, Projet Yggdrasil de collaboration franco

, SFBBM bourse pour le 35 ème congrès FEBS

, FEBS bourse pour le workshop "spatiotemporal dynamics of cell signalling

. Vii and . Réseau,

, Initiateur et co-manageur du "réseau français sur l'AMPc" (avec Dr. P. Vincent)

, Elu par l'European Placenta Group Business Meeting comme faisant parti du "EPG Planning Committee

M. De and L. Sfbbm,

J. Frendo, J. Guibourdenche, G. Pidoux, M. Vidaud, D. Luton et al., Trophoblast Production of a Weakly Bioactive Human Chorionic Gonadotropin in Trisomy 21-Affected Pregnancy, J Clin Endocrinol Metab, vol.89, pp.727-732, 2004.
URL : https://hal.archives-ouvertes.fr/inserm-00128419

J. Frendo, D. Olivier, V. Cheynet, J. Blond, M. Vidaud et al., Direct involvement of HERV-W Env glycoprotein in human trophoblast cell fusion and differentiation, Mol Cell Biol, vol.23, pp.3566-3574, 2003.
URL : https://hal.archives-ouvertes.fr/inserm-00128429

J. Frendo, M. Vidaud, J. Guibourdenche, D. Luton, F. Muller et al., Defect of villous cytotrophoblast differentiation into syncytiotrophoblast in Down syndrome, J Clin Endocrinol Metab, vol.85, pp.3700-3707, 2000.
URL : https://hal.archives-ouvertes.fr/inserm-00128454

C. Frezza, S. Cipolat, O. Martins-de-brito, M. Micaroni, G. V. Beznoussenko et al., OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion, Cell, vol.126, pp.177-189, 2006.

S. Gao, C. De, K. Geyter, H. Kossowska, and . Zhang, FSH stimulates the expression of the ADAMTS-16 protease in mature human ovarian follicles, Mol Hum Reprod, vol.13, pp.465-471, 2007.

S. Getsios and C. Maccalman, Cadherin-11 modulates the terminal differentiation and fusion of human trophoblastic cells in vitro, Dev Biol, vol.257, pp.41-54, 2003.

A. S. Greenberg, J. J. Egan, S. A. Wek, N. B. Garty, E. J. Blanchette-mackie et al., Perilipin, a major hormonally regulated adipocyte-specific phosphoprotein associated with the periphery of lipid storage droplets, J Biol Chem, vol.266, pp.11341-11346, 1991.

A. S. Greenberg, J. J. Egan, S. A. Wek, M. C. Moos, C. Londos et al., Isolation of cDNAs for perilipins A and B: sequence and expression of lipid droplet-associated proteins of adipocytes, Proc Natl Acad Sci U S A, vol.90, pp.12035-12039, 1993.

S. Handwerger, The physiology of placental lactogen in human pregnancy, Endocrinology, vol.12, pp.329-336, 1991.

B. Huppertz and J. C. Kingdom, Apoptosis in the trophoblast--role of apoptosis in placental morphogenesis, J Soc Gynecol Investig, vol.11, pp.353-362, 2004.

J. Jameson and A. Hollenberg, Regulation of chorionic gonadotropin gene expression, Endocr Rev, vol.14, pp.203-221, 1993.

G. Keryer, E. Alsat, K. Tasken, and D. Evain-brion, Cyclic AMP-dependent protein kinases and human trophoblast cell differentiation in vitro, J Cell Sci, vol.111, pp.995-1004, 1998.

A. R. Kimmel, D. L. Brasaemle, M. Mcandrews-hill, C. Sztalryd, and C. Londos, Adoption of PERILIPIN as a unifying nomenclature for the mammalian PAT-family of intracellular, lipid storage droplet proteins, J Lipid Res, vol.51, pp.468-471, 2009.

H. Kliman, J. Nestler, E. Sermasi, J. Sanger, J. Strauss et al., Purification, characterization , and in vitro differenciation of cytotrophoblasts from human term placentae, Endocrinology, vol.118, pp.1567-1582, 1986.

I. Knerr, S. W. Schubert, C. Wich, K. Amann, T. Aigner et al., Stimulation of GCMa and syncytin via cAMP mediated PKA signaling in human trophoblastic cells under normoxic and hypoxic conditions, FEBS Lett, vol.579, pp.3991-3998, 2005.

A. Levitzki, From epinephrine to cyclic AMP, Science, vol.241, pp.800-806, 1988.

C. Londos, D. L. Brasaemle, C. J. Schultz, J. P. Segrest, and A. R. Kimmel, Perilipins, ADRP, and other proteins that associate with intracellular neutral lipid droplets in animal cells, Semin Cell Dev Biol, vol.10, pp.51-58, 1999.

A. Malassine, J. Frendo, and D. Evain-brion, Trisomy 21-affected placentas highlight prerequisite factors for human trophoblast fusion and differentiation, Int J Dev Biol, vol.54, pp.475-482, 2010.

J. J. Michel and J. D. Scott, AKAP mediated signal transduction, Annu Rev Pharmacol Toxicol, vol.42, pp.235-257, 2002.

A. Midgley, G. Pierce, G. Denau, and J. Gosling, Morphogenesis of syncytiotrophoblast in vivo: an autoradiographic demonstration, Science, vol.141, pp.350-351, 1963.

D. Morrish, D. Bhardwaj, L. Dabbagh, H. Marusyk, and O. Siy, Epidermal growth factor induces differentiation and secretion of human chorionic gonadotropin and placental lactogen in normal human placenta, J Clin Endocrinol Metab, vol.65, pp.1282-1290, 1987.

D. Morrish, D. Bhardwaj, and M. Paras, Transforming growth factor ?1 inhibits placental differentiation and human chorionic gonadotropin and human placental lactogen secretion, Endocrinology, vol.129, pp.22-26, 1991.

D. W. Morrish, Y. Kudo, I. Caniggia, J. Cross, D. Evain-brion et al., Growth factors and trophoblast differentiation--workshop report, vol.28, 2007.

L. Ogren and F. Talamentes, The placenta as an endocrine organ: polypeptides, Physiology of reproduction, pp.875-945, 1994.

G. Pidoux, P. Gerbaud, S. Gnidehou, M. Grynberg, G. Geneau et al., ZO-1 is involved in trophoblastic cells differentiation in human placenta, Am J Physiol Cell Physiol, vol.298, pp.1517-1526, 2010.

G. Pidoux, P. Gerbaud, V. Tsatsaris, O. Marpeau, F. Ferreira et al., Biochemical characterization and modulation of LH/CG-receptor during human trophoblast differentiation, J Cell Physiol, vol.212, pp.26-35, 2007.
URL : https://hal.archives-ouvertes.fr/inserm-00116966

K. L. Pierce, R. T. Premont, and R. J. Lefkowitz, Seven-transmembrane receptors, Nat Rev Mol Cell Biol, vol.3, pp.639-650, 2002.

J. D. Scott, Cyclic nucleotide-dependent protein kinases, Pharmacol Ther, vol.50, pp.123-145, 1991.

J. D. Scott, R. E. Stofko, J. R. Mcdonald, J. D. Comer, E. A. Vitalis et al., Type II regulatory subunit dimerization determines the subcellular localization of the cAMP-dependent protein kinase, J Biol Chem, vol.265, pp.21561-21566, 1990.

Q. Shi, Z. Lei, C. Rao, and J. Lin, Novel role of human chorionic gonadotropin in differentiation of human cytotrophoblasts, endocrinology, vol.132, pp.1387-1395, 1993.

F. D. Smith and J. D. Scott, Signaling complexes: junctions on the intracellular information super highway, Curr Biol, vol.12, pp.32-40, 2002.

S. H. Soderling and J. A. Beavo, Regulation of cAMP and cGMP signaling: new phosphodiesterases and new functions, Curr Opin Cell Biol, vol.12, pp.174-179, 2000.

S. C. Souza, K. V. Muliro, L. Liscum, P. Lien, M. T. Yamamoto et al., Modulation of hormone-sensitive lipase and protein kinase A-mediated lipolysis by perilipin A in an adenoviral reconstituted system, J Biol Chem, vol.277, pp.8267-8272, 2002.

R. K. Sunahara, C. W. Dessauer, and A. G. Gilman, Complexity and diversity of mammalian adenylyl cyclases, Annu Rev Pharmacol Toxicol, vol.36, pp.461-480, 1996.

E. W. Sutherland and T. W. , Fractionation and characterization of a cyclic adenine ribonucleotide formed by tissue particles, J Biol Chem, vol.232, pp.1077-1091, 1958.

J. T. Tansey, A. M. Huml, R. Vogt, K. E. Davis, J. M. Jones et al., Functional studies on native and mutated forms of perilipins. A role in protein kinase Amediated lipolysis of triacylglycerols, J Biol Chem, vol.278, pp.8401-8406, 2003.

K. Tasken, B. S. Skalhegg, R. Solberg, K. B. Andersson, S. S. Taylor et al., Novel isozymes of cAMP-dependent protein kinase exist in human cells due to formation of RI alpha-RI beta heterodimeric complexes, J Biol Chem, vol.268, pp.21276-21283, 1993.

M. Wakelam, The fusion of myoblasts, Biochem J, vol.15, pp.1-12, 1985.

A. Wright, Y. Zhou, J. F. Weier, E. Caceres, M. Kapidzic et al., Trisomy 21 is associated with variable defects in cytotrophoblast differentiation along the invasive pathway, Am J Med Genet A, vol.130, pp.354-364, 2004.

A. Zambonin-zallone, A. Teti, and M. Primavera, Monocytes from circulating blood fuse in vitro with purified osteoclasts in primary culture, J Cell Sci, vol.66, pp.335-342, 1984.

E. Alsat and L. Cedar, Mise en évidence d'une fixation spécifique de gonadotrophine chorionique humaine radio-iodée dans les tranches de placentas humains, C R Acad Sci, vol.278, pp.2665-2668, 1974.

E. Alsat, V. Mirlesse, C. Fondacci, M. Dodeur, and D. Evain-brion, Parathyroid hormone increases epidermal growth factor receptors in cultured human trophoblastic cells from early and term placenta, J Clin Endocrinol Metab, vol.73, pp.288-294, 1991.

E. Alsat, J. Haziza, and D. Evain-brion, Increase in epidermal growth factor receptor and its messenger ribonucleic acid levels with differentiation of human trophoblast cells in culture, J Cell Physiol, vol.154, pp.122-128, 1993.

E. Alsat, P. Wyplosz, A. Malassiné, J. Guibourdenche, D. Porquet et al., Hypoxia impairs cell fusion and differentiation process in human cytotrophoblast, in vitro, J Cell Physiol, vol.168, pp.346-353, 1996.

J. Aplin, Implantation, trophoblast differentiation and haemochorial placentation: Mechanistic evidence in vivo and in vitro, J Cell Sci, vol.99, pp.681-692, 1991.

M. Ascoli, F. Fanelli, and D. L. Segaloff, The lutropin/choriogonadotropin receptor, a 2002 perspective, Endocr Rev, vol.23, pp.141-174, 2002.

K. Benirschke and P. Kaufmann, Pathology of the human placenta, 2000.

A. Blaschitz, U. Weiss, G. Dohr, and G. Desoye, Antibody reaction patterns in first trimester placenta: Implications for trophoblast isolation and purity screening, Placenta, vol.21, pp.733-741, 2000.

M. Bo and I. Boime, Identification of the transcriptionnally active genes of the chorionic gonadotrophin beta gene cluster in vivo, J Biol Chem, vol.267, pp.3179-3184, 1992.

J. Boyd and W. Hamilton, The human placenta. Cambridge: Heffer and Sons, 1970.

L. Cronier, B. Bastide, J. C. Herve, J. Deleze, and A. Malassine, Gap junctional communication during human trophoblast differentiation: Influence of human chorionic gonadotropin, Endocrinology, vol.135, pp.402-408, 1994.

L. Cronier, N. Defamie, L. Dupays, M. Theveniau-ruissy, F. Goffin et al., Connexin expression and gap junctional intercellular communication in human first trimester trophoblast, Mol Hum Reprod, vol.8, pp.1005-1013, 2002.

J. Frendo, P. Thérond, J. Guibourdenche, J. Bidart, M. Vidaud et al., Modulation of copper/zinc superoxide dismutase expression and activity with in vitro differentiation of human villous cytotrophoblast, Placenta, vol.21, pp.773-781, 2000.

J. Frendo, M. Vidaud, J. Guibourdenche, D. Luton, F. Muller et al., Defect of villous cytotrophoblast differentiation into syncytiotrophoblast in Down's syndrome, J Clin Endocrinol Metab, vol.85, pp.3700-3707, 2000.

J. Frendo, P. Thérond, T. Bird, N. Massin, F. Muller et al., Overexpression of copper zinc superoxide dismutase impairs human trophoblast cell fusion and differentiation, Endocrinology, vol.142, pp.3638-3648, 2001.
URL : https://hal.archives-ouvertes.fr/inserm-00128447

J. Frendo, L. Cronier, G. Bertin, J. Guibourdenche, M. Vidaud et al., Involvement of connexin 43 in human trophoblast cell fusion and differentiation, J Cell Sci, vol.116, pp.3413-3421, 2003.
URL : https://hal.archives-ouvertes.fr/inserm-00128436

J. Frendo, D. Olivier, V. Cheynet, J. Blond, M. Vidaud et al., Direct involvement of HERV-W Env glycoprotein in human trophoblast cell fusion and differentiation, Mol Cell Biol, vol.23, pp.3566-3574, 2003.
URL : https://hal.archives-ouvertes.fr/inserm-00128429

J. Frendo, J. Guibourdenche, G. Pidoux, M. Vidaud, D. Luton et al., Trophoblast production of a weakly bioactive human chorionic gonadotropin in trisomy 21-affected pregnancy, J Clin Endocrinol Metab, vol.89, pp.727-732, 2004.
URL : https://hal.archives-ouvertes.fr/inserm-00128419

M. I. Garcia-lloret, D. W. Morrish, T. G. Wegmann, L. Honore, A. R. Turner et al., Demonstration of functional cytokine-placental interactions: CSF-1 and GM-CSF stimulate human cytotrophoblast differentiation and peptide hormone secretion, Exp Cell Res, vol.214, pp.46-54, 1994.

S. Getsios and C. D. Maccalman, Cadherin-11 modulates the terminal differentiation and fusion of human trophoblastic cells in vitro, Dev Biol, vol.257, pp.41-54, 2003.

T. Gudermann, M. Birnbaumer, and L. Birnbaumer, Evidence for dual coupling of the murine luteinizing hormone receptor to adenylyl cyclase and phosphoinositide breakdown and Ca 2þ mobilization. Studies with the cloned murine luteinizing hormone receptor expressed in L cells, J Biol Chem, vol.267, pp.4479-4488, 1992.

K. Handschuh, J. Guibourdenche, V. Tsatsaris, M. Guesnon, I. Laurendeau et al., Human Chorionic Gonadotropin expression in human trophoblasts from early placenta: Comparative study between villous and extravillous trophoblastic cells, Placenta, vol.28, pp.175-184, 2007.
URL : https://hal.archives-ouvertes.fr/inserm-00000052

S. Handwerger, The physiology of placental lactogen in human pregnancy, Endocrinology, vol.12, pp.329-336, 1991.

R. W. Hipkin, J. Sanchez-yague, and M. Ascoli, Identification and characterization of a luteinizing hormone/chorionic gonadotropin (LH/CG) receptor precursor in a human kidney cell line stably transfected with the rat luteal LH/CG-R complementary DNA, Mol Endocrinol, vol.6, pp.2210-2218, 1992.

Y. M. Hoffman, H. Peegel, M. J. Sprock, Q. Y. Zhang, and K. M. Menon, Evidence that human chorionic gonadotropin/luteinizing hormone receptor down-regulation involves decreased levels of receptor messenger ribonucleic acid, Endocrinology, vol.128, pp.388-393, 1991.

M. Hoshina, M. Boothby, R. Hussa, R. Pattillo, H. M. Camel et al., Linkage of human chorionic gonadotrophin and placental lactogen biosynthesis to trophoblast differentiation and tumorigenesis, Placenta, vol.6, pp.163-172, 1985.

Z. Z. Hu, C. H. Tsai-morris, E. Buczko, and M. L. Dufau, Hormonal regulation of LH receptor mRNA and expression in the rat ovary, FEBS Lett, vol.274, pp.181-184, 1990.

W. M. Hunter and F. C. Greenwood, Preparation of iodine-131 labeled human growth hormone of high specific activity, Nature, vol.194, pp.495-496, 1962.

G. Keryer, E. Alsat, K. Tasken, and D. Evain-brion, Cyclic AMP-dependent protein kinases and human trophoblast cell differentiation in vitro, J Cell Sci, vol.111, pp.995-1004, 1998.

H. Kliman, J. Nestler, E. Sermasi, J. Sanger, J. Strauss et al., Purification, characterization, and in vitro differentiation of cytotrophoblasts from human term placentae, Endocrinology, vol.118, pp.1567-1582, 1986.

P. S. Lapolt, M. Oikawa, X. C. Jia, C. Dargan, and A. J. Hsueh, Gonadotropin-induced up-and down-regulation of rat ovarian LH receptor message levels during follicular growth, ovulation and luteinization, Endocrinology, vol.126, pp.3277-3279, 1990.

Z. M. Lei and C. V. Rao, Gonadotropin receptors in human fetoplacental unit: Implications for hCG as an intracrine, paracrine and endocrine regulator of human fetoplacental function, Troph Res, vol.6, pp.213-224, 1992.

H. Loosfelt, M. Misrahi, M. Atger, R. Salesse, V. Hai-luu-thi et al., Cloning and sequencing of porcine LH-hCG receptor cDNA: Variants lacking transmembrane domain, Science, vol.245, pp.525-528, 1989.

A. Malassine, S. Blaise, K. Handschuh, H. Lalucque, A. Dupressoir et al., Expression of the fusogenic HERV-FRD Env glycoprotein (syncytin 2) in human placenta is restricted to villous cytotrophoblastic cells, Placenta, vol.28, pp.185-191, 2007.
URL : https://hal.archives-ouvertes.fr/inserm-00000051

K. C. Mcfarland, R. Sprengel, H. S. Phillips, M. Kohler, N. Rosemblit et al., Lutropin-choriogonadotropin receptor: An unusual member of the G protein-coupled receptor family, Science, vol.245, pp.494-499, 1989.

A. R. Midgley, G. B. Pierce, G. A. Denau, and J. R. Gosling, Morphogenesis of syncytiotrophoblast in vivo: An autoradiographic demonstration, Science, vol.141, pp.350-351, 1963.

T. Minegishi, K. Nakamura, Y. Takakura, K. Miyamoto, Y. Hasegawa et al., Cloning and sequencing of human LH/hCG receptor cDNA, Biochem Biophys Res Commun, vol.172, pp.1049-1054, 1990.

D. W. Morrish, D. Bhardwaj, L. K. Dabbagh, H. Marusyk, and O. Siy, Epidermal growth factor induces differentiation and secretion of human chorionic gonadotropin and placental lactogen in normal human placenta, J Clin Endocrinol Metab, vol.65, pp.1282-1290, 1987.

D. W. Morrish, D. Bhardwaj, and M. T. Paras, Transforming growth factor beta 1 inhibits placental differentiation and human chorionic gonadotropin and human placental lactogen secretion, Endocrinology, vol.129, pp.22-26, 1991.

P. J. Munson and D. Rodbard, LIGAND: A versatile computerized approach for characterization of ligand-binding systems, Anal Biochem, vol.107, pp.220-239, 1980.

M. Muyan and I. Boime, Secretion of chorionic gonadotropin from human trophoblasts, Placenta, vol.18, pp.237-241, 1997.

G. Méduri, N. Charnaux, H. Loosfelt, A. Jolivet, F. Spyratos et al., Luteinizing hormone/human chorionic gonadotropin receptors in breast cancer, Cancer Res, vol.57, pp.857-864, 1997.

H. Peegel, J. Randolph, J. Midgley, A. R. Menon, and K. M. , In situ hybridization of luteinizing hormone/human chorionic gonadotropin receptor messenger ribonucleic acid during hormone-induced down-regulation and the subsequent recovery in rat corpus luteum, Endocrinology, vol.135, pp.1044-1051, 1994.

J. G. Pierce and T. F. Parsons, Glycoprotein hormones: Structure and function, Annu Rev Biochem, vol.50, pp.465-495, 1981.

E. M. Pietila, J. T. Tuusa, P. M. Apaja, J. T. Aatsinki, A. E. Hakalahti et al., Inefficient maturation of the rat luteinizing hormone receptor. A putative way to regulate receptor numbers at the cell surface, J Biol Chem, vol.280, pp.26622-26629, 2005.

E. Reshef, Z. M. Lei, C. V. Rao, D. D. Pridham, N. Chegini et al., The presence of gonadotropin receptors in nonpregnant human uterus, human placenta, fetal membranes, and decidua, J Clin Endocrinol Metab, vol.70, pp.421-430, 1990.

R. Richard, Studies of placental morphogenesis I. Radioautographic studies of human placenta utilizing tritiated thymidine, Proc Soc Exp Biol Med, vol.106, pp.829-831, 1961.

B. Schmon, M. Hartmann, C. J. Jones, and G. Desoye, Insulin and glucose do not affect the glycogen content in isolated and cultured trophoblast cells of human term placenta, J Clin Endocrinol Metab, vol.73, pp.888-893, 1991.

D. L. Segaloff and M. Ascoli, The lutropin/choriogonadotropin receptor . . . 4 years later, Endocr Rev, vol.14, pp.324-347, 1993.

D. L. Segaloff, H. Y. Wang, and J. S. Richards, Hormonal regulation of luteinizing hormone/ chorionic gonadotropin receptor mRNA in rat ovarian cells during follicular development and luteinization, Mol Endocrinol, vol.4, pp.1856-1865, 1990.

Q. J. Shi, Z. M. Lei, C. V. Rao, and J. Lin, Novel role of human chorionic gonadotropin in differentiation of human cytotrophoblasts, Endocrinology, vol.132, pp.1387-1395, 1993.

M. T. Vuhai-luuthi, A. Jolivet, B. Jallal, R. Salesse, J. M. Bidart et al., Monoclonal antibodies against luteinizing hormone receptor. Immunochemical characterization of the receptor, Endocrinology, vol.127, pp.2090-2098, 1990.

M. Yang, Z. M. Lei, and R. Chv, The central role of human chorionic gonadotropin in the formation of human placental syncytium, Endocrinology, vol.144, pp.1108-1120, 2003.

, JOURNAL OF CELLULAR PHYSIOLOGY

. L-h-/-c-g--r-i-n-h-u-m-a-n-t-r-o-p-h-o-b-l-a-s-t-d-i-f-f-e-r-e-n-t-i-a-t-i-o-n-references,

K. Red-horse, Y. Zhou, O. Genbacev, A. Prakobphol, R. Foulk et al., Trophoblast differentiation during embryo implantation and formation of the maternal-fetal interface, J Clin Invest, vol.114, pp.744-754, 2004.

M. Bo and I. Boime, Identification of the transcriptionally active genes of the chorionic gonadotropin ? gene cluster in vivo, J Biol Chem, vol.267, pp.3179-3184, 1992.

A. Malassiné and J. Frendo, Evain-Brion D 2003 A comparison of placental development and endocrine functions between the human and mouse model, Hum Reprod Update, vol.9, pp.531-539

L. Cronier, B. Bastide, J. Hervé, J. Delèze, and A. Malassiné, Gap junctional communication during human trophoblast differentiation: influence of human chorionic gonadotropin, Endocrinology, vol.135, pp.402-408, 1994.

Q. Shi, Z. Lei, C. V. Rao, and J. Lin, Novel role of human chorionic gonadotropin in differentiation of human cytotrophoblasts, Endocrinology, vol.132, pp.1387-1395, 1993.

J. Frendo, P. Thérond, J. Guibourdenche, J. Bidart, M. Vidaud et al., Modulation of copper/zinc superoxide dismutase expression and activity with in vitro differentiation of human villous cytotrophoblasts, Placenta, vol.21, pp.773-781, 2000.

J. Frendo, P. Thérond, T. Bird, N. Massin, F. Muller et al., Evain-Brion D 2001 Overexpression of copper zinc superoxide dismutase impairs human trophoblast cell fusion and differentiation, Endocrinology, vol.142, pp.3638-3648

S. Getsios and C. Maccalman, Cadherin-11 modulates the terminal differentiation and fusion of human trophoblastic cells in vitro, Dev Biol, vol.257, pp.41-54, 2003.

J. Frendo, L. Cronier, G. Bertin, J. Guibourdenche, M. Vidaud et al., Involvement of connexin 43 in human trophoblast cell fusion and differentiation, J Cell Sci, vol.116, pp.3413-3421, 2003.
URL : https://hal.archives-ouvertes.fr/inserm-00128436

J. Frendo, D. Olivier, V. Cheynet, J. Blond, M. Vidaud et al., Direct involvement of HERV-W Env glycoprotein in human trophoblast cell fusion and differentiation, Mol Cell Biol, vol.23, pp.3566-3574, 2003.
URL : https://hal.archives-ouvertes.fr/inserm-00128429

J. Rossant and J. Cross, Placental development: lessons from mouse mutants, Nat Rev Genet, vol.2, pp.538-548, 2001.

J. Frendo, M. Vidaud, J. Guibourdenche, D. Luton, F. Muller et al., Evain-Brion D 2000 Defect of villous cytotrophoblast differentiation into syncytiotrophoblast in Down's syndrome, J Clin Endocrinol Metab, vol.85, pp.3700-3707

J. Frendo, J. Guibourdenche, G. Pidoux, M. Vidaud, D. Luton et al., Trophoblast production of a weakly bioactive human chorionic gonadotropin in trisomy 21-affected pregnancy, J Clin Endocrinol Metab, vol.89, pp.727-732, 2004.
URL : https://hal.archives-ouvertes.fr/inserm-00128419

A. Wright, Y. Zhou, J. F. Weier, E. Caceres, M. Kapidzic et al., Trisomy 21 is associated with variable defects in cytotrophoblast differentiation along the invasive pathway, Am J Med Genet A, vol.130, pp.354-364, 2004.

M. Bogart, M. Pandian, and O. Jones, Abnormal maternal serum chorionic gonadotropin levels in pregnancies with fetal chromosome abnormalities, Prenat Diagn, vol.7, pp.623-630, 1987.

J. Pierce and T. Parsons, Glycoprotein hormones: structure and function, Annu Rev Biochem, vol.50, pp.465-495, 1981.

J. O'connor, S. Birken, J. Lustbader, A. Krichevsky, Y. Chen et al., , 1994.

R. Adler, A. Ng, and N. Rote, Monoclonal antiphosphatidylserine antibody inhibits intercellular fusion of the choriocarcinoma line, JAR. Biol Reprod, vol.53, pp.905-910, 1995.

E. Alsat, J. Haziza, and D. Evain-brion, Increase in epidermal growth factor receptor and its messenger ribonucleic acid levels with differentiation of human trophoblast cells in culture, J Cell Physiol, vol.154, pp.122-128, 1993.

E. Alsat, P. Wyplosz, A. Malassiné, J. Guibourdenche, D. Porquet et al., Evain-Brion D. Hypoxia impairs cell fusion and differentiation process in human cytotrophoblast, in vitro, J Cell Physiol, vol.168, pp.346-353, 1996.

J. M. Anderson, B. R. Stevenson, L. A. Jesaitis, D. A. Goodenough, and M. S. Mooseker, Characterization of ZO-1, a protein component of the tight junction from mouse liver and Madin-Darby canine kidney cells, J Cell Biol, vol.106, pp.1141-1149, 1988.

R. J. Barker, R. L. Price, and R. G. Gourdie, Increased association of ZO-1 with connexin43 during remodeling of cardiac gap junctions, Circ Res, vol.90, pp.317-324, 2002.

S. Black, M. Kadyrov, P. Kaufmann, B. Ugele, N. Emans et al., Syncytial fusion of human trophoblast depends on caspase 8, Cell Death Differ, vol.11, pp.90-98, 2004.

E. H. Chen and E. N. Olson, Towards a molecular pathway for myoblast fusion in Drosophila, Trends Cell Biol, vol.14, pp.452-460, 2004.

L. Cronier, B. Bastide, N. Defamie, C. Niger, G. Pointis et al., Malassine A. Involvement of gap junctional communication and connexin expression in trophoblast differentiation of the human placenta, Histol Histopathol, vol.16, pp.285-295, 2001.

L. Cronier, B. Bastide, J. C. Hervé, J. Delèze, and A. Malassiné, Gap junctional communication during human trophoblast differentiation: influence of human chorionic gonadotropin, Endocrinology, vol.135, pp.402-408, 1994.

L. Cronier, N. Defamie, L. Dupays, M. Théveniau-ruissy, F. Goffin et al., Connexin expression and gap junctional intercellular communication in human first trimester trophoblast, Mol Hum Reprod, vol.8, pp.1005-1013, 2002.

L. Cronier, J. L. Frendo, N. Defamie, G. Pidoux, G. Bertin et al., Requirement of gap junctional intercellular communication for human villous trophoblast differentiation, Biol Reprod, vol.69, pp.1472-1480, 2003.
URL : https://hal.archives-ouvertes.fr/inserm-02556169

L. Cronier, J. Herve, J. Deleze, and A. Malassine, Regulation of gap junctional communication during human trophoblast differentiation, Microsc Res Tech, vol.38, pp.21-28, 1997.

P. Dalton, H. C. Christian, C. W. Redman, I. L. Sargent, and C. A. Boyd, Membrane trafficking of CD98 and its ligand galectin 3 in BeWo cellsimplication for placental cell fusion, FEBS J, vol.274, pp.2715-2727, 2007.

N. Defamie, B. Mograbi, C. Roger, L. Cronier, A. Malassine et al., Disruption of gap junctional intercellular communication by lindane is associated with aberrant localization of connexin43 and zonula occludens-1 in 42GPA9 Sertoli cells, Carcinogenesis, vol.22, pp.1537-1542, 2001.

H. S. Duffy, A. W. Ashton, O. Donnell, P. Coombs, W. Taffet et al., Regulation of connexin43 protein complexes by intracellular acidification, Circ Res, vol.94, pp.215-222, 2004.

B. Eaton and S. Contractor, In vitro assessment of trophoblast receptors and placental transport mechanisms, The Human Placenta, pp.471-503, 1993.

M. A. Feinman, H. J. Kliman, S. Caltabiano, and J. F. Strauss, 8-Bromo-3= ,5= -adenosine monophosphate stimulates the endocrine activity of human cytotrophoblasts in culture, J Clin Endocrinol Metab, vol.63, pp.1211-1217, 1986.

J. L. Frendo, L. Cronier, G. Bertin, J. Guibourdenche, M. Vidaud et al., Involvement of connexin 43 in human trophoblast cell fusion and differentiation, J Cell Sci, vol.116, pp.3413-3421, 2003.
URL : https://hal.archives-ouvertes.fr/inserm-00128436

J. L. Frendo, D. Olivier, V. Cheynet, J. L. Blond, M. Vidaud et al., Direct involvement of HERV-W Env glycoprotein in human trophoblast cell fusion and differentiation, Mol Cell Biol, vol.23, pp.3566-3574, 2003.
URL : https://hal.archives-ouvertes.fr/inserm-00128429

J. L. Frendo, P. Thérond, T. Bird, N. Massin, F. Muller et al.,

K. Benirschke and P. Kaufmann, Pathology of the human placenta, 2000.

B. Eaton and S. Contractor, In vitro assessment of trophoblast receptors and placental transport mechanisms, The human placenta, pp.471-503, 1993.

L. Ogren and F. Talamentes, The placenta as an endocrine organ: polypeptides, Physiology of reproduction, vol.875, p.945, 1994.

H. Kliman, J. Nestler, E. Sermasi, and J. Sanger, Strauss 3rd J 1986 Purification, characterization, and in vitro differenciation of cytotrophoblasts from human term placentae, Endocrinology, vol.118, pp.1567-1582

J. L. Frendo, D. Olivier, V. Cheynet, J. L. Blond, O. Bouton et al., Direct involvement of HERV-W Env glycoprotein in human trophoblast cell fusion and differentiation, Mol Cell Biol, vol.23, pp.3566-3574, 2003.
URL : https://hal.archives-ouvertes.fr/inserm-00128429

L. Cronier, J. L. Frendo, N. Defamie, G. Pidoux, G. Bertin et al., Requirement of gap junctional intercellular communication for human villous trophoblast differentiation, Biol Reprod, vol.69, pp.1472-1480, 2003.
URL : https://hal.archives-ouvertes.fr/inserm-02556169

J. Frendo, L. Cronier, G. Bertin, J. Guibourdenche, M. Vidaud et al., Involvement of connexin 43 in human trophoblast cell fusion and differentiation, J Cell Sci, vol.116, pp.3413-3421, 2003.
URL : https://hal.archives-ouvertes.fr/inserm-00128436

A. Malassiné and L. Cronier, Involvement of gap junctions in placental functions and development, Biochim Biophys Acta, vol.1719, pp.117-124, 2005.

G. Pidoux, P. Gerbaud, S. Gnidehou, M. Grynberg, G. Geneau et al., ZO-1 is involved in trophoblastic cells differentiation in human placenta, Am J Physiol Cell Physiol, vol.298, pp.1517-1526, 2010.

R. R. Adler, A. K. Ng, and N. S. Rote, Monoclonal antiphosphatidylserine antibody inhibits intercellular fusion of the choriocarcinoma line, JAR. Biol Reprod, vol.53, pp.905-910, 1995.

S. Getsios and C. D. Maccalman, Cadherin-11 modulates the terminal differentiation and fusion of human trophoblastic cells in vitro, Dev Biol, vol.257, pp.41-54, 2003.

S. Black, M. Kadyrov, P. Kaufmann, B. Ugele, N. Emans et al., Syncytial fusion of human trophoblast depends on caspase 8, Cell Death Differ, vol.11, pp.90-98, 2004.

P. Dalton, H. C. Christian, C. W. Redman, I. L. Sargent, and C. A. Boyd, Membrane trafficking of CD98 and its ligand galectin 3 in BeWo cells: implication for placental cell fusion, FEBS J, vol.274, pp.2715-2727, 2007.

D. W. Morrish, Y. Kudo, I. Caniggia, J. Cross, D. Evain-brion et al., Growth factors and trophoblast differentiation: workshop report, Placenta, vol.28, pp.121-124, 2007.

J. L. Frendo, M. Vidaud, J. Guibourdenche, D. Luton, F. Muller et al., Evain-Brion D 2000 Defect of villous cytotrophoblast differentiation into syncytiotrophoblast in Down's syndrome, J Clin Endocrinol Metab, vol.85, pp.3700-3707

N. Massin, J. L. Frendo, J. Guibourdenche, D. Luton, Y. Giovangrandi et al., Evain-Brion D 2001 defect of syncytiotrophoblast formation and human chorionic gonadotropin expression in Down's syndrome, Placenta, vol.22, pp.93-97

J. L. Frendo, P. Therond, J. Guibourdenche, M. Vidaud, and D. Evain-briona, Implication of copper zinc superoxide dismutase (SOD-1) in human placenta development, Ann NY Acad Sci, vol.973, pp.297-301, 2002.

J. L. Frendo, J. Guibourdenche, G. Pidoux, M. Vidaud, D. Luton et al., Evain-Brion D 2004 Trophoblast production of a weakly bioactive human chorionic gonadotropin in trisomy 21-affected pregnancy, J Clin Endocrinol Metab, vol.89, pp.727-732

D. Oberweiss, Y. Gillerot, L. Koulischer, J. Hustin, and P. E. , , 1983.

, J Gynecol Obstet Biol Reprod (Paris), vol.12, pp.345-349

L. Roberts, N. J. Sebire, D. Fowler, and K. H. Nicolaides, Histomorphological features of chorionic vill at 10 -14 weeks of gestation in trisomic and chromosomally normal pregnancies, Placenta, vol.21, pp.678-683, 2000.

A. Malassiné and J. L. Frendo, Evain-Brion D 2010 Trisomy 21-affected placentas highlight prerequisite factors for human trophoblast fusion and differentiation, Int J Dev Biol, vol.54, pp.475-482

E. Alsat and J. Haziza, Evain-Brion D 1993 Increase in epidermal growth factor receptor and its messenger ribonucleic acid levels with differentiation of human trophoblast cells in culture, J Cell Physiol, vol.154, pp.122-128

D. W. Morrish, D. Bhardwaj, L. K. Dabbagh, H. Marusyk, and O. Siy, Epidermal growth factor induces differentiation and secretion of human chorionic gonadotropin and placental lactogen in normal human placenta, J Clin Endocrinol Metab, vol.65, pp.1282-1290, 1987.

Y. Song, J. Keelan, and J. T. France, Activin-A stimulates, while transforming growth factor ?1 inhibits, chorionic gonadotrophin production and aromatase activity in cultured human placental trophoblasts, Placenta, vol.17, pp.603-610, 1996.

D. W. Morrish, D. Bhardwaj, and M. T. Paras, Transforming growth factor ?1 inhibits placental differentiation and human chorionic gonadotropin and human placental lactogen secretion, Endocrinology, vol.129, pp.22-26, 1991.

C. Leisser, L. Saleh, S. Haider, H. Husslein, S. Sonderegger et al., ) OPA1, encoding a dynamin-related GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28, Nat Genet, vol.26, pp.211-215, 2000.

T. Ban, J. A. Heymann, Z. Song, J. E. Hinshaw, and D. C. Chan, OPA1 disease alleles causing dominant optic atrophy have defects in cardiolipin-stimulated GTP hydrolysis and membrane tubulation, Hum Mol Genet, vol.19, pp.2113-2122, 2010.

S. J. Beebe, R. Holloway, S. R. Rannels, and J. D. Corbin, Two classes of cAMP analogs which are selective for the two different cAMP-binding sites of type II protein kinase demonstrate synergism when added together to intact adipocytes, J Biol Chem, vol.259, pp.3539-3547, 1984.

E. J. Blanchette-mackie, N. K. Dwyer, T. Barber, R. A. Coxey, T. Takeda et al., Perilipin is located on the surface layer of intracellular lipid droplets in adipocytes, J Lipid Res, vol.36, pp.1211-1226, 1995.

S. Bolte and F. P. Cordelieres, A guided tour into subcellular colocalization analysis in light microscopy, J Microsc, vol.224, pp.213-232, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00132481

D. L. Brasaemle, G. Dolios, L. Shapiro, and R. Wang, Proteomic analysis of proteins associated with lipid droplets of basal and lipolytically stimulated 3T3-L1 adipocytes, J Biol Chem, vol.279, pp.46835-46842, 2004.

D. L. Brasaemle, D. M. Levin, D. C. Adler-wailes, and C. Londos, The lipolytic stimulation of 3T3-L1 adipocytes promotes the translocation of hormone-sensitive lipase to the surfaces of lipid storage droplets, Biochim Biophys Acta, vol.1483, pp.251-262, 2000.

D. L. Brasaemle, B. Rubin, I. A. Harten, J. Gruia-gray, A. R. Kimmel et al., Perilipin A increases triacylglycerol storage by decreasing the rate of triacylglycerol hydrolysis, J Biol Chem, vol.275, pp.38486-38493, 2000.

D. Bridges, J. A. Macdonald, B. Wadzinski, and G. B. Moorhead, Identification and characterization of D-AKAP1 as a major adipocyte PKA and PP1 binding protein, Biochem Biophys Res Commun, vol.346, pp.351-357, 2006.

C. R. Carlson, B. Lygren, T. Berge, N. Hoshi, W. Wong et al., Delineation of type I protein kinase A-selective signaling events using an RI anchoring disruptor, J Biol Chem, vol.281, pp.21535-21545, 2006.

D. W. Carr, Z. E. Hausken, I. D. Fraser, R. E. Stofko-hahn, and J. D. Scott, Association of the type II cAMP-dependent protein kinase with a human thyroid RII-anchoring protein. Cloning and characterization of the RII-binding domain, J Biol Chem, vol.267, pp.13376-13382, 1992.

A. Cederberg, L. M. Gronning, B. Ahren, K. Tasken, P. Carlsson et al., FOXC2 is a winged helix gene that counteracts obesity, hypertriglyceridemia, and diet-induced insulin resistance, Cell, vol.106, pp.563-573, 2001.

A. Chaudhry, C. Zhang, and J. G. Granneman, Characterization of RII(beta) and D-AKAP1 in differentiated adipocytes, Am J Physiol Cell Physiol, vol.282, pp.205-212, 2002.

S. Cipolat, O. Martins-de-brito, D. Zilio, B. Scorrano, and L. , OPA1 requires mitofusin 1 to promote mitochondrial fusion, Proc Natl Acad Sci, vol.101, pp.15927-15932, 2004.

D. E. Cummings, E. P. Brandon, J. V. Planas, K. Motamed, R. L. Idzerda et al., Genetically lean mice result from targeted disruption of the RII beta subunit of protein kinase A, Nature, vol.382, pp.622-626, 1996.

C. Delettre, G. Lenaers, J. M. Griffoin, N. Gigarel, C. Lorenzo et al., Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy, Nat Genet, vol.26, pp.207-210, 2000.

D. Diviani and J. D. Scott, AKAP signaling complexes at the cytoskeleton, J Cell Sci, vol.114, pp.1431-1437, 2001.

S. Durgerian and S. S. Taylor, The consequences of introducing an autophosphorylation site into the type I regulatory subunit of cAMP-dependent protein kinase, J Biol Chem, vol.264, pp.9807-9813, 1989.

G. Enrique-tarancon, L. Marti, N. Morin, J. M. Lizcano, M. Unzeta et al., Role of semicarbazide-sensitive amine oxidase on glucose transport and GLUT4 recruitment to the cell surface in adipose cells, J Biol Chem, vol.273, pp.8025-8032, 1998.

J. N. Fain and J. A. Garcija-sainz, Adrenergic regulation of adipocyte metabolism, J Lipid Res, vol.24, pp.945-966, 1983.

I. D. Fraser, M. Cong, J. Kim, E. N. Rollins, Y. Daaka et al., Assembly of an A kinase-anchoring protein-beta(2)-adrenergic receptor complex facilitates receptor phosphorylation and signaling, Curr Biol, vol.10, pp.409-412, 2000.

G. Fredrikson, H. Tornqvist, and P. Belfrage, Hormone-sensitive lipase and monoacylglycerol lipase are both required for complete degradation of adipocyte triacylglycerol, Biochim Biophys Acta, vol.876, pp.288-293, 1986.

C. Frezza, S. Cipolat, O. Martins-de-brito, M. Micaroni, G. V. Beznoussenko et al., OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion, Cell, vol.126, pp.177-189, 2006.

, European Molecular Biology Organization, 2011.

H. Giudicelli, N. Combes-pastre, and J. Boyer, Lipolytic activity of adipose tissue. IV. The diacylglycerol lipase activity of human adipose tissue, Biochim Biophys Acta, vol.369, pp.25-33, 1974.

M. G. Gold, B. Lygren, P. Dokurno, N. Hoshi, G. Mcconnachie et al., Molecular basis of AKAP specificity for PKA regulatory subunits, Mol Cell, vol.24, pp.383-395, 2006.

A. S. Greenberg, J. J. Egan, S. A. Wek, N. B. Garty, E. J. Blanchette-mackie et al., Perilipin, a major hormonally regulated adipocyte-specific phosphoprotein associated with the periphery of lipid storage droplets, J Biol Chem, vol.266, pp.11341-11346, 1991.

A. S. Greenberg, J. J. Egan, S. A. Wek, M. Jr, M. C. Londos et al., Isolation of cDNAs for perilipins A and B: sequence and expression of lipid droplet-associated proteins of adipocytes, Proc Natl Acad Sci, vol.90, pp.12035-12039, 1993.

G. Haemmerle, R. Zimmermann, M. Hayn, C. Theussl, G. Waeg et al., Hormone-sensitive lipase deficiency in mice causes diglyceride accumulation in adipose tissue, muscle, and testis, J Biol Chem, vol.277, pp.4806-4815, 2002.

Z. E. Hausken, V. M. Coghlan, and J. D. Scott, Overlay, ligand blotting, and band-shift techniques to study kinase anchoring, Methods Mol Biol, vol.88, pp.47-64, 1998.

F. W. Herberg, A. Maleszka, T. Eide, L. Vossebein, and K. Tasken, Analysis of A-kinase anchoring protein (AKAP) interaction with protein kinase A (PKA) regulatory subunits: PKA isoform specificity in AKAP binding, J Mol Biol, vol.298, pp.329-339, 2000.

N. Ishihara, Y. Fujita, T. Oka, and K. Mihara, Regulation of mitochondrial morphology through proteolytic cleavage of OPA1, EMBO J, vol.25, pp.2966-2977, 2006.

E. Jarnaess, A. Ruppelt, A. J. Stokka, B. Lygren, J. D. Scott et al., Dual specificity A-kinase anchoring proteins (AKAPs) contain an additional binding region that enhances targeting of protein kinase A type I, J Biol Chem, vol.283, pp.33708-33718, 2008.

C. M. Jenkins, D. J. Mancuso, W. Yan, H. F. Sims, B. Gibson et al., Identification, cloning, expression, and purification of three novel human calcium-independent phospholipase A2 family members possessing triacylglycerol lipase and acylglycerol transacylase activities, J Biol Chem, vol.279, pp.48968-48975, 2004.

C. R. Kahn, L. Chen, and S. E. Cohen, Unraveling the mechanism of action of thiazolidinediones, J Clin Invest, vol.106, pp.1305-1307, 2000.

A. R. Kimmel, D. L. Brasaemle, M. Mcandrews-hill, C. Sztalryd, and C. Londos, Adoption of PERILIPIN as a unifying nomenclature for the mammalian PAT-family of intracellular, lipid storage droplet proteins, J Lipid Res, vol.51, pp.468-471, 2009.

F. S. Kinderman, C. Kim, S. Von-daake, Y. Ma, B. Q. Pham et al., A dynamic mechanism for AKAP binding to RII isoforms of cAMP-dependent protein kinase, Mol Cell, vol.24, pp.397-408, 2006.

T. Kita, H. Nishida, H. Shibata, S. Niimi, T. Higuti et al., Possible role of mitochondrial remodelling on cellular triacylglycerol accumulation, J Biochem, vol.146, pp.787-796, 2009.

C. Londos, D. L. Brasaemle, C. J. Schultz, J. P. Segrest, and A. R. Kimmel, Perilipins, ADRP, and other proteins that associate with intracellular neutral lipid droplets in animal cells, Semin Cell Dev Biol, vol.10, pp.51-58, 1999.

J. J. Michel and J. D. Scott, AKAP mediated signal transduction, Annu Rev Pharmacol Toxicol, vol.42, pp.235-257, 2002.

T. Misaka, T. Miyashita, and Y. Kubo, Primary structure of a dynamin-related mouse mitochondrial GTPase and its distribution in brain, subcellular localization, and effect on mitochondrial morphology, J Biol Chem, vol.277, pp.15834-15842, 2002.

S. Nomura, H. Kawanami, H. Ueda, T. Kizaki, H. Ohno et al., Possible mechanisms by which adipocyte lipolysis is enhanced in exercise-trained rats, Biochem Biophys Res Commun, vol.295, pp.236-242, 2002.

A. Olichon, L. Baricault, N. Gas, E. Guillou, A. Valette et al., Loss of OPA1 perturbates the mitochondrial inner membrane structure and integrity, leading to cytochrome c release and apoptosis, J Biol Chem, vol.278, pp.7743-7746, 2003.

A. Olichon, L. J. Emorine, E. Descoins, L. Pelloquin, L. Brichese et al., The human dynamin-related protein OPA1 is anchored to the mitochondrial inner membrane facing the inter-membrane space, FEBS Lett, vol.523, pp.171-176, 2002.

J. Osuga, S. Ishibashi, T. Oka, H. Yagyu, R. Tozawa et al., Targeted disruption of hormone-sensitive lipase results in male sterility and adipocyte hypertrophy, but not in obesity, Proc Natl Acad Sci, vol.97, pp.787-792, 2000.

C. Oswald, U. Krause-buchholz, and G. Rodel, Knockdown of human COX17 affects assembly and supramolecular organization of cytochrome c oxidase, J Mol Biol, vol.389, pp.470-479, 2009.

G. Pidoux and K. Tasken, Specificity and spatial dynamics of PKA signaling organized by A kinase anchoring proteins, J Mol Endocrinol, vol.44, pp.271-284, 2010.

A. M. Robinson-steiner, S. J. Beebe, S. R. Rannels, and J. D. Corbin, Microheterogeneity of type II cAMP-dependent protein kinase in various mammalian species and tissues, J Biol Chem, vol.259, pp.10596-10605, 1984.

A. Ruppelt, R. Mosenden, M. Gronholm, E. M. Aandahl, D. Tobin et al., Inhibition of T cell activation by cyclic adenosine 5 0 -monophosphate requires lipid raft targeting of protein kinase A type I by the A-kinase anchoring protein ezrin, J Immunol, vol.179, pp.5159-5168, 2007.

M. Satoh, T. Hamamoto, N. Seo, Y. Kagawa, and H. Endo, Differential sublocalization of the dynamin-related protein OPA1 isoforms in mitochondria, Biochem Biophys Res Commun, vol.300, pp.482-493, 2003.

H. Sesaki, S. M. Southard, M. P. Yaffe, and R. E. Jensen, Mgm1p, a dynamin-related GTPase, is essential for fusion of the mitochondrial outer membrane, Mol Biol Cell, vol.14, pp.2342-2356, 2003.

K. G. Soni, R. Lehner, P. Metalnikov, O. Donnell, P. Semache et al., Carboxylesterase 3 (EC 3.1.1.1) is a major adipocyte lipase, J Biol Chem, vol.279, pp.40683-40689, 2004.

S. C. Souza, K. V. Muliro, L. Liscum, P. Lien, M. T. Yamamoto et al., Modulation of hormone-sensitive lipase and protein kinase Amediated lipolysis by perilipin A in an adenoviral reconstituted system, J Biol Chem, vol.277, pp.8267-8272, 2002.

M. Spinazzi, S. Cazzola, M. Bortolozzi, A. Baracca, E. Loro et al., A novel deletion in the GTPase domain of OPA1 causes defects in mitochondrial morphology and distribution, but not in function, Hum Mol Genet, vol.17, pp.3291-3302, 2008.

A. J. Stokka, F. Gesellchen, C. R. Carlson, J. D. Scott, F. W. Herberg et al., Characterization of A-kinase-anchoring disruptors using a solution-based assay, Biochem J, vol.400, pp.493-499, 2006.

V. Subramanian, A. Garcia, A. Sekowski, and D. L. Brasaemle, Hydrophobic sequences target and anchor perilipin A to lipid droplets, J Lipid Res, vol.45, pp.1983-1991, 2004.

J. T. Tansey, A. M. Huml, R. Vogt, K. E. Davis, J. M. Jones et al., Functional studies on native and mutated forms of perilipins. A role in protein kinase A-mediated lipolysis of triacylglycerols, J Biol Chem, vol.278, pp.8401-8406, 2003.

J. T. Tansey, C. Sztalryd, J. Gruia-gray, D. L. Roush, J. V. Zee et al., Perilipin ablation results in a lean mouse with aberrant adipocyte lipolysis, enhanced leptin production, and resistance to dietinduced obesity, Proc Natl Acad Sci, vol.98, pp.6494-6499, 2001.

J. Tao, H. Y. Wang, and C. C. Malbon, Protein kinase A regulates AKAP250 (gravin) scaffold binding to the beta2-adrenergic receptor, EMBO J, vol.22, pp.6419-6429, 2003.

K. Tasken and E. M. Aandahl, Localized effects of cAMP mediated by distinct routes of protein kinase A, Physiol Rev, vol.84, pp.137-167, 2004.

H. Tornqvist and P. Belfrage, Purification and some properties of a monoacylglycerol-hydrolyzing enzyme of rat adipose tissue, J Biol Chem, vol.251, pp.813-819, 1976.

R. H. Unger, Minireview: weapons of lean body mass destruction: the role of ectopic lipids in the metabolic syndrome, Endocrinology, vol.144, pp.5159-5165, 2003.

J. A. Villena, S. Roy, E. Sarkadi-nagy, K. H. Kim, and H. S. Sul, Desnutrin, an adipocyte gene encoding a novel patatin domaincontaining protein, is induced by fasting and glucocorticoids: ectopic expression of desnutrin increases triglyceride hydrolysis, J Biol Chem, vol.279, pp.47066-47075, 2004.

S. P. Wang, N. Laurin, J. Himms-hagen, M. A. Rudnicki, E. Levy et al., The adipose tissue phenotype of hormone-sensitive lipase deficiency in mice, Obes Res, vol.9, pp.119-128, 2001.

, Biolog) and eluted with cAMP. To remove any bound or unbound cAMP, the purified recombinant proteins were dialysed extensively against a buffer containing 20 mM MOPS, pH 7.0 and 150 mM NaCl. Protein concentrations were determined using the Bradford protein assay and SDS-PAGE (10% gels) using BSA as a standard. His-ezrin, GST-ezrin were expressed and purified as previously described, Bovine RI? (RI? and RI?-flag tagged) and human RII?, 2011.

. Raijmakers, Prior to pull down, 50 µl dry volume of immobilized cAMP beads (? 300 nmol of cAMP) were washed with 1 ml of PBS buffer. For control, beads blocked by ethanolamine were used in a parallel identical pulldown procedure. Prior to the pull-down assays, cell lysates were incubated with 10 mM ADP/GDP for 15 min at 4°C to reduce nonspecific binding, mainly contributed by ADP-and GDP-binding protein, Pull-down assays The cAMP-coupled-agarose beads, 2006.

. Nanolc-ltq, USA) connected to a linear quadrupole ion trap -Orbitrap (LTQ Orbitrap) mass spectrometer (ThermoElectron, Bremen, Germany) equipped with a nanoelectrospray ion source. For liquid chromatography separation we used an Acclaim, Orbitrap mass spectrometry Dried peptides were dissolved in 10 µl 1% formic acid in water and 5 µl were injected onto an LC/MS system consisting of a Dionex Ultimate 3000 nano-LC system

, Survey full scan MS spectra (from m/z 300 to 2,000) were acquired in the Orbitrap with resolution R = 60,000 at m/z 400 (after accumulation to a target of 1,000,000 charges in the LTQ). The method used allowed sequential isolation of the most intense ions, up to six, depending on signal intensity, for fragmentation on the linear ion trap using collisionally induced dissociation at a target value of 100,000 charges, The mass spectrometer was operated in the data-dependent mode to automatically switch between Orbitrap-MS and LTQ-MS/MS acquisition, 2010.

, Gap-Fluorecence Recovery After Photobleaching (gap-FRAP) experiments

. Frendo, Cells were plated on eight-well chamber slides (Ibidi) at density of 100,000 cells per well and treated with 8-beta-glycyrrhetinic acid (?-GA) loaded with cell-permeable anchoring disruptor peptides or PKI peptide or transfected ezrin siRNA alone or concomitantly with mammalian expression vectors encoding GFP-ezrin # , GFP-ezrin * , GFP-ezrin * -AKBmut or GFP-ezrin * -D510I-R517V or transfected Cx43 siRNA alone or with mammalian expression vectors encoding GFP-Cx43 ? , GFP-Cx43 ? R370E or either with combinations of substittuions in the Cx43 PKA phosphorylation sites as described above and listed in Fig S4F. Cells were next loaded with calcein red-orange AM (Invitrogen) and images were acquired with a camera (EM-CCD eVolve, pixel: (16 µm) 2 ). In each experiment, one labeled, isolated cell was left unbleached as a refence for the loss of fluorescence due to repeated scanning and dye leakage. The microscope was controlled by expression upon ezrin silencing, PLA with ezrin and PKA (RI? and RII?) during trophoblast fusion and a summary of GFP-Cx43 variants. Fig. S5 shows the identification and characterization of minimal residues binding motifs in ezrin and Cx43. Video 1 corresponds to Fig 5B and shows the effect of gap junction inhibitor (beta-GA), Arg-tagged protein kinase inhibitor (PKI) or Arg-tagged anchoring disruptors RIAD or SuperAKAP-IS and their scrambled controls on gap junction communication in live cells examined by calcein transfer as fluorescence recovery after photobleaching (gap-FRAP). Video 2 corresponds to Fig. 7B and shows trophoblasts transfected with scrambled ezrin siRNA or ezrin siRNA with or without co-transfection with GFP-ezrin # , GFP-ezrin*, GFP-ezrin*-AKBmut plasmid or GFP-ezrin*-D510I-R517V on gap junction communication in live cells examined by calcein transfer as gap-FRAP. Video 3 corresponds to Fig. 9B and shows trophoblasts transfected with scrambled siRNA or Cx43 siRNA with or without co, Gap junction communication was quantitatively followed in live cells by gap-FRAP experiments as previously described, 1986.

, LIST OF ABBREVIATIONS Abbreviations used in this paper: 6-Bnz-cAMP, N6-benzoyladenosine 3',5'-cyclic monophosphate; 8-Br-cAMP, 8-bromoadenosine 3',5'-cyclic monophosphate

A. Adam, . Desintegrin, and . Metalloproteinase-domain,

, A kinase anchoring protein, AKAP

A. Akb, . Kinase, and . Domain,

, GA, 18 beta-glycyrrhetinic acid, vol.7

. Epac, exchange protein activated by cAMP; ERM, ezrin-radixin-moesin; gap-FRAP, gap junction communication by fluorescence recovery after photobleaching; GCM1, glial cell missing 1 protein; hCG, human chorionic gonadotropin

. Riad, . Risr, and . Specifer,

E. Alsat, J. Haziza, and D. Evain-brion, Increase in epidermal growth factor receptor and its messenger ribonucleic acid levels with differentiation of human trophoblast cells in culture, J Cell Physiol, vol.154, pp.122-128, 1993.

M. Arpin, D. Chirivino, A. Naba, and I. Zwaenepoel, Emerging role for ERM proteins in cell adhesion and migration, Cell Adh Migr, vol.5, pp.199-206, 2011.

K. Benirschke and P. Kaufmann, Pathology of the human placenta, pp.22-70, 2000.

M. Berryman, Z. Franck, and A. Bretscher, Ezrin is concentrated in the apical microvilli of a wide variety of epithelial cells whereas moesin is found primarily in endothelial cells, J Cell Sci, vol.105, pp.1025-1043, 1993.

B. Bjerregaard, S. Holck, I. J. Christensen, and L. I. Larsson, Syncytin is involved in breast cancer-endothelial cell fusions, Cell Mol Life Sci, vol.63, pp.1906-1911, 2006.

B. Bjerregaard, J. F. Talts, and L. I. Larsson, The endogenous envelope protein syncytin is involved in myoblast fusion, Cell Fusions: regulation and control, vol.1, pp.267-275, 2011.

J. Blond, D. Lavillette, V. Cheynet, O. Bouton, G. Oriol et al., An envelope glycoprotein of the human endogenous retrovirus HERV-W is expressed in the human placenta and fuses cells expressing the type D mammalian retrovirus receptor, J Virol, vol.74, pp.3321-3329, 2000.

V. L. Bonilha, M. E. Rayborn, I. Saotome, A. I. Mcclatchey, and J. G. Hollyfield, Microvilli defects in retinas of ezrin knockout mice, Exp Eye Res, vol.82, pp.720-729, 2006.

A. Bretscher, Rapid phosphorylation and reorganization of ezrin and spectrin accompany morphological changes induced in A-431 cells by epidermal growth factor, J Cell Biol, vol.108, pp.921-930, 1989.

M. J. Brown, R. Nijhara, J. A. Hallam, M. Gignac, K. M. Yamada et al., Chemokine stimulation of human peripheral blood T lymphocytes induces rapid dephosphorylation of ERM proteins, which facilitates loss of microvilli and polarization, Blood, vol.102, pp.3890-3899, 2003.

R. Bruzzone, T. White, and D. Paul, Connections with connexins: the molecular basis of direct intercellular signaling, Eur J Biochem, vol.15, pp.1-27, 1996.

R. C. Burghardt, R. Barhoumi, T. C. Sewall, and J. A. Bowen, Cyclic AMP induces rapid increases in gap junction permeability and changes in the cellular distribution of connexin43, J Membr Biol, vol.148, pp.243-253, 1995.

C. R. Carlson, B. Lygren, T. Berge, N. Hoshi, W. Wong et al., Delineation of type I protein kinase A-selective signaling events using an RI anchoring disruptor, J Biol Chem, vol.281, pp.21535-21545, 2006.

D. W. Carr, Z. E. Hausken, I. D. Fraser, R. E. Stofko-hahn, and J. D. Scott, Association of the type II cAMP-dependent protein kinase with a human thyroid RII-anchoring protein. Cloning and characterization of the RII-binding domain, J Biol Chem, vol.267, pp.13376-13382, 1992.

C. W. Chang, G. D. Chang, and H. Chen, A novel cyclic AMP/Epac1/CaMKI signaling cascade promotes GCM1 desumoylation and placental cell fusion, Mol Cell Biol, vol.31, pp.3820-3831, 2011.

S. Charrasse, F. Comunale, M. Fortier, E. Portales-casamar, A. Debant et al., M-cadherin activates Rac1 GTPase through the Rho-GEF trio during myoblast fusion, Mol Biol Cell, vol.18, pp.1734-1743, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00212300

C. P. Chen, L. F. Chen, S. R. Yang, C. Y. Chen, C. C. Ko et al., Functional characterization of the human placental fusogenic membrane protein syncytin 2, Biol Reprod, vol.79, pp.815-823, 2008.

L. V. Chernomordik and M. M. Kozlov, Membrane hemifusion: crossing a chasm in two leaps, Cell, vol.123, pp.375-382, 2005.

V. M. Coghlan, B. A. Perrino, M. Howard, L. K. Langeberg, J. B. Hicks et al., Association of protein kinase A and protein phosphatase 2B with a common anchoring protein, Science, vol.267, pp.108-111, 1995.

C. Coutifaris, L. Kao, H. Sehdev, U. Chin, G. Babalola et al., Ecadherin expression during the differentiation of human trophoblasts, Development, vol.113, pp.767-777, 1991.

L. Cronier, N. Defamie, L. Dupays, M. Théveniau-ruissy, F. Goffin et al., Connexin expression and gap junctional intercellular communication in human first trimester trophoblast, Mol Hum Reprod, vol.8, pp.1005-1013, 2002.

L. Cronier, J. L. Frendo, N. Defamie, G. Pidoux, G. Bertin et al., Requirement of gap junctional intercellular communication for human villous trophoblast differentiation, Biol Reprod, vol.69, pp.1472-1480, 2003.
URL : https://hal.archives-ouvertes.fr/inserm-02556169

P. Cullinan, A. I. Sperling, and J. K. Burkhardt, The distal pole complex: a novel membrane domain distal to the immunological synapse, Immunol Rev, vol.189, pp.111-122, 2002.

E. Dahl, E. Winterhager, O. Traub, and K. Willecke, Expression of gap junction genes, connexin40 and connexin43, during fetal mouse development, Anat Embryol (Berl), vol.191, pp.267-278, 1995.

B. J. Darrow, V. G. Fast, A. G. Kleber, E. C. Beyer, and J. E. Saffitz, Functional and structural assessment of intercellular communication. Increased conduction velocity and enhanced connexin expression in dibutyryl cAMP-treated cultured cardiac myocytes, Circ Res, vol.79, pp.174-183, 1996.

S. P. Davies, H. Reddy, M. Caivano, and P. Cohen, Specificity and mechanism of action of some commonly used protein kinase inhibitors, Biochem J, vol.351, pp.95-105, 2000.

K. L. Dodge, S. Khouangsathiene, M. S. Kapiloff, R. Mouton, E. V. Hill et al., mAKAP assembles a protein kinase A/PDE4 phosphodiesterase cAMP signaling module, Embo J, vol.20, pp.1921-1930, 2001.

D. T. Dransfield, A. J. Bradford, J. Smith, M. Martin, C. Roy et al., Ezrin is a cyclic AMP-dependent protein kinase anchoring protein, EMBO J, vol.16, pp.35-43, 1997.

C. E. Dunk, A. Gellhaus, S. Drewlo, D. Baczyk, A. J. Potgens et al., The Molecular Role of Connexin 43 in Human Trophoblast Cell Fusion. Biology of reproduction, 2012.

B. Eaton and S. Contractor, In vitro assessment of trophoblast receptors and placental transport mechanisms, The human placenta, pp.471-503, 1993.

B. T. Fievet, A. Gautreau, C. Roy, L. Maestro, P. Mangeat et al., Phosphoinositide binding and phosphorylation act sequentially in the activation mechanism of ezrin, J Cell Biol, vol.164, pp.653-659, 2004.

J. Frendo, L. Cronier, G. Bertin, J. Guibourdenche, M. Vidaud et al., Involvement of connexin 43 in human trophoblast cell fusion and differentiation, J Cell Sci, vol.116, pp.3413-3421, 2003.
URL : https://hal.archives-ouvertes.fr/inserm-00128436

J. Frendo, D. Olivier, V. Cheynet, J. Blond, M. Vidaud et al., Direct involvement of HERV-W Env glycoprotein in human trophoblast cell fusion and differentiation, Mol Cell Biol, vol.23, pp.3566-3574, 2003.
URL : https://hal.archives-ouvertes.fr/inserm-00128429

P. Gerbaud, G. Pidoux, J. Guibourdenche, N. Pathirage, J. M. Costa et al., Mesenchymal activin-a overcomes defective human trisomy 21 trophoblast fusion, Endocrinology, vol.152, pp.5017-5028, 2011.
URL : https://hal.archives-ouvertes.fr/inserm-02556144

S. Gnidehou, P. Gerbaud, G. Ducarme, F. Ferreira, J. Badet et al., Expression in Escherichia coli and purification of human recombinant connexin-43, a four-pass transmembrane protein, Protein Expr Purif, vol.78, pp.174-180, 2011.

M. G. Gold, B. Lygren, P. Dokurno, N. Hoshi, G. Mcconnachie et al., Molecular basis of AKAP specificity for PKA regulatory subunits, Mol Cell, vol.24, pp.383-395, 2006.

D. E. Gutstein, G. E. Morley, and G. I. Fishman, Conditional gene targeting of connexin43: exploring the consequences of gap junction remodeling in the heart, Cell Commun Adhes, vol.8, pp.345-348, 2001.

J. Ilvesaro, K. Vaananen, and J. Tuukkanen, Bone-resorbing osteoclasts contain gap-junctional connexin-43, J Bone Miner Res, vol.15, pp.919-926, 2000.

E. Jarnaess, A. Ruppelt, A. J. Stokka, B. Lygren, J. D. Scott et al., Dual specificity Akinase anchoring proteins (AKAPs) contain an additional binding region that enhances targeting of protein kinase A type I, J Biol Chem, vol.283, pp.33708-33718, 2008.

K. Jordan, J. L. Solan, M. Dominguez, M. Sia, A. Hand et al., Trafficking, assembly, and function of a connexin43-green fluorescent protein chimera in live mammalian cells, Mol Biol Cell, vol.10, pp.2033-2050, 1999.

G. Keryer, E. Alsat, K. Tasken, and D. Evain-brion, Cyclic AMP-dependent protein kinases and human trophoblast cell differentiation in vitro, J Cell Sci, vol.111, pp.995-1004, 1998.

H. Kliman, J. Nestler, E. Sermasi, J. Sanger, J. Strauss et al., Purification, characterization, and in vitro differenciation of cytotrophoblasts from human term placentae, Endocrinology, vol.118, pp.1567-1582, 1986.

I. Knerr, S. W. Schubert, C. Wich, K. Amann, T. Aigner et al., Stimulation of GCMa and syncytin via cAMP mediated PKA signaling in human trophoblastic cells under normoxic and hypoxic conditions, FEBS Lett, vol.579, pp.3991-3998, 2005.

A. Kramer and J. Schneider-mergener, Synthesis and screening of peptide libraries on continuous cellulose membrane supports, Methods Mol Biol, vol.87, pp.25-39, 1998.

X. Lu and Y. Kang, Cell fusion as a hidden force in tumor progression, Cancer Res, vol.69, pp.8536-8539, 2009.

B. Lygren, C. R. Carlson, K. Santamaria, V. Lissandron, T. Mcsorley et al., AKAP complex regulates Ca2+ re-uptake into heart sarcoplasmic reticulum, EMBO Rep, vol.8, pp.1061-1067, 2007.

S. Makaula, A. Lochner, S. Genade, M. N. Sack, M. M. Awan et al., H-89, a nonspecific inhibitor of protein kinase A, promotes post-ischemic cardiac contractile recovery and reduces infarct size, J Cardiovasc Pharmacol, vol.45, pp.341-347, 2005.

G. Mbalaviele, H. Chen, B. F. Boyce, G. R. Mundy, and T. Yoneda, The role of cadherin in the generation of multinucleated osteoclasts from mononuclear precursors in murine marrow, J Clin Invest, vol.95, pp.2757-2765, 1995.

S. Mi, X. Lee, X. Li, G. M. Veldman, H. Finnerty et al., Syncytin is a captive retroviral envelope protein involved in human placental morphogenesis, Nature, vol.403, pp.785-789, 2000.

J. J. Michel and J. D. Scott, AKAP mediated signal transduction, Annu Rev Pharmacol Toxicol, vol.42, pp.235-257, 2002.

A. Midgley, G. Pierce, G. Denau, and J. Gosling, Morphogenesis of syncytiotrophoblast in vivo: an autoradiographic demonstration, Science, vol.141, pp.350-351, 1963.

A. Mukai and N. Hashimoto, Localized cyclic AMP-dependent protein kinase activity is required for myogenic cell fusion, Exp Cell Res, vol.314, pp.387-397, 2008.

C. Nnamani, A. Godwin, C. A. Ducsay, L. D. Longo, and W. H. Fletcher, Regulation of cell-cell communication mediated by connexin 43 in rabbit myometrial cells, Biol Reprod, vol.50, pp.377-389, 1994.

L. Ogren and F. Talamentes, The placenta as an endocrine organ: polypeptides, Physiology of reproduction, pp.875-945, 1994.

M. Oren-suissa and B. Podbilewicz, Cell fusion during development, Trends Cell Biol, vol.17, pp.537-546, 2007.

A. F. Paulson, P. D. Lampe, R. A. Meyer, E. Tenbroek, M. M. Atkinson et al., Cyclic AMP and LDL trigger a rapid enhancement in gap junction assembly through a stimulation of connexin trafficking, J Cell Sci, vol.113, pp.3037-3049, 2000.

P. Pérot, C. Montgiraud, D. Lavillette, and F. Mallet, A comparative portrait of retroviral fusogens and syncytins, Cell fusions: regulation and control, vol.1, pp.63-115, 2011.

G. Pidoux, P. Gerbaud, S. Gnidehou, M. Grynberg, G. Geneau et al., ZO-1 is involved in trophoblastic cells differentiation in human placenta, Am J Physiol Cell Physiol, vol.298, pp.1517-1526, 2010.

G. Pidoux, P. Gerbaud, O. Marpeau, J. Guibourdenche, F. Ferreira et al., Human Placental Development Is Impaired by Abnormal Human Chorionic Gonadotropin Signaling in Trisomy 21 Pregnancies, Endocrinology, vol.148, pp.5403-5413, 2007.
URL : https://hal.archives-ouvertes.fr/inserm-00168635

G. Pidoux, P. Gerbaud, V. Tsatsaris, O. Marpeau, F. Ferreira et al., Biochemical characterization and modulation of LH/CG-receptor during human trophoblast differentiation, J Cell Physiol, vol.212, pp.26-35, 2007.
URL : https://hal.archives-ouvertes.fr/inserm-00116966

G. Pidoux and K. Tasken, Specificity and spatial dynamics of PKA signaling organized by A kinase anchoring proteins, J Mol Endocrinol, vol.44, pp.271-284, 2010.

R. Raijmakers, C. R. Berkers, A. Jong, H. Ovaa, A. J. Heck et al., Automated online sequential isotope labeling for protein quantitation applied to proteasome tissuespecific diversity, Mol Cell Proteomics, vol.7, pp.1755-1762, 2008.

D. Reczek, M. Berryman, and A. Bretscher, Identification of EBP50: A PDZ-containing phosphoprotein that associates with members of the ezrin-radixin-moesin family, J Cell Biol, vol.139, pp.169-179, 1997.

A. Ruppelt, R. Mosenden, M. Gronholm, E. M. Aandahl, D. Tobin et al., Inhibition of T cell activation by cyclic adenosine 5'-monophosphate requires lipid raft targeting of protein kinase A type I by the Akinase anchoring protein ezrin, J Immunol, vol.179, pp.5159-5168, 2007.

J. Saez, V. Berthoud, A. Moreno, and D. Spray, Gap junctions. Multiplicity of controls in differentiated and undifferentiated cells and possible functional implications, Adv Second Messenger Phosphoprotein Res, vol.27, pp.163-198, 1993.

J. C. Saez, D. C. Spray, A. C. Nairn, E. Hertzberg, P. Greengard et al., cAMP increases junctional conductance and stimulates phosphorylation of the 27-kDa principal gap junction polypeptide, Proc Natl Acad Sci U S A, vol.83, pp.2473-2477, 1986.

J. E. Saffitz and A. G. Kleber, Effects of mechanical forces and mediators of hypertrophy on remodeling of gap junctions in the heart, Circ Res, vol.94, pp.585-591, 2004.

H. S. Saleh, U. Merkel, K. J. Geissler, T. Sperka, A. Sechi et al., Properties of an ezrin mutant defective in F-actin binding, J Mol Biol, vol.385, pp.1015-1031, 2009.

I. Saotome, M. Curto, and A. I. Mcclatchey, Ezrin is essential for epithelial organization and villus morphogenesis in the developing intestine, Dev Cell, vol.6, pp.855-864, 2004.

R. V. Schillace and J. D. Scott, Association of the type 1 protein phosphatase PP1 with the Akinase anchoring protein AKAP220, Curr Biol, vol.9, pp.321-324, 1999.

A. Scholten, M. K. Poh, T. A. Van-veen, B. Van-breukelen, M. A. Vos et al., Analysis of the cGMP/cAMP interactome using a chemical proteomics approach in mammalian heart tissue validates sphingosine kinase type 1-interacting protein as a genuine and highly abundant AKAP, J Proteome Res, vol.5, pp.1435-1447, 2006.

M. M. Shah, A. M. Martinez, and W. H. Fletcher, The connexin43 gap junction protein is phosphorylated by protein kinase A and protein kinase C: in vivo and in vitro studies, Mol Cell Biochem, vol.238, pp.57-68, 2002.

Q. Shi, Z. Lei, C. Rao, and J. Lin, Novel role of human chorionic gonadotropin in differentiation of human cytotrophoblasts, endocrinology, vol.132, pp.1387-1395, 1993.

O. Soderberg, M. Gullberg, M. Jarvius, K. Ridderstrale, K. J. Leuchowius et al., Direct observation of individual endogenous protein complexes in situ by proximity ligation, Nat Methods, vol.3, pp.995-1000, 2006.

K. Soe, T. L. Andersen, A. S. Hobolt-pedersen, B. Bjerregaard, L. I. Larsson et al., Involvement of human endogenous retroviral syncytin-1 in human osteoclast fusion, Bone, vol.48, pp.837-846, 2011.

J. L. Solan and P. D. Lampe, Connexin43 phosphorylation: structural changes and biological effects, Biochem J, vol.419, pp.261-272, 2009.

T. Solstad, E. Bjorgo, C. J. Koehler, M. Strozynski, K. M. Torgersen et al., Quantitative proteome analysis of detergent-resistant membranes identifies the differential regulation of protein kinase C isoforms in apoptotic T cells, Proteomics, vol.10, pp.2758-2768, 2010.

K. Takeuchi, N. Sato, H. Kasahara, N. Funayama, A. Nagafuchi et al., Perturbation of cell adhesion and microvilli formation by antisense oligonucleotides to ERM family members, J Cell Biol, vol.125, pp.1371-1384, 1994.

K. Tasken and E. M. , Localized effects of cAMP mediated by distinct routes of protein kinase A, Physiol Rev, vol.84, pp.137-167, 2004.

K. A. Tasken, P. Collas, W. A. Kemmner, O. Witczak, M. Conti et al., Phosphodiesterase 4D and protein kinase a type II constitute a signaling unit in the centrosomal area, J Biol Chem, vol.276, pp.21999-22002, 2001.

E. M. Tenbroek, P. D. Lampe, J. L. Solan, J. K. Reynhout, and R. G. Johnson, Ser364 of connexin43 and the upregulation of gap junction assembly by cAMP, J Cell Biol, vol.155, pp.1307-1318, 2001.

M. Wade, J. Trosko, and M. Schindler, A fluorescence photobleaching assay of gap junctionmediated communication between human cells, Science, vol.232, pp.525-528, 1986.

M. Wakelam, The fusion of myoblasts, Biochem J, vol.15, pp.1-12, 1985.

M. S. Weedon-fekjaer and K. Taskén, Spatiotemporal dynamics of hCG/cAMP signaling and regulation of placental function, pp.1-5, 2011.

K. Willecke, J. Eiberger, J. Degen, D. Eckardt, A. Romualdi et al., Structural and functional diversity of connexin genes in the mouse and human genome, Biol Chem, vol.383, pp.725-737, 2002.

W. Wong and J. D. Scott, AKAP signalling complexes: focal points in space and time, Nat Rev Mol Cell Biol, vol.5, pp.959-970, 2004.

K. Yogo, T. Ogawa, M. Akiyama, N. Ishida-kitagawa, H. Sasada et al., PKA implicated in the phosphorylation of Cx43 induced by stimulation with FSH in rat granulosa cells, J Reprod Dev, vol.52, pp.321-328, 2006.

A. Zambonin-zallone, A. Teti, and M. Primavera, Monocytes from circulating blood fuse in vitro with purified osteoclasts in primary culture, J Cell Sci, vol.66, pp.335-342, 1984.

. Gst-ezrin, Red underscore: ezrin and Cx43 interacting regions. (C) Filters with peptides encompassing the minimal binding motifs of ezrin and Cx43 with or without substitutions (blue underscore) were overlayed with purified GST-Cx43 or GST-ezrin

, Trophoblasts transfected with ezrin specific-siRNA or scrambled control and co-transfected with siRNA insensitive GFP-ezrin D510I-R517V (GFP-ezrin* D510I-R517V) and cultured for 72 h

, Histograms represent remaining mononuclear cells and fusion index (left panels) and level of hCG and hPL (right panels) secreted to the medium. Scale bar: 30 µm. Results are expressed as the mean ± SEM of n = 3 independent experiments (ns for non significant, vol.001, p.0

, Ezrin bound to Cx43 is necessary for PKA control of gap junction communication. (A) Lysates from trophoblasts transfected with ezrin siRNA and GFP-ezrin*, GFP-ezrin*-AKBmut or GFP-ezrin*-D510I-R517V plasmids were subjected to immunoprecipitation with GFP antibody, vol.7

R. Ri? and . Cx43, Dotted lines indicate lanes combined from single gel and exposure. (B) Trophoblasts were transfected with scrambled ezrin siRNA or ezrin siRNA with or without co-transfection with GFPezrin # , GFP-ezrin*, GFP-ezrin*-AKBmut plasmid or GFP-ezrin*-D510I-R517V, stimulated with hCG and subjected to gap-FRAP analysis. Left: calcein fluorescence intensity (F) transfer in individual trophoblasts (asterisk) mapped to pseudocolors as indicated by the color-scale bar, Scale bar: 10 µm. Right: calcein percent fluorescence ratio Ft/Fi

, Cell fusion is controlled by PKA-mediated phosphorylation of Cx43 through ezrin anchoring. (A) Trophoblasts were transfected with Cx43 siRNA or scrambled control alone or together with mammalian expression vectors directing expression of siRNA-resistant GFP-Cx43 (GFP-Cx43 ? ), GFP-Cx43 R370E (GFP-Cx43 ? -R370E), or GFP-Cx43 with substititions in the Cx43-PKA phosphosite (GFP-Cx43 ? -6SD, GFP-Cx43 ? -6SD-R370E, GFP-Cx43 ? -6SA, GFP-Cx43 ? -6SA, vol.8

, Cells with Cx43 knock down and/or reconstitution as in A were immunostained for desmoplakin (red) and nuclei were counterstained with DAPI. Scale bar: 30 µm. (C) Histograms represent percentage of mononuclear cells and fusion indices at 72 h of culture as in A and B. (D) The GFP-Cx43 ? -R370E fusion protein with out ability to bind ezrin and with individual phospho-or dephospho-mimicking S to D and S to A substitutions in residues 364, 365, 368 or all 3 (3SD and 3SAindicated, stimulated with hCG and subjected to GFPimmunoprecipitation (A) and gap-FRAP analysis (B). (C) Calcein fluorescence intensity (F) transfer in individual trophoblasts (asterisk) mapped to pseudocolors as indicated by the color-scale bar, R370E), cultured for another 72 h and subjected to immunoblot analysis with indicated antibodies. Note: higher molecular weight of GFP-Cx43 than ezrin is due to the GFP-tag. (B)

, Upon hCG stimulation

, Cx43 (E'), ezrin (F'), RI? (G'), RII? (H'), ZO-1 (I'), SP1 (J'), Cx43-SP1 (K') and ezrin-SP1 (L') and nuclei were counterstained with DAPI (D-K'). (M-T) Cells were separately immunostained for mIgG, rIgG, D-L) and cells were stained with pairs of antibodies or individual antibody alone as depicted in the figure: mIgG-rIgG (D')

, Scale bar: 15 µm. Histograms show the intensity of the red dot signals normalized by the number of nuclei (right panels; mean ± SEM of n = 3 independent experiments. (B, C, E) Trophoblast were treated with 8-Br-cAMP or hCG alone or together with anchor disrupting peptides or their scrambled controls (B), Supplemental Figure S4: Effect of anchoring disruptor peptides, ezrin silencing and Cx43 variants on cell adhesion

, Scale bars: 15 µm. Results are expressed as the mean ± SEM of n = 6 (B, C) or n=3 (E) independent experiments (*** p < 0.001). (D) Immunoblot analysis of desmoplakin, E-cadherin and actin levels in trophoblasts transfected with ezrin specific-siRNA or scrambled control and co-transfected with siRNA insensitive GFP-ezrin (GFP-ezrin*), siRNA insensitive GFP-ezrin AKB mutated (GFP-ezrin*-AKBmut) or siRNA insensitive GFP-ezrin* with mutation in the ezrin binding domain (GFP-ezrin*-D510I-R517V) after 72 h of culture. (F) Table describing the GFP-Cx43 variants, Cells were next stained with a pair of antibodies to Cx43 or GFP and desmoplakin (DSK) and subjected to proximity ligation in vitro assay (PLA)

, Supplemental Figure S5: Identification and characterization of minimal residues binding motifs in ezrin and Cx43. (A) The full length human ezrin (upper panels) and Cx43