Small RNA and transcriptome sequencing reveal the role of miR-199a-3p in inflammatory processes in cystic fibrosis airways: miR-199a-3p regulates the NF-κB pathway in the lungs of CF patients

Abstract : Cystic fibrosis (CF) is the most common lethal genetic disease, caused by CFTR (cystic fibrosis transmembrane conductance regulator) gene mutations. CF is characterized by an ionic imbalance and thickened mucus, which impair mucociliary clearance and promote bacterial colonization and the establishment of infection/inflammation cycles. However, the origin of this inflammation remains unclear, although microRNAs (miRNAs) are suspected to be involved. MiRNAs are small non-coding RNAs that bind to the 3'-untranslated regions (UTRs) of target gene mRNA, thereby repressing their translation and/or inducing their degradation. The goal of this study was to investigate the role of microRNAs associated with pulmonary inflammation in CF patients. Through the analysis of all miRNAs (miRNome) in human primary air-liquid interface cultures, we demonstrated that miR-199a-3p is the only miRNA downregulated in CF patients compared to controls. Moreover, through RNA sequencing (transcriptome) analysis, we showed that 50% of all deregulated mRNAs are linked directly or indirectly to the NF-κB pathway. To identify a specific target, we used bioinformatics analysis to predict whether miR-199a-3p targets the 3'-UTR of IKBKB, which encodes IKKβ, a major protein in the NF-κB pathway. Subsequently, we used bronchial explants from CF patients to show that miR-199a-3p expression is downregulated compared to controls and inversely correlated with increases in expression of IKKβ and IL-8. Through functional studies, we showed that miR-199a-3p modulates the expression of IKBKB through a direct interaction at its 3'-UTR in bronchial epithelial cells from CF patients. In miR-199a-3p overexpression experiments, we demonstrated that for CF cells, miR-199a-3p reduced IKKβ protein expression, NF-κB activity, and IL-8 secretion. Taken together, our findings show that miR-199a-3p plays a negative regulatory role in the NF-κB signalling pathway and that its low expression in CF patients contributes to chronic pulmonary inflammation. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Complete list of metadatas

Cited literature [61 references]  Display  Hide  Download

https://www.hal.inserm.fr/inserm-02390385
Contributor : Olivier Tabary <>
Submitted on : Tuesday, December 3, 2019 - 9:25:36 AM
Last modification on : Thursday, December 5, 2019 - 1:20:09 AM

Identifiers

Citation

Pauline Bardin, Emmeline Marchal-Duval, Florence Sonneville, Sabine Blouquit-Laye, Nathalie Rousselet, et al.. Small RNA and transcriptome sequencing reveal the role of miR-199a-3p in inflammatory processes in cystic fibrosis airways: miR-199a-3p regulates the NF-κB pathway in the lungs of CF patients. The Journal of pathology and bacteriology, John Wiley & Sons, 2018, 245 (4), pp.410-420. ⟨10.1002/path.5095⟩. ⟨inserm-02390385⟩

Share

Metrics

Record views

48

Files downloads

33