichier principal
Vignette du fichier
Bardin et al 2018 HAL.pdf (652.34 Ko) Télécharger le fichier
Bardin_et_al2018+Figs (1).pdf (1.27 Mo) Télécharger le fichier
SupplementaryFigures.pdf (504.17 Ko) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

inserm-02390385 , version 1 (03-12-2019)

Identifiants

Citer

Pauline Bardin, Emmeline Marchal-Duval, Florence Sonneville, Sabine Blouquit-Laye, Nathalie Rousselet, et al.. Small RNA and transcriptome sequencing reveal the role of miR-199a-3p in inflammatory processes in cystic fibrosis airways: miR-199a-3p regulates the NF-κB pathway in the lungs of CF patients. The Journal of pathology and bacteriology, 2018, 245 (4), pp.410-420. ⟨10.1002/path.5095⟩. ⟨inserm-02390385⟩
182 Consultations
498 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More