I. La-protéine and F. , 120 II. Voies de réparatio des doages à l, p.122

D. Le-nouveau-role-de-la-forme-cytoplasmique-de-cycline, 137 D. Ue diiutio de l'aativité du protéasoe " est resposale de la résistaae aux stress génotoxiques, p.146

A. Inamdar, A. Goy, and N. Ayoub, Mantle cell lymphoma in the era of precision medicine-diagnosis, biomarkers and therapeutic agents, Oncotarget, vol.7, issue.30, pp.48692-48731, 2016.
DOI : 10.18632/oncotarget.8961

K. Shain, W. Dalton, and J. Tao, The tumor microenvironment shapes hallmarks of mature B-cell malignancies, Oncogene, vol.23, issue.36, pp.4673-4682, 2015.
DOI : 10.1016/j.ccr.2012.12.003

K. Yakimchuk, M. Jondal, and S. Okret, Estrogen receptor ?? and ?? in the normal immune system and in lymphoid malignancies, Molecular and Cellular Endocrinology, vol.375, issue.1-2, pp.121-129, 2013.
DOI : 10.1016/j.mce.2013.05.016

K. Yakimchuk, M. Hasni, and J. Guan, Inhibition of lymphoma vascularization and dissemination by estrogen receptor ?? agonists, Blood, vol.123, issue.13, pp.2054-2061, 2014.
DOI : 10.1182/blood-2013-07-517292

S. Chaudhary, T. Singh, and S. Talwelkar, Erb-041, an Estrogen Receptor-?? Agonist, Inhibits Skin Photocarcinogenesis in SKH-1 Hairless Mice by Downregulating the WNT Signaling Pathway, Cancer Prevention Research, vol.7, issue.2, pp.186-198, 2014.
DOI : 10.1158/1940-6207.CAPR-13-0276

J. Burger and R. Ford, The microenvironment in mantle cell lymphoma: Cellular and molecular pathways and emerging targeted therapies, Seminars in Cancer Biology, vol.21, issue.5, pp.308-312, 2011.
DOI : 10.1016/j.semcancer.2011.09.006

M. Fidalgo, B. Younes, K. Body, S. , B. Aissa-fennira et al., Agonists of estroge reeptor ? have liited aati-myelome activity. Blood e-Letters, 2015.

E. Ladikou and K. E. , The emerging role of estrogen in B cell malignancies, Leukemia & Lymphoma, vol.224, issue.11, pp.528-539, 2010.
DOI : 10.1038/sj.leu.2403043

E. A. Musgrove, C. E. Caldon, J. Barraclough, A. Stone, and R. L. Sutherland, Cyclin D as a therapeutic target in cancer, Nature Reviews Cancer, vol.64, issue.8, pp.558-572, 2011.
DOI : 10.1007/s00280-009-0968-y

Z. Li, Alternative Cyclin D1 Splice Forms Differentially Regulate the DNA Damage Response, Cancer Research, vol.70, issue.21, pp.8802-8811, 2010.
DOI : 10.1158/0008-5472.CAN-10-0312

S. Jirawatnotai, A function for cyclin D1 in DNA repair uncovered by protein interactome analyses in human cancers, Nature, vol.463, issue.7350, pp.230-234, 2011.
DOI : 10.1038/nature08684

X. Zeng, The Ras oncogene signals centrosome amplification in mammary epithelial cells through cyclin D1/Cdk4 and Nek2, Oncogene, vol.411, issue.36, pp.5103-5112, 2010.
DOI : 10.1074/jbc.M407105200

M. C. Casimiro, ChIP sequencing of cyclin D1 reveals a transcriptional role in chromosomal instability in mice, Journal of Clinical Investigation, vol.122, issue.3, pp.833-843, 2012.
DOI : 10.1172/JCI60256DS1

N. E. Brown, Cyclin D1 Activity Regulates Autophagy and Senescence in the Mammary Epithelium, Cancer Research, vol.72, issue.24, pp.6477-6489, 2012.
DOI : 10.1158/0008-5472.CAN-11-4139

T. Sakamaki, Cyclin D1 Determines Mitochondrial Function In Vivo, Molecular and Cellular Biology, vol.26, issue.14, pp.5449-5469, 2006.
DOI : 10.1128/MCB.02074-05

G. Tchakarska, M. Roussel, X. Troussard, and B. Sola, Cyclin D1 Inhibits Mitochondrial Activity in B Cells, Cancer Research, vol.71, issue.5, pp.1690-1699, 2011.
DOI : 10.1158/0008-5472.CAN-10-2564

P. Neumeister, Cyclin D1 Governs Adhesion and Motility of Macrophages, Molecular Biology of the Cell, vol.14, issue.5, pp.2005-2015, 2003.
DOI : 10.1091/mbc.02-07-0102

Z. Li, Cyclin D1 Induction of Cellular Migration Requires p27KIP1, Cancer Research, vol.66, issue.20, pp.9986-9994, 2006.
DOI : 10.1158/0008-5472.CAN-06-1596

Z. Li, Binding and Cell Migration, Journal of Biological Chemistry, vol.19, issue.11, pp.7007-7015, 2008.
DOI : 10.1016/S0092-8674(00)81237-4

URL : https://hal.archives-ouvertes.fr/hal-00687787

P. Pérez-galán, M. Dreyling, and A. Wiestner, Mantle cell lymphoma: biology, pathogenesis, and the molecular basis of treatment in the genomic era, Blood, vol.117, issue.1, pp.26-38, 2011.
DOI : 10.1182/blood-2010-04-189977

S. H. Swerdlow, Word Health Organization classification of tumours, 2008.

A. Gabrea, P. L. Bergsagel, M. Chesi, Y. Shou, and W. M. Kuehl, Insertion of Excised IgH Switch Sequences Causes Overexpression of Cyclin D1 in a Myeloma Tumor Cell, Molecular Cell, vol.3, issue.1, pp.119-123, 1999.
DOI : 10.1016/S1097-2765(00)80180-X

D. W. Huang, B. T. Sherman, and R. A. Lempicki, Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources, Nature Protocols, vol.99, issue.1, pp.44-57, 2008.
DOI : 10.6026/97320630002428

M. C. Casimiro, M. Velasco-velázquez, C. Aguirre-alvarado, and R. G. Pestell, Overview of cyclins D1 function in cancer and the CDK inhibitor landscape: past and present, Expert Opinion on Investigational Drugs, vol.91, issue.3, pp.295-304, 2014.
DOI : 10.1158/1078-0432.CCR-11-0509

P. Hydbring, M. Malumbres, and P. Sicinski, Non-canonical functions of cell cycle cyclins and cyclin-dependent kinases, Nature Reviews Molecular Cell Biology, vol.9, issue.5, pp.280-292, 2016.
DOI : 10.1074/jbc.M100795200

H. Mi, A. Muruganujan, J. T. Casagrande, and P. D. Thomas, Large-scale gene function analysis with the PANTHER classification system, Nature Protocols, vol.5, issue.8, pp.1551-1566, 2013.
DOI : 10.1186/1471-2105-8-426

D. Szklarczyk, The STRING database in 2017: quality-controlled protein???protein association networks, made broadly accessible, Nucleic Acids Research, vol.3, issue.Suppl. 1, pp.362-368, 2017.
DOI : 10.1126/scisignal.2005769

J. A. Burger and R. J. Ford, The microenvironment in mantle cell lymphoma: Cellular and molecular pathways and emerging targeted therapies, Seminars in Cancer Biology, vol.21, issue.5, pp.308-312, 2011.
DOI : 10.1016/j.semcancer.2011.09.006

A. V. Kurtova, A. T. Tamayo, R. J. Ford, and J. A. Burger, Mantle cell lymphoma cells express high levels of CXCR4, CXCR5, and VLA-4 (CD49d): importance for interactions with the stromal microenvironment and specific targeting, Blood, vol.113, issue.19, pp.4604-4613, 2009.
DOI : 10.1182/blood-2008-10-185827

S. Xargay-torrent, Sorafenib Inhibits Cell Migration and Stroma-Mediated Bortezomib Resistance by Interfering B-cell Receptor Signaling and Protein Translation in Mantle Cell Lymphoma, Clinical Cancer Research, vol.19, issue.3, pp.586-597, 2012.
DOI : 10.1158/1078-0432.CCR-12-1935

H. Meng, PACSIN 2 represses cellular migration through direct association with cyclin D1 but not its alternate splice form cyclin D1b, Cell Cycle, vol.113, issue.1, pp.73-81, 2011.
DOI : 10.1128/MCB.01061-06

R. Fernández, M. Ruiz-miró, X. Dolcet, M. Aldea, and E. Garí, Cyclin D1 interacts and collaborates with Ral GTPases enhancing cell detachment and motility, Oncogene, vol.333, issue.16, pp.1936-1946, 2011.
DOI : 10.1158/0008-5472.CAN-08-1108

N. P. Fusté, Characterization of cytoplasmic cyclin D1 as a marker of invasiveness in cancer, Oncotarget, vol.7, issue.19, pp.26979-26991, 2016.
DOI : 10.18632/oncotarget.8876

J. Ishizawa, K. Kojima, N. Hail, . Jr, Y. Tabe et al., Expression, function, and targeting of the nuclear exporter chromosome region maintenance 1 (CRM1) protein, Pharmacology & Therapeutics, vol.153, pp.25-35, 2015.
DOI : 10.1016/j.pharmthera.2015.06.001

F. Bienvenu, Transcriptional role of cyclin D1 in development revealed by a genetic???proteomic screen, Nature, vol.32, issue.7279, pp.374-378, 2010.
DOI : 10.1128/MCB.18.3.1590

N. P. Fusté, Cytoplasmic cyclin D1 regulates cell invasion and metastasis through the phosphorylation of paxillin, Nature Communications, vol.121, p.11581, 2016.
DOI : 10.1242/jcs.031641

Z. Zhong, Cyclin D1/Cyclin-Dependent Kinase 4 Interacts with Filamin A and Affects the Migration and Invasion Potential of Breast Cancer Cells, Cancer Research, vol.70, issue.5, pp.2105-2114, 2010.
DOI : 10.1158/0008-5472.CAN-08-1108

Z. Li, Cyclin D1 Regulates Cellular Migration through the Inhibition of Thrombospondin 1 and ROCK Signaling, Molecular and Cellular Biology, vol.26, issue.11, pp.4240-4256, 2006.
DOI : 10.1128/MCB.02124-05

K. Zhang, Novel selective inhibitors of nuclear export CRM1 antagonists for therapy in mantle cell lymphoma, Experimental Hematology, vol.41, issue.1, pp.67-78, 2013.
DOI : 10.1016/j.exphem.2012.09.002

M. Yoshimura, Induction of p53-mediated transcription and apoptosis by exportin-1 (XPO1) inhibition in mantle cell lymphoma, Cancer Science, vol.63, issue.1, pp.795-801, 2014.
DOI : 10.1158/1535-7163.MCT-13-0239

Y. Zhong, Selinexor suppresses downstream effectors of B-cell activation, proliferation and migration in chronic lymphocytic leukemia cells, Leukemia, vol.94, issue.5, pp.1158-1163, 2014.
DOI : 10.1182/blood-2007-10-121137

G. Gravina, XPO1/CRM1-Selective Inhibitors of Nuclear Export (SINE) reduce tumor spreading and improve overall survival in preclinical models of prostate cancer (PCa), Journal of Hematology & Oncology, vol.7, issue.1, p.46, 2014.
DOI : 10.1007/s12094-010-0555-z

F. Jardin, Detection of gene copy number aberrations in mantle cell lymphoma by a single quantitative multiplex PCR assay: clinicopathological relevance and prognosis value, British Journal of Haematology, vol.64, issue.6, pp.607-618, 2009.
DOI : 10.1016/S0002-9440(10)65071-7

A. Moros, Antitumoral Activity of Lenalidomide in In Vitro and In Vivo Models of Mantle Cell Lymphoma Involves the Destabilization of Cyclin D1/p27KIP1 Complexes, Clinical Cancer Research, vol.20, issue.2, pp.393-403, 2014.
DOI : 10.1158/1078-0432.CCR-13-1569

D. A. Solomon, Cyclin D1 Splice Variants, Journal of Biological Chemistry, vol.218, issue.32, pp.30339-30347, 2003.
DOI : 10.1074/jbc.271.14.8313

URL : http://www.jbc.org/content/278/32/30339.full.pdf

R. 1. Jares, P. Colomer, D. Campo, and E. , Genetic and molecular pathogenesis of mantle cell lymphoma: perspectives for new targeted therapeutics, Nature Reviews Cancer, vol.99, issue.10, pp.750-62, 2007.
DOI : 10.4161/cc.3.3.707

P. Jares, D. Colomer, and E. Campo, Molecular pathogenesis of mantle cell lymphoma, Journal of Clinical Investigation, vol.122, issue.10, pp.3416-3439, 2012.
DOI : 10.1172/JCI61272

W. Yu, R. Denu, K. Krautkramer, K. Grindle, D. Yang et al., Loss of SIRT3 Provides Growth Advantage for B Cell Malignancies, Journal of Biological Chemistry, vol.18, issue.7, pp.3268-79, 2016.
DOI : 10.1016/j.cmet.2006.02.002

S. Jackson and J. Bartek, The DNA-damage response in human biology and disease, Nature, vol.37, issue.7267, pp.1071-1079, 2009.
DOI : 10.1016/j.mrfmmm.2007.02.011

S. Beà, E. Valdés-mas, A. Navarro, I. Salaverria, D. Martín-garcia et al., Landscape of somatic mutations and clonal evolution in mantle cell lymphoma, Proceedings of the National Academy of Sciences, vol.110, issue.4, pp.18250-18255, 2013.
DOI : 10.1073/pnas.1205299110

T. Greiner, C. Dasgupta, V. Ho, D. Weisenburger, L. Smith et al., Mutation and genomic deletion status of ataxia telangiectasia mutated (ATM) and p53 confer specific gene expression profiles in mantle cell lymphoma, Proceedings of the National Academy of Sciences, vol.25, issue.14, pp.2352-2359, 2006.
DOI : 10.1093/nar/25.14.2745

P. Pérez-galán, M. Dreyling, and A. Wiestner, Mantle cell lymphoma: biology, pathogenesis, and the molecular basis of treatment in the genomic era, Blood, vol.117, issue.1, pp.26-38, 2011.
DOI : 10.1182/blood-2010-04-189977

R. Chen, J. Sanchez, and S. Rosen, Clinical management updates in mantle cell lymphoma, Oncology, vol.30, pp.353-60, 2016.

U. Baumann, V. Fernández-sáiz, M. Rudelius, S. Lemeer, R. R. Knorn et al., Disruption of the PRKCD???FBXO25???HAX-1 axis attenuates the apoptotic response and drives lymphomagenesis, Nature Medicine, vol.116, issue.12, pp.1401-1410, 2014.
DOI : 10.1182/blood-2009-11-251074

B. Meissner, R. Kridel, R. Lim, S. Rogic, K. Tse et al., The E3 ubiquitin ligase UBR5 is recurrently mutated in mantle cell lymphoma, Blood, vol.121, issue.16, pp.3161-3165, 2013.
DOI : 10.1182/blood-2013-01-478834

R. Jones, C. Bjorklund, V. Baladandayuthapani, D. Kuhn, and R. Orlowski, Drug Resistance to Inhibitors of the Human Double Minute-2 E3 Ligase Is Mediated by Point Mutations of p53, but Can Be Overcome with the p53 Targeting Agent RITA, Molecular Cancer Therapeutics, vol.11, issue.10, pp.2243-53, 2012.
DOI : 10.1158/1535-7163.MCT-12-0135

A. Moros, S. Bustany, J. Cahu, I. Saborit-villarroya, A. Martínez et al., Antitumoral Activity of Lenalidomide in In Vitro and In Vivo Models of Mantle Cell Lymphoma Involves the Destabilization of Cyclin D1/p27KIP1 Complexes, Clinical Cancer Research, vol.20, issue.2, pp.393-403, 2014.
DOI : 10.1158/1078-0432.CCR-13-1569

J. Cahu and B. Sola, A Sensitive Method to Quantify Senescent Cancer Cells, Journal of Visualized Experiments, vol.doi, issue.78, pp.10-3791, 2013.
DOI : 10.3791/50494

E. Vlashi, K. Kim, C. Lagadec, L. Donna, J. Mcdonald et al., In Vivo Imaging, Tracking, and Targeting of Cancer Stem Cells, JNCI: Journal of the National Cancer Institute, vol.24, issue.5, pp.350-359, 2009.
DOI : 10.1016/j.molcel.2006.10.022

J. Putters, J. Slotman, J. Gerlach, and G. Strous, Specificity, location and function of ??TrCP isoforms and their splice variants, Cellular Signalling, vol.23, issue.4, pp.641-648, 2011.
DOI : 10.1016/j.cellsig.2010.11.015

R. Chen, S. Chubb, T. Cheng, R. Hawtin, V. Gandhi et al., Responses in Mantle Cell Lymphoma Cells to SNS-032 Depend on the Biological Context of Each Cell Line, Cancer Research, vol.70, issue.16, pp.6587-97, 2010.
DOI : 10.1158/0008-5472.CAN-09-3578

C. Jekimovs, E. Bolderson, A. Suraweera, M. Adams, O. Byrne et al., Chemotherapeutic Compounds Targeting the DNA Double-Strand Break Repair Pathways: The Good, the Bad, and the Promising, Frontiers in Oncology, vol.110, issue.2, p.86, 2014.
DOI : 10.1073/pnas.1303800110

F. Lanigan, J. Geraghty, and A. Bracken, Transcriptional regulation of cellular senescence, Oncogene, vol.40, issue.26, pp.2901-2912, 2011.
DOI : 10.1016/j.molcel.2010.12.011

L. Mah, A. El-osta, and T. Karagiannis, ??H2AX: a sensitive molecular marker of DNA damage and repair, Leukemia, vol.678, issue.4, pp.679-86, 2010.
DOI : 10.1002/cyto.a.20426

T. Stracker, The ATM signaling network in development and disease, Frontiers in Genetics, vol.4, p.37, 2013.
DOI : 10.3389/fgene.2013.00037

C. Williamson, E. Kubota, J. Hamill, A. Klimowicz, R. Ye et al., Enhanced cytotoxicity of PARP inhibition in mantle cell lymphoma harbouring mutations in both ATM and p53, EMBO Molecular Medicine, vol.29, issue.6, pp.515-542, 2012.
DOI : 10.1128/MCB.01569-08

P. Aggarwal, M. Lessie, D. Lin, L. Pontano, A. Gladden et al., Nuclear accumulation of cyclin D1 during S phase inhibits Cul4-dependent Cdt1 proteolysis and triggers p53-dependent DNA rereplication, Genes & Development, vol.21, issue.22, pp.2908-2930, 2007.
DOI : 10.1101/gad.1586007

L. Vaites, Z. Lian, E. Lee, B. Yin, A. Demicco et al., ATM deficiency augments constitutively nuclear cyclin D1-driven genomic instability and lymphomagenesis, Oncogene, vol.20, issue.1, pp.129-162, 2013.
DOI : 10.1016/j.molcel.2005.10.029

J. Alao, The regulation of cyclin D1 degradation: roles in cancer development and the potential for therapeutic invention, Molecular Cancer, vol.6, issue.1, p.24, 2007.
DOI : 10.1186/1476-4598-6-24

G. Tchakarska, M. Roussel, X. Troussard, and B. Sola, Cyclin D1 Inhibits Mitochondrial Activity in B Cells, Cancer Research, vol.71, issue.5, pp.1690-1699, 2011.
DOI : 10.1158/0008-5472.CAN-10-2564

L. Busino, M. Donzelli, M. Chiesa, D. Guardavaccaro, D. Ganoth et al., Degradation of Cdc25A by ??-TrCP during S phase and in response to DNA damage, Nature, vol.1, issue.6962, pp.87-91, 2003.
DOI : 10.1038/12013

T. Kanie, I. Onoyama, A. Matsumoto, M. Yamada, H. Nakatsumi et al., Genetic Reevaluation of the Role of F-Box Proteins in Cyclin D1 Degradation, Molecular and Cellular Biology, vol.32, issue.3, pp.590-605, 2012.
DOI : 10.1128/MCB.06570-11

S. Wei, H. Yang, H. Chuang, J. Yang, S. Kulp et al., A Novel Mechanism by Which Thiazolidinediones Facilitate the Proteasomal Degradation of Cyclin D1 in Cancer Cells, Journal of Biological Chemistry, vol.9, issue.39, pp.26759-70, 2008.
DOI : 10.1073/pnas.0500410102

H. Inuzuka, S. Shaik, I. Onoyama, D. Gao, A. Tseng et al., SCF(FBW7) regulates cellular apoptosis by targeting MCL1 for ubiquitylation and destruction, Nature, vol.470, pp.104-113, 2011.
DOI : 10.1038/nature09732

URL : http://europepmc.org/articles/pmc3076007?pdf=render

H. Ren, K. J. Guan, B. Yue, P. Deng, X. Chen et al., The E3 ubiquitin ligases ??-TrCP and FBXW7 cooperatively mediates GSK3-dependent Mcl-1 degradation induced by the Akt inhibitor API-1, resulting in apoptosis, Molecular Cancer, vol.12, issue.1, p.146, 2013.
DOI : 10.1007/s10495-011-0691-0

J. Jin, X. Ang, X. Ye, M. Livingstone, and J. Harper, Differential Roles for Checkpoint Kinases in DNA Damage-dependent Degradation of the Cdc25A Protein Phosphatase, Journal of Biological Chemistry, vol.201, issue.28, pp.19322-19330, 2008.
DOI : 10.1016/0076-6879(91)01013-R

T. Loveless, B. Topacio, A. Vashisht, S. Galaang, K. Ulrich et al., DNA Damage Regulates Translation through ??-TRCP Targeting of CReP, PLOS Genetics, vol.40, issue.6, p.1005292, 2015.
DOI : 10.1371/journal.pgen.1005292.s014

J. Winston, D. Koepp, C. Zhu, S. Elledge, and J. Harper, A family of mammalian F-box proteins, Current Biology, vol.9, issue.20, pp.1180-1182, 1999.
DOI : 10.1016/S0960-9822(00)80021-4

D. Frescas and M. Pagano, Deregulated proteolysis by the F-box proteins SKP2 and ??-TrCP: tipping the scales of cancer, Nature Reviews Cancer, vol.181, issue.6, pp.438-487, 2008.
DOI : 10.1016/S0002-9440(10)63264-6

Y. Thomas, O. Coux, and V. Baldin, ??TrCP-dependent degradation of CDC25B phosphatase at the metaphase-anaphase transition is a pre-requisite for correct mitotic exit, Cell Cycle, vol.9, issue.21, pp.4338-50, 2011.
DOI : 10.4161/cc.9.21.13593

T. Grigoreva, V. Tribulovich, A. Garabadzhiu, G. Melino, and N. Barlev, The 26S proteasome is a multifaceted target for anti-cancer therapies, Oncotarget, vol.6, issue.28, pp.24733-24782, 2015.
DOI : 10.18632/oncotarget.4619

M. Dreyling and S. Ferrero, The role of targeted treatment in mantle cell lymphoma: is transplant dead or alive?, Haematologica, vol.101, issue.2, pp.104-118, 2016.
DOI : 10.3324/haematol.2014.119115

A. Mohanty, N. Sandoval, M. Das, R. Pillai, L. Chen et al., <i>CCND1</i> mutations increase protein stability and promote ibrutinib resistance in mantle cell lymphoma, Oncotarget, vol.7, issue.45, pp.73558-72, 2016.
DOI : 10.18632/oncotarget.12434

R. Rahal, M. Frick, R. Romero, J. Korn, R. Kridel et al., Pharmacological and genomic profiling identifies NF-??B???targeted treatment strategies for mantle cell lymphoma, Nature Medicine, vol.1, issue.1, pp.87-92, 2014.
DOI : 10.1093/bib/bbs017

J. Ma, P. Lu, A. Guo, S. Cheng, H. Zong et al., Characterization of ibrutinib-sensitive and -resistant mantle lymphoma cells, British Journal of Haematology, vol.12, issue.6, pp.849-61, 2014.
DOI : 10.1038/nrd3937

N. Saba, D. Liu, S. Herman, C. Underbayev, X. Tian et al., Pathogenic role of B-cell receptor signaling and canonical NF-??B activation in mantle cell lymphoma, Blood, vol.128, issue.1, pp.82-92, 2016.
DOI : 10.1182/blood-2015-11-681460

D. Acosta-alvear, M. Cho, T. Wild, T. Buchholz, A. Lerner et al., Paradoxical resistance of multiple myeloma to proteasome inhibitors by decreased levels of 19S proteasomal subunits. elife, p.8153, 2015.

P. Richardson, A. Chanan-khan, S. Lonial, A. Krishnan, M. Carroll et al., Tanespimycin and bortezomib combination treatment in patients with relapsed or relapsed and refractory multiple myeloma: results of a phase 1/2 study, British Journal of Haematology, vol.6, issue.6, pp.729-769, 2011.
DOI : 10.1016/S1359-6349(08)72084-6

T. Nakashima, T. Ishii, H. Tagaya, T. Seike, H. Nakagawa et al., New Molecular and Biological Mechanism of Antitumor Activities of KW-2478, a Novel Nonansamycin Heat Shock Protein 90 Inhibitor, in Multiple Myeloma Cells, Clinical Cancer Research, vol.16, issue.10, pp.2792-802, 2010.
DOI : 10.1158/1078-0432.CCR-09-3112

T. Ishii, T. Seike, T. Nakashima, S. Juliger, L. Maharaj et al., Anti-tumor activity against multiple myeloma by combination of KW-2478, an Hsp90 inhibitor, with bortezomib, Blood Cancer Journal, vol.2, issue.4, p.68, 2012.
DOI : 10.18632/oncotarget.246

T. Heimberger, M. Andrulis, S. Riedel, T. Stuhmer, H. Schraud et al., The heat shock transcription factor 1 as a potential new therapeutic target in multiple myeloma, British Journal of Haematology, vol.112, issue.4, pp.465-76, 2013.
DOI : 10.1182/blood-2007-11-119362

S. Bustany, J. Cahu, G. Descamps, C. Pellat-deceunynck, and B. Sola, Heat shock factor 1 is a potent therapeutic target for enhancing the efficacy of treatments for multiple myeloma with adverse prognosis, Journal of Hematology & Oncology, vol.72, issue.1, p.40, 2015.
DOI : 10.1158/0008-5472.CAN-12-0487

URL : https://hal.archives-ouvertes.fr/inserm-01237704

S. Shah, A. Nooka, D. Jaye, N. Bahlis, S. Lonial et al., Bortezomibinduced heat shock response protects multiple myeloma cells and is activated by heat shock factor 1 serine 326 phosphorylation, Oncotarget
DOI : 10.18632/oncotarget.10847

URL : http://www.impactjournals.com/oncotarget/index.php?journal=oncotarget&page=article&op=download&path%5B%5D=10847&path%5B%5D=34339

Y. Pommier, Topoisomerase I inhibitors: camptothecins and beyond, Nature Reviews Cancer, vol.24, issue.10, pp.789-802, 2006.
DOI : 10.1016/0921-8777(90)90057-C

P. Tsvetkov, M. Mendillo, J. Zhao, J. Carette, P. Merrill et al., Author response, eLife, vol.6, p.8467, 2015.
DOI : 10.7554/eLife.08467.021

R. Oerlemans, N. Franke, Y. Assaraf, J. Cloos, I. Van-zantwijk et al., Molecular basis of bortezomib resistance: proteasome subunit ??5 (PSMB5) gene mutation and overexpression of PSMB5 protein, Blood, vol.112, issue.6, pp.2489-99, 2008.
DOI : 10.1182/blood-2007-08-104950

D. Lichter, H. Danaee, M. Pickard, O. Tayber, M. Sintchak et al., Sequence analysis of ??-subunit genes of the 20S proteasome in patients with relapsed multiple myeloma treated with bortezomib or dexamethasone, Blood, vol.120, issue.23, pp.4513-4519, 2012.
DOI : 10.1182/blood-2012-05-426924

J. Vangala, S. Dudem, N. Jain, and S. Kalivendi, Regulation of PSMB5 Protein and ?? Subunits of Mammalian Proteasome by Constitutively Activated Signal Transducer and Activator of Transcription 3 (STAT3), Journal of Biological Chemistry, vol.62, issue.18, pp.12612-12634, 2014.
DOI : 10.1158/0008-5472.CAN-09-4428

A. Rouette, A. Trofimov, D. Haberl, G. Boucher, V. Lavallée et al., Expression of immunoproteasome genes is regulated by cell-intrinsic andextrinsic factor in human cancers. Sci Rep, p.34019, 2016.

A. Kreso and J. Dick, Evolution of the Cancer Stem Cell Model, Cell Stem Cell, vol.14, issue.3, pp.275-91, 2014.
DOI : 10.1016/j.stem.2014.02.006

E. Vlashi, C. Lagadec, M. Chan, P. Frohnen, A. Mcdonald et al., Targeted elimination of breast cancer cells with low proteasome activity is sufficient for tumor regression, Breast Cancer Research and Treatment, vol.20, issue.4, pp.197-203, 2013.
DOI : 10.1016/j.breast.2011.02.017

C. Lagadec, E. Vlashi, S. Bhuta, C. Lai, P. Mischel et al., Tumor cells with low proteasome subunit expression predict overall survival in head and neck cancer patients, BMC Cancer, vol.10, issue.1, p.152, 2014.
DOI : 10.1158/1535-7163.MCT-10-0643

M. Ahmed, L. Zhang, K. Nomie, L. Lam, and M. Wang, Gene mutations and actionable genetic lesions in mantle cell lymphoma, Oncotarget, vol.7, issue.36, pp.58638-58686, 2016.
DOI : 10.18632/oncotarget.10716

A. García-garcía, D. Castillejo, C. Méndez-ferrer, and S. Bmscs, BMSCs and hematopoiesis, Immunology Letters, vol.168, issue.2, pp.129-164, 2015.
DOI : 10.1016/j.imlet.2015.06.020

L. Teras, C. Desantis, J. Cerhan, L. Morton, A. Jemal et al., 2016 US lymphoid malignancy statistics by World Health Organization subtypes, CA: A Cancer Journal for Clinicians, vol.14, issue.suppl 5, pp.443-59, 2016.
DOI : 10.1200/JCO.1996.14.3.974

©. Haute-autorité-de-santé, Guide ALD: Lphoes o hodgkiies de l'adulte

L. Karlin and T. Coman, Cahiers des ECN: Hématologie

S. M. Les-cellules-immunitaires-et-les-organes-lymphoïdes, Available from: http://www.cours-pharmacie.com/immunologie/lescellules-immunitaires-et-les-organes-lymphoides .html 7. Cesta MF. Normal Structure, Function, and Histology of Mucosa-Associated Lymphoid Tissue, Toxicol Pathol, vol.34, issue.5, pp.599-608, 2006.

B. Nancy, L. Harris, E. Jaffe, H. Stein, P. Banks et al., A Revised European- American Classification of Lymphoid Neoplasms: a proposal from the International Lymphoma Study Group, Blood, vol.84, issue.5, pp.1361-92, 1994.

A. Zelenetz, L. Gordon, W. Wierda, J. Abramson, R. Advani et al., Non-Hodgkin???s Lymphomas, Version 2.2014, Journal of the National Comprehensive Cancer Network, vol.12, issue.6, pp.916-962, 2014.
DOI : 10.6004/jnccn.2014.0086

A. Monnerreau, L. Remontet, M. Maynadié, F. Binder-foucard, A. Belot et al., Estiatio atioale de l'iidee des aaers e Frae etre et

E. Campo, S. Swerdlow, N. Harris, S. Pileri, H. Stein et al., The 2008 WHO classification of lymphoid neoplasms and beyond: evolving concepts and practical applications, Blood, vol.117, issue.19, pp.5019-5052, 2014.
DOI : 10.1182/blood-2011-01-293050

B. Cheson, R. Fisher, S. Barrington, F. Cavalli, L. Schwartz et al., Recommendations for Initial Evaluation, Staging, and Response Assessment of Hodgkin and Non-Hodgkin Lymphoma: The Lugano Classification, Journal of Clinical Oncology, vol.32, issue.27, pp.3059-67, 2014.
DOI : 10.1200/JCO.2013.54.8800

V. Arch, B. Sander, L. Quintanilla-martinez, G. Ott, L. Xerri et al., Mantle cell lymphoma ? a spectrum from indolent to aggressive disease, Virchows Arch, vol.468, issue.3, pp.245-57, 2015.

A. Hashmi, Z. Hussain, N. Faridi, and A. Khurshid, Distribution of Ki67 Proliferative Indices among WHO Subtypes of Non-Hodgkin's Lymphoma: Association with other Clinical Parameters, Asian Pacific Journal of Cancer Prevention, vol.15, issue.20, pp.8759-63, 2014.
DOI : 10.7314/APJCP.2014.15.20.8759

P. Jares, D. Colomer, and E. Campo, Molecular pathogenesis of mantle cell lymphoma, Journal of Clinical Investigation, vol.122, issue.10, pp.3416-3439, 2012.
DOI : 10.1172/JCI61272

T. Rea, O. Riorda, M. Okaaura, R. Devaae, E. Willert et al., Wnt Signaling Regulates B Lymphocyte Proliferation through a LEF-1 Dependent Mechanism, Immunity, vol.13, issue.1, pp.15-24, 2000.
DOI : 10.1016/S1074-7613(00)00004-2

T. Menter, S. Dirnhofer, and A. Tzankov, LEF1: a highly specific marker for the diagnosis of chronic lymphocytic B cell leukaemia/small lymphocytic B cell lymphoma, Journal of Clinical Pathology, vol.91, issue.6, pp.473-481, 2015.
DOI : 10.1111/ejh.12119

A. Mozos, C. Royo, E. Hartmann, D. Jong, D. Baro et al., SOX11 expression is highly specific for mantle cell lymphoma and identifies the cyclin D1-negative subtype, Haematologica, vol.94, issue.11, pp.1555-62, 2009.
DOI : 10.3324/haematol.2009.010264

A. Rosenwald, G. Wright, A. Wiestner, W. Chan, J. Connors et al., The proliferation gene expression signature is a quantitative integrator of oncogenic events that predicts survival in mantle cell lymphoma, Cancer Cell, vol.3, issue.2, pp.185-97, 2003.
DOI : 10.1016/S1535-6108(03)00028-X

E. Hoster, M. Dreyling, W. Klapper, C. Gisselbrecht, A. Hoof et al., A new prognostic index (MIPI) for patients with advanced-stage mantle cell lymphoma, Blood, vol.111, issue.2, pp.558-66, 2008.
DOI : 10.1182/blood-2007-06-095331

B. Shah, P. Martin, and E. Sotomayor, Mantle Cell Lymphoma: A Clinically Heterogeneous Disease in Need of Tailored Approaches, Cancer Control, vol.68, issue.14, pp.227-262, 2012.
DOI : 10.1158/0008-5472.CAN-07-6404

V. Fernandez, E. Hartmann, G. Ott, E. Campo, and A. Rosenwald, Pathogenesis of Mantle-Cell Lymphoma: All Oncogenic Roads Lead to Dysregulation of Cell Cycle and DNA Damage Response Pathways, Journal of Clinical Oncology, vol.23, issue.26, pp.6364-6373, 2005.
DOI : 10.1200/JCO.2005.05.019

M. Delfau-larue, W. Klapper, F. Berger, F. Jardin, J. Briere et al., High-dose cytarabine does not overcome the adverse prognostic value of CDKN2A and TP53 deletions in mantle cell lymphoma, Blood, vol.126, issue.5, pp.604-616, 2015.
DOI : 10.1182/blood-2015-02-628792

URL : https://hal.archives-ouvertes.fr/hal-01543670

R. Kridel, B. Meissner, S. Rogic, M. Boyle, A. Telenius et al., Whole transcriptome sequencing reveals recurrent NOTCH1 mutations in mantle cell lymphoma, Blood, vol.119, issue.9, pp.1963-72, 2012.
DOI : 10.1182/blood-2011-11-391474

M. Vegliante, J. Palomero, P. Pérez-galan, G. Roué, G. Castellano et al., SOX11 regulates PAX5 expression and blocks terminal B-cell differentiation in aggressive mantle cell lymphoma, Blood, vol.121, issue.12, pp.2175-86, 2013.
DOI : 10.1182/blood-2012-06-438937

P. Balsas, J. Palomero, Á. Eguileor, M. Rodríguez, M. Vegliante et al., SOX11 promotes tumor protective microenvironment interactions through CXCR4 and FAK regulation in mantle cell lymphoma, Blood, vol.130, issue.4, pp.501-514, 2017.
DOI : 10.1182/blood-2017-04-776740

E. Durot, M. Patey, I. Luquet, B. Gaillard, B. Kolb et al., An aggressive B-cell lymphoma with rearrangements of MYC and CCND1 genes: a rare subtype of double-hit lymphoma An aggressive B-cell lymphoma with rearrangements of MYC and CCND1 genes: a rare subtype of double-hit lymphoma, Leuk Lymphoma, vol.8194, pp.4-8, 2012.

L. Nguyen, P. Papenhausen, and H. Shao, The Role of c-MYC in B-Cell Lymphomas: Diagnostic and Molecular Aspects, Genes, vol.128, issue.4, pp.1-23, 2017.
DOI : 10.1016/j.humpath.2016.07.025

M. Pinyol, S. Bea, L. Pla, V. Ribrag, J. Bosq et al., Inactivation of RB1 in mantle-cell lymphoma detected by nonsense-mediated mRNA decay pathway inhibition and microarray analysis, Blood, vol.109, issue.12, pp.5422-5452, 2007.
DOI : 10.1182/blood-2006-11-057208

E. Camacho, L. Herna, S. Herna, F. Tort, B. Bellosillo et al., ATM gene inactivation in mantle cell lymphoma mainly occurs by truncating mutations and missense mutations involving the phosphatidylinositol-3 kinase domain and is associated with increasing numbers of chromosomal imbalances, Blood, vol.99, issue.1, pp.238-283, 2002.
DOI : 10.1182/blood.V99.1.238

A. Halldorsdottir, A. Lundin, F. Murray, L. Mansouri, S. Knuutila et al., Impact of TP53 mutation and 17p deletion in mantle cell lymphoma, Leukemia, vol.93, issue.12, pp.1904-1912, 2011.
DOI : 10.1182/blood-2008-01-129783

B. Pinyol, L. Hernandez, M. Cazorla, B. Mb, P. Jares et al., Deletions and loss of expression of P16 and P21 genes are associated with agressive variants of mantle cell lymphomas, Blood, vol.89, issue.1, pp.272-80, 1997.

M. Rudelius, S. Pittaluga, S. Nishizuka, T. Pham, F. Fend et al., Constitutive activation of Akt contributes to the pathogenesis and survival of mantle cell lymphoma, Blood, vol.108, issue.5, pp.1668-77, 2006.
DOI : 10.1182/blood-2006-04-015586

Y. Tabe, J. L. Konopleva, M. Shikami, M. Kimura, S. Andreeff et al., Class IA Phosphatidylinositol 3-Kinase Inhibition Inhibits Cell Growth and Proliferation in Mantle Cell Lymphoma, Acta Haematologica, vol.131, issue.1, pp.59-69, 2013.
DOI : 10.1159/000353164

V. Camara-clayette, Y. Lecluse, C. Schrader, W. Klapper, W. Vainchenker et al., The NF-??B pathway is rarely spontaneously activated in mantle cell lymphoma (MCL) cell lines and patient???s samples, European Journal of Cancer, vol.50, issue.1, pp.159-69, 2014.
DOI : 10.1016/j.ejca.2013.09.010

A. Inamdar, A. Goy, N. Ayoub, C. Attia, L. Oton et al., Mantle cell lymphoma in the era of precision medicine-diagnosis, biomarkers and therapeutic agents, Oncotarget, vol.7, issue.30, pp.48692-731, 2016.
DOI : 10.18632/oncotarget.8961

D. Chiron, M. Liberto, . Di, P. Martin, X. Huang et al., Cell-Cycle Reprogramming for PI3K Inhibition Overrides a Relapse-Specific C481S BTK Mutation Revealed by Longitudinal Functional Genomics in Mantle Cell Lymphoma, Cancer Discovery, vol.4, issue.9, pp.3684-92, 2014.
DOI : 10.1158/2159-8290.CD-14-0098

J. Burger and J. Gribben, The microenvironment in chronic lymphocytic leukemia (CLL) and other B cell malignancies: Insight into disease biology and new targeted therapies, Seminars in Cancer Biology, vol.24, pp.71-81, 2014.
DOI : 10.1016/j.semcancer.2013.08.011

P. Amé-thomas and K. Tarte, The yin and the yang of follicular lymphoma cell niches: Role of microenvironment heterogeneity and plasticity, Seminars in Cancer Biology, vol.24, pp.23-32, 2014.
DOI : 10.1016/j.semcancer.2013.08.001

J. Burger and R. Ford, The microenvironment in mantle cell lymphoma: Cellular and molecular pathways and emerging targeted therapies, Seminars in Cancer Biology, vol.21, issue.5, pp.308-320, 2011.
DOI : 10.1016/j.semcancer.2011.09.006

T. Lwin, J. Lin, Y. Choi, X. Zhang, L. Moscinski et al., Follicular dendritic cell-dependent drug resistance of non-Hodgkin lymphoma involves cell adhesion-mediated Bim down-regulation through induction of microRNA-181a, Blood, vol.116, issue.24, pp.5228-5264, 2010.
DOI : 10.1182/blood-2010-03-275925

D. Chiron, C. Bellanger, A. Papin, B. Tessoulin, C. Dousset et al., Rational targeted therapies to overcome microenvironment-dependent expansion of mantle cell lymphoma, Blood, vol.128, issue.24, pp.2808-2826, 2016.
DOI : 10.1182/blood-2016-06-720490

P. Martin, A. Chadburn, C. P. Weil, K. Furman, R. Ruan et al., Outcome of Deferred Initial Therapy in Mantle-Cell Lymphoma, Journal of Clinical Oncology, vol.27, issue.8, pp.1209-1222, 2009.
DOI : 10.1200/JCO.2008.19.6121

J. Sandoval-sus, E. Sotomayor, and B. Shah, Mantle Cell Lymphoma: Contemporary Diagnostic and Treatment Perspectives in the Age of Personalized Medicine, Hematology/Oncology and Stem Cell Therapy, vol.10, issue.3, 2017.
DOI : 10.1016/j.hemonc.2017.02.003

H. Schulz, J. Bohlius, N. Skoetz, S. Trelle, T. Kober et al., Chemotherapy plus Rituximab versus chemotherapy alone for B-cell non-Hodgki's lphoa, Cohraae Database Syst Rev, issue.4, pp.1-35, 2007.
DOI : 10.1002/14651858.cd003805.pub2

M. Dreyling, H. Kluin-nelemans, S. Beà, E. Hartmann, I. Salaverria et al., Update on the molecular pathogenesis and clinical treatment of mantle cell lymphoma: report of the 10th annual conference of the European Mantle Cell Lymphoma Network, Leukemia & Lymphoma, vol.110, issue.1, pp.2226-2262, 2011.
DOI : 10.3109/10428194.2010.496507

M. Dreyling, G. Lenz, E. Hoster, A. Hoof, . Van et al., Early consolidation by myeloablative radiochemotherapy followed by autologous stem cell transplantation in first remission significantly prolongs progression-free survival in mantle-cell lymphoma: results of a prospective randomized trial of the European MCL Network, Blood, vol.105, issue.7, p.2677, 2005.
DOI : 10.1182/blood-2004-10-3883

F. Yan, A. Gopal, and S. Graf, Targeted Drugs as Maintenance Therapy after Autologous Stem Cell Transplantation in Patients with Mantle Cell Lymphoma, Pharmaceuticals, vol.128, issue.4, pp.1-11, 2017.
DOI : 10.1200/JCO.2014.59.5363

M. Wang, S. Rule, P. Martin, A. Goy, R. Auer et al., Targeting BTK with Ibrutinib in Relapsed or Refractory Mantle-Cell Lymphoma, New England Journal of Medicine, vol.369, issue.6, pp.507-523, 2013.
DOI : 10.1056/NEJMoa1306220

L. Ysebaert and M. Dil-huydy, Thérapies ciblées contre la Bruton tyrosine kinase/phosphatidylinositol-3 kinase dans les leucémies lymphoïdes chroniques: quels odes d'aatio pour epliuer les réposes, les résistaaes, et les effets seodaires? Hématologie, pp.117-143, 2015.

H. Kluin-nelemans, E. Hoster, O. Hermine, J. Walewski, M. Trneny et al., Treatment of Older Patients with Mantle-Cell Lymphoma, New England Journal of Medicine, vol.367, issue.6, pp.520-551, 2012.
DOI : 10.1056/NEJMoa1200920

R. Gressin, S. Caulet-maugendre, E. Deconinck, O. Tournilhac, E. Gyan et al., Evaluation of the (R)VAD+C regimen for the treatment of newly diagnosed mantle cell lymphoma. Combined results of two prospective phase II trials from the French GOELAMS group, Haematologica, vol.95, issue.8, pp.1350-1357, 2010.
DOI : 10.3324/haematol.2009.011759

URL : https://hal.archives-ouvertes.fr/inserm-00508037

E. Campo and S. Rule, Mantle cell lymphoma: evolving management strategies, Blood, vol.125, issue.1, pp.48-56, 2015.
DOI : 10.1182/blood-2014-05-521898

URL : http://www.bloodjournal.org/content/bloodjournal/125/1/48.full.pdf

S. Ansell, H. Tang, P. Kurtin, P. Koenig, D. Inwards et al., Temsirolimus and rituximab in patients with relapsed or refractory mantle cell lymphoma: a phase 2 study, The Lancet Oncology, vol.12, issue.4, pp.361-369, 2011.
DOI : 10.1016/S1470-2045(11)70062-6

M. Trneny, T. Lamy, J. Walewski, D. Belada, J. Mayer et al., Lenalidomide versus investigator's choice in relapsed or refractory mantle cell lymphoma (MCL-002; SPRINT): a phase 2, randomised, multicentre trial, The Lancet Oncology, vol.17, issue.3, pp.319-350, 2016.
DOI : 10.1016/S1470-2045(15)00559-8

Q. Yang, L. Chen, M. Ha, K. Do, S. Neelapu et al., Idelalisib Impacts Cell Growth through Inhibiting Translation-Regulatory Mechanisms in Mantle Cell Lymphoma, Clinical Cancer Research, vol.23, issue.1, pp.181-92, 2017.
DOI : 10.1158/1078-0432.CCR-15-3135

N. Andersen, L. Pedersen, A. Laurell, E. Elonen, A. Kolstad et al., Pre-Emptive Treatment With Rituximab of Molecular Relapse After Autologous Stem Cell Transplantation in Mantle Cell Lymphoma, Journal of Clinical Oncology, vol.27, issue.26, pp.4365-70, 2009.
DOI : 10.1200/JCO.2008.21.3116

M. Cheminant, C. Derrieux, A. Touzart, S. Schmit, A. Grenier et al., Minimal residual disease monitoring by 8-color flow cytometry in mantle cell lymphoma: an EU-MCL and LYSA study, Haematologica, vol.101, issue.3, pp.336-381, 2016.
DOI : 10.3324/haematol.2015.134957

URL : https://hal.archives-ouvertes.fr/hal-01455503

D. Leibniz-institut, . Dsmz, and ]. Internet, Available from: https, 2017.

A. Bosanquet, P. Bell, and N. Rooney, Effect of interleukin-2 on CD95 (Fas/APO-1) expression in fresh chronic lymphocytic leukaemia and mantle cell lymphoma cells: relationship to ex vivo chemoresponse, Anticancer Res, vol.19, issue.6, pp.5329-5363, 1999.

C. Jacobson, N. Kopp, J. V. Layer, R. Redd, S. Tschuri et al., HSP90 inhibition overcomes ibrutinib resistance in mantle cell lymphoma, Blood, vol.128, issue.21, pp.2517-2543, 2016.
DOI : 10.1182/blood-2016-04-711176

M. Dhilly, S. Guillouet, D. Patin, F. Fillesoye, A. Abbas et al., 2-[18F]Fludarabine, a Novel Positron Emission Tomography (PET) Tracer for Imaging Lymphoma: a Micro-PET Study in Murine Models, Molecular Imaging and Biology, vol.25, issue.2, pp.118-144, 2014.
DOI : 10.1007/s002590050257

URL : https://hal.archives-ouvertes.fr/hal-01599730

J. Verner, M. Trbusek, J. Chovancova, Z. Jaskova, M. Moulis et al., NOD/SCID IL2R??-null mouse xenograft model of human p53-mutated chronic lymphocytic leukemia and ATM-mutated mantle cell lymphoma using permanent cell lines, Leukemia & Lymphoma, vol.28, issue.11, pp.3198-206, 2015.
DOI : 10.1158/0008-5472.CAN-11-1732

C. Carlo-stella, D. Nicola, M. Turco, M. Cleris, L. Lavazza et al., The Anti???Human Leukocyte Antigen-DR Monoclonal Antibody 1D09C3 Activates the Mitochondrial Cell Death Pathway and Exerts a Potent Antitumor Activity in Lymphoma-Bearing Nonobese Diabetic/Severe Combined Immunodeficient Mice, Cancer Research, vol.66, issue.3, pp.1799-808, 2006.
DOI : 10.1158/0008-5472.CAN-05-1200

M. Wang, L. Zhang, X. Han, J. Yang, J. Qian et al., A Severe Combined Immunodeficient-hu In vivo Mouse Model of Human Primary Mantle Cell Lymphoma, Clinical Cancer Research, vol.14, issue.7, pp.2154-60, 2008.
DOI : 10.1158/1078-0432.CCR-07-4409

S. Iyengar, L. Ariza-mcnaughton, A. Clear, D. Taussig, R. Auer et al., Characteristics of human primary mantle cell lymphoma engraftment in NSG mice, British Journal of Haematology, vol.116, issue.1, pp.165-174, 2016.
DOI : 10.1182/blood-2010-01-265769

X. Zhao, T. Lwin, A. Silva, B. Shah, B. Fang et al., Unification of de novo and acquired ibrutinib resistance in mantle cell lymphoma, Nature Communications, vol.127, pp.14920-14955, 2017.
DOI : 10.1182/blood-2015-05-645069

K. Yakimchuk, M. Hasni, J. Guan, M. Chao, B. Sander et al., Inhibition of lymphoma vascularization and dissemination by estrogen receptor ?? agonists, Blood, vol.123, issue.13, pp.2054-61, 2014.
DOI : 10.1182/blood-2013-07-517292

K. Yakimchuk, M. Jondal, and S. Okret, Estrogen receptor ?? and ?? in the normal immune system and in lymphoid malignancies, Molecular and Cellular Endocrinology, vol.375, issue.1-2, pp.121-130, 2013.
DOI : 10.1016/j.mce.2013.05.016

M. Arlos, R. Liang, M. Hatat-fraile, L. Bragg, N. Zhou et al., Photocatalytic decomposition of selected estrogens and their estrogenic activity by UV-LED irradiated TiO 2 immobilized on porous titanium sheets via thermal-chemical oxidation, Journal of Hazardous Materials, vol.318, pp.541-50, 2016.
DOI : 10.1016/j.jhazmat.2016.07.048

A. Krust, S. Green, P. Argos, P. Walter, J. Bornert et al., The chicken oestrogen receptor sequence: homology with v-erbA and the human oestrogen and glucocorticoid receptors, EMBO J, vol.5, issue.5, pp.891-898, 1986.

L. Grand and A. , Thse d'uiversité: Etude oparative de réepteurs au oestroges: Aspets oléulaire et ellulaire de la répose au oestroges et aati-oestroges impliqués dans les causes et thérapies du cancer du sein, 2010.

J. Schwabe, D. Neuhaus, and D. Rhodes, Solution structure of the DMA-binding domain of the oestrogen receptor, Nature, vol.348, issue.6300, pp.458-61, 1990.
DOI : 10.1038/348458a0

C. Pasqualini, D. Guivarc, J. Barnier, B. Guibert, J. Vincent et al., Differential Subcellular Distribution and Transcriptional Activity of ??E3, ??E4, and ??E3???4 Isoforms of the Rat Estrogen Receptor-??, Molecular Endocrinology, vol.15, issue.6, pp.894-908, 2001.
DOI : 10.1210/mend.15.6.0642

J. Wurtz, W. Bourquet, J. Renaud, V. Vivat, P. Chambon et al., A canonical structure for the ligand-binding domain of nuclear receptors, Nature Structural Biology, vol.50, issue.1, pp.87-94, 1996.
DOI : 10.1107/S0021889891004399

J. Yang, D. Singleton, E. Shaughnessy, and S. Khan, The F-domain of estrogen receptor-alpha inhibits ligand induced receptor dimerization, Molecular and Cellular Endocrinology, vol.295, issue.1-2, pp.94-100, 2008.
DOI : 10.1016/j.mce.2008.08.001

D. Stygar, P. Westlund, H. Eriksson, and L. Sahlin, Identification of wild type and variants of oestrogen receptors in polymorphonuclear and mononuclear leucocytes., Clinical Endocrinology, vol.88, issue.1, pp.74-81, 2006.
DOI : 10.1016/S0165-0378(97)00060-0

C. Chandsawangbhuwana and M. Baker, 3D models of human ER?? and ER?? complexed with coumestrol, Steroids, vol.80, pp.37-43, 2014.
DOI : 10.1016/j.steroids.2013.11.019

D. Leitman, S. Paruthiyil, O. Vivar, E. Saunier, C. Herber et al., Regulation of specific target genes and biological responses by estrogen receptor subtype agonists, Current Opinion in Pharmacology, vol.10, issue.6, pp.629-665, 2010.
DOI : 10.1016/j.coph.2010.09.009

H. Harris, L. Albert, Y. Leathurby, M. Malamas, R. Mewshaw et al., Evaluation of an Estrogen Receptor-?? Agonist in Animal Models of Human Disease, Endocrinology, vol.144, issue.10, pp.4241-4250, 2003.
DOI : 10.1210/en.2003-0550

M. Casimiro, M. Velasco-velázquez, C. Aguirre-alvarado, and R. Pestell, Overview of cyclins D1 function in cancer and the CDK inhibitor landscape: past and present, Expert Opinion on Investigational Drugs, vol.91, issue.3, pp.295-304, 2014.
DOI : 10.1158/1078-0432.CCR-11-0509

P. Sicinski, J. Donaher, S. Parker, T. Li, A. Fazeli et al., Cyclin D1 provides a link between development and oncogenesis in the retina and breast, Cell, vol.82, issue.4, pp.621-651, 1995.
DOI : 10.1016/0092-8674(95)90034-9

P. Sicinski, J. Donaher, Y. Geng, S. Parker, H. Gardner et al., Cyclin D2 is an FSH-responsive gene involved in gonadal cell proliferation and oncogenesis, Nature, vol.384, issue.6608, pp.470-474, 1996.
DOI : 10.1038/384470a0

E. Sicinska, I. Aifantis, L. Cam, L. Swat, W. Borowski et al., Requirement for cyclin D3 in lymphocyte development and T cell leukemias, Cancer Cell, vol.4, issue.6, pp.451-61, 2003.
DOI : 10.1016/S1535-6108(03)00301-5

T. Inaba, H. Matsushime, M. Valentine, M. Roussel, C. Sherr et al., Genomic organization, chromosomal localization, and independent expression of human cyclin D genes, Genomics, vol.13, issue.3, pp.565-74, 1992.
DOI : 10.1016/0888-7543(92)90126-D

K. Knudsen, J. Diehl, C. Haiman, and E. Knudsen, Cyclin D1: polymorphism, aberrant splicing and cancer risk, Oncogene, vol.25, issue.11, pp.1620-1628, 2006.
DOI : 10.1093/nar/28.23.e101

URL : http://www.nature.com/onc/journal/v25/n11/pdf/1209371a.pdf

R. Zwijsen, R. Buckle, E. Hijmans, C. Loomans, and R. Bernards, Ligand-independent recruitment of steroid receptor coactivators to estrogen receptor by cyclin D1, Genes & Development, vol.12, issue.22, pp.3488-98, 1998.
DOI : 10.1101/gad.12.22.3488

D. Howe and C. Lynas, The cyclin D1 alternative transcripts [a] and [b] are expressed in normal and malignant lymphocytes and their relative levels are influenced by the polymorphism at codon 241, Haematologica, vol.86, issue.6, pp.563-572, 2001.

R. Protein-data-bank, Crystal Structure of CDK4 in complex with a D-type cyclin [Internet], 2017.

S. Benzeno and J. Diehl, C-terminal Sequences Direct Cyclin D1-CRM1 Binding, Journal of Biological Chemistry, vol.17, issue.53, pp.56061-56067, 2004.
DOI : 10.1074/jbc.M303969200

URL : http://www.jbc.org/content/279/53/56061.full.pdf

V. Camus, H. Miloudi, A. Taly, B. Sola, and F. Jardin, XPO1 in B cell hematological malignancies: from recurrent somatic mutations to targeted therapy, Journal of Hematology & Oncology, vol.28, issue.Suppl 2, p.47, 2017.
DOI : 10.1038/leu.2014.9

URL : https://hal.archives-ouvertes.fr/hal-01567079

Y. Guo, K. Yang, J. Harwalkar, J. Nye, D. Mason et al., Phosphorylation of cyclin D1 at Thr 286 during S???phase leads to its proteasomal degradation and allows efficient DNA synthesis, Oncogene, vol.24, issue.16, pp.2599-612, 2005.
DOI : 10.1074/jbc.M303969200

K. Therapeutics, Oral selinexor (KPT-330) [Internet] Available from: https, 2017.

J. Alt, J. Cleveland, M. Hannink, and J. Diehl, Phosphorylation-dependent regulation of cyclin D1 nuclear export and cyclin D1-dependent cellular transformation, Genes & Development, vol.14, issue.24, pp.3102-3116, 2000.
DOI : 10.1101/gad.854900

I. Witzel, L. Koh, and N. Perkins, Regulation of cyclin D1 gene expression: Figure 1, Biochemical Society Transactions, vol.38, issue.1, pp.217-239, 2010.
DOI : 10.1042/BST0380217

M. Fu, C. Wang, Z. Li, T. Sakamaki, and R. Pestell, Minireview: Cyclin D1: Normal and Abnormal Functions, Endocrinology, vol.145, issue.12, pp.5439-5486, 2004.
DOI : 10.1210/en.2004-0959

URL : https://academic.oup.com/endo/article-pdf/145/12/5439/9018007/endo5439.pdf

F. Takahashi-yanaga and T. Sasaguri, GSK-3?? regulates cyclin D1 expression: A new target for chemotherapy, Cellular Signalling, vol.20, issue.4, pp.581-590, 2008.
DOI : 10.1016/j.cellsig.2007.10.018

C. Bracken, S. Wall, B. Barré, K. Panov, P. Ajuh et al., Regulation of Cyclin D1 RNA Stability by SNIP1, Cancer Research, vol.68, issue.18, pp.7621-7629, 2008.
DOI : 10.1158/0008-5472.CAN-08-1217

M. Fujii, L. Lyakh, C. Bracken, J. Fukuoka, M. Hayakawa et al., SNIP1 Is a Candidate Modifier of the Transcriptional Activity of c-Myc on E Box-Dependent Target Genes, Molecular Cell, vol.24, issue.5, pp.771-83, 2006.
DOI : 10.1016/j.molcel.2006.11.006

A. Deshpande, A. Pastore, A. Deshpande, Y. Zimmermann, G. Hutter et al., UTR ediated regulatio of the li D proto-oncogene, Cell Cycle, vol.8, issue.21, pp.3584-92, 2009.

J. Fukami-kobayashi and Y. Mitsui, Cyclin D1 Inhibits Cell Proliferation through Binding to PCNA and Cdk2, Experimental Cell Research, vol.246, issue.2, pp.338-385, 1999.
DOI : 10.1006/excr.1998.4306

D. Stacey, Three Observations That Have Changed Our Understanding of Cyclin D1 and p27Kip1 in Cell Cycle Control, Genes & Cancer, vol.1, issue.12, pp.1189-99, 2010.
DOI : 10.1177/1947601911403475

S. Chen, Y. Jing, X. Kang, L. Yang, D. Wang et al., Histone H2B monoubiquitination is a critical epigenetic switch for the regulation of autophagy, Nucleic Acids Research, vol.45, issue.3, pp.1144-58, 2016.
DOI : 10.1016/j.stem.2013.10.005

M. Metzger, J. Pruneda, R. Klevit, and A. Weissman, RING-type E3 ligases: Master manipulators of E2 ubiquitin-conjugating enzymes and ubiquitination, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1843, issue.1, pp.47-60, 2014.
DOI : 10.1016/j.bbamcr.2013.05.026

A. Ciechanover and A. Stanhill, The complexity of recognition of ubiquitinated substrates by the 26S proteasome, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1843, issue.1, pp.86-96, 2014.
DOI : 10.1016/j.bbamcr.2013.07.007

P. Puigserver, J. Rhee, J. Donovan, Y. Kitamura, J. Altomonte et al., Insulin-regulated hepatic gluconeogenesis through FOXO1???PGC-1?? interaction, Nature, vol.271, issue.6939, pp.550-555, 2003.
DOI : 10.1074/jbc.271.1.203

Y. Lee, J. Dominy, Y. Choi, M. Jurczak, N. Tolliday et al., Cyclin D1???Cdk4 controls glucose metabolism independently of cell cycle progression, Nature, vol.3, issue.7506, pp.547-51, 2014.
DOI : 10.1074/jbc.M111.316760

S. Zelivianski, A. Cooley, R. Kall, and J. Jeruss, Cyclin-Dependent Kinase 4-Mediated Phosphorylation Inhibits Smad3 Activity in Cyclin D-Overexpressing Breast Cancer Cells, Molecular Cancer Research, vol.8, issue.10, pp.1375-87, 2010.
DOI : 10.1158/1541-7786.MCR-09-0537

A. Kretschmer, K. Moepert, S. Dames, M. Sternberger, J. Kaufmann et al., TGF-? receptor-mediated signaling through Smad2, Smad3 and Smad4, Oncogene, vol.16, issue.17, pp.5353-62, 1997.

N. Brown, R. Jeselsohn, T. Bihani, M. Hu, P. Foltopoulou et al., Cyclin D1 Activity Regulates Autophagy and Senescence in the Mammary Epithelium, Cancer Research, vol.72, issue.24, pp.6477-89, 2012.
DOI : 10.1158/0008-5472.CAN-11-4139

S. Jirawatnotai and G. Sittithumcharee, Paradoxical roles of cyclin D1 in DNA stability, DNA Repair, vol.42, pp.56-62, 2016.
DOI : 10.1016/j.dnarep.2016.04.011

K. Knudsen, W. Cavenee, and K. Arden, D-type cyclins complex with the androgen receptor and inhibit its transcriptional transactivation ability, Cancer Res, vol.59, issue.10, pp.2297-301, 1999.

R. Zwijsen, E. Wientjens, R. Klompmaker, J. Van-der-sman, R. Bernards et al., CDK-Independent Activation of Estrogen Receptor by Cyclin D1, Cell, vol.88, issue.3, pp.405-420, 1997.
DOI : 10.1016/S0092-8674(00)81879-6

C. Wang, N. Pattabiraman, J. Zhou, M. Fu, T. Sakamaki et al., Cyclin D1 Repression of Peroxisome Proliferator-Activated Receptor ?? Expression and Transactivation, Molecular and Cellular Biology, vol.23, issue.17, pp.6159-73, 2003.
DOI : 10.1128/MCB.23.17.6159-6173.2003

J. Adnane, Z. Shao, and P. Robbins, Cyclin D1 Associates with the TBP-associated factor TAFII250 to regulate Sp1-mediated transcription, Oncogene, vol.18, issue.1, pp.239-286, 1999.
DOI : 10.1016/S0092-8674(00)81879-6

M. Fu, M. Rao, T. Bouras, C. Wang, K. Wu et al., Cyclin D1 Inhibits Peroxisome Proliferator-activated Receptor ??-mediated Adipogenesis through Histone Deacetylase Recruitment, Journal of Biological Chemistry, vol.111, issue.17, pp.16934-16975, 2005.
DOI : 10.1073/pnas.190343597

URL : http://www.jbc.org/content/280/17/16934.full.pdf

G. Tchakarska, M. Roussel, X. Troussard, and B. Sola, Cyclin D1 Inhibits Mitochondrial Activity in B Cells, Cancer Research, vol.71, issue.5, pp.1690-1699, 2011.
DOI : 10.1158/0008-5472.CAN-10-2564

T. Sakamaki, M. Casimiro, X. Ju, A. Quong, S. Katiyar et al., Cyclin D1 Determines Mitochondrial Function In Vivo, Molecular and Cellular Biology, vol.26, issue.14, pp.5449-69, 2006.
DOI : 10.1128/MCB.02074-05

R. Pestell, New Roles of Cyclin D1, The American Journal of Pathology, vol.183, issue.1, pp.3-9, 2013.
DOI : 10.1016/j.ajpath.2013.03.001

D. Lin, O. Barbash, K. Kumar, J. Weber, J. Harper et al., Phosphorylation-Dependent Ubiquitination of Cyclin D1 by the SCFFBX4-??B Crystallin Complex, Molecular Cell, vol.24, issue.3, pp.355-66, 2006.
DOI : 10.1016/j.molcel.2006.09.007

P. Berardi, M. Meyyappan, and K. Riabowol, A Novel Transcriptional Inhibitory Element Differentially Regulates the Cyclin D1 Gene in Senescent Cells, Journal of Biological Chemistry, vol.54, issue.9, pp.7510-7519, 2003.
DOI : 10.1210/me.8.4.448

L. Pontano, P. Aggarwal, O. Barbash, E. Brown, C. Bassing et al., Genotoxic Stress-Induced Cyclin D1 Phosphorylation and Proteolysis Are Required for Genomic Stability, Molecular and Cellular Biology, vol.28, issue.23, pp.7245-58, 2008.
DOI : 10.1128/MCB.01085-08

M. Santra, N. Wajapeyee, and M. Green, F-box protein FBXO31 mediates cyclin D1 degradation to induce G1 arrest after DNA damage, Nature, vol.281, issue.7247, pp.722-727, 2009.
DOI : 10.1038/nature08011

M. Casimiro, M. Crosariol, E. Loro, A. Ertel, Z. Yu et al., ChIP sequencing of cyclin D1 reveals a transcriptional role in chromosomal instability in mice, Journal of Clinical Investigation, vol.122, issue.3, pp.833-876, 2012.
DOI : 10.1172/JCI60256DS1

S. Jirawatnotai, Y. Hu, D. Livingston, and P. Sicinski, Proteomic Identification of a Direct Role for Cyclin D1 in DNA Damage Repair, Cancer Research, vol.72, issue.17, pp.4289-94, 2012.
DOI : 10.1158/0008-5472.CAN-11-3549

Z. Li, X. Jiao, C. Wang, X. Ju, Y. Lu et al., Cyclin D1 Induction of Cellular Migration Requires p27KIP1, Cancer Research, vol.66, issue.20, pp.9986-94, 2006.
DOI : 10.1158/0008-5472.CAN-06-1596

Z. Li, C. Wang, X. Jiao, Y. Lu, M. Fu et al., Cyclin D1 Regulates Cellular Migration through the Inhibition of Thrombospondin 1 and ROCK Signaling, Molecular and Cellular Biology, vol.26, issue.11, pp.4240-56, 2006.
DOI : 10.1128/MCB.02124-05

M. Dai, N. Fils-aimé, M. Villatoro, J. Guo, and A. Arakelian, Cyclin D1 cooperates with p21 to regulate TGF??-mediated breast cancer cell migration and tumor local invasion, Breast Cancer Research, vol.115, issue.3, pp.3246-61, 2013.
DOI : 10.1158/0008-5472.CAN-10-0312

S. Bakhoum and D. Compton, Chromosomal instability and cancer: a complex relationship with therapeutic potential, Journal of Clinical Investigation, vol.122, issue.4, pp.1138-1181, 2012.
DOI : 10.1172/JCI59954

C. Nelsen, R. Kuriyama, B. Hirsch, V. Negron, W. Lingle et al., Short Term Cyclin D1 Overexpression Induces Centrosome Amplification, Mitotic Spindle Abnormalities, and Aneuploidy, Journal of Biological Chemistry, vol.92, issue.1, pp.768-76, 2005.
DOI : 10.1161/01.RES.0000049105.15329.1C

URL : http://www.jbc.org/content/280/1/768.full.pdf

L. Pontano, P. Aggarwal, O. Barbash, E. Brown, C. Bassing et al., Genotoxic Stress-Induced Cyclin D1 Phosphorylation and Proteolysis Are Required for Genomic Stability, Molecular and Cellular Biology, vol.28, issue.23, pp.7245-58, 2008.
DOI : 10.1128/MCB.01085-08

G. Roué, V. Pichereau, H. Lincet, D. Colomer, and B. Sola, Cyclin D1 mediates resistance to apoptosis through upregulation of molecular chaperones and consequent redistribution of cell death regulators, Oncogene, vol.4, issue.36, pp.4909-4929, 2008.
DOI : 10.4161/cc.2.6.584

Y. Ohsumi, Historical landmarks of autophagy research, Cell Research, vol.4, issue.1, pp.9-23, 2014.
DOI : 10.1016/j.it.2012.06.003

M. Casimiro, D. Sante, G. , D. Rocco, A. Loro et al., Cyclin D1 Restrains Oncogene-Induced Autophagy by Regulating the AMPK???LKB1 Signaling Axis, Cancer Research, vol.77, issue.13, pp.3391-405, 2017.
DOI : 10.1158/0008-5472.CAN-16-0425

L. Gan, P. Liu, H. Lu, S. Chen, Y. J. Mccarthy et al., Cyclin D1 promotes anchorage-independent cell survival by inhibiting FOXO-mediated anoikis, Cell Death & Differentiation, vol.6, issue.10, pp.1408-1425, 2009.
DOI : 10.1016/j.jhep.2008.11.024

G. Tchakarska, L. Lan-leguen, A. Roth, L. Sola, and B. , The targeting of the sole cyclin D1 is not adequate for mantle cell lymphoma and myeloma therapies, Haematologica, vol.94, issue.12, pp.1781-1783, 2009.
DOI : 10.3324/haematol.2009.011460

E. Beltran, V. Fresquet, J. Martinez-useros, J. Richter-larrea, A. Sagardoy et al., A cyclin-D1 interaction with BAX underlies its oncogenic role and potential as a therapeutic target in mantle cell lymphoma, Proceedings of the National Academy of Sciences, vol.116, issue.14, pp.12461-12467, 2011.
DOI : 10.1182/blood-2010-02-268003

A. Moros, S. Bustany, J. Cahu, I. Saborit-villarroya, A. Martínez et al., Antitumoral Activity of Lenalidomide in In Vitro and In Vivo Models of Mantle Cell Lymphoma Involves the Destabilization of Cyclin D1/p27KIP1 Complexes, Clinical Cancer Research, vol.20, issue.2, pp.393-403, 2014.
DOI : 10.1158/1078-0432.CCR-13-1569

T. Kinsella and G. Nolan, Episomal Vectors Rapidly and Stably Produce High-Titer Recombinant Retrovirus, Human Gene Therapy, vol.7, issue.12, pp.1405-1418, 1996.
DOI : 10.1089/hum.1996.7.12-1405

R. Bosch, R. Dieguez-gonzalez, V. Cèspedes, M. Parreno, M. Angel-pavon et al., A novel inhibitor of focal adhesion signaling induces caspase-independent cell death in diffuse large B-cell lymphoma, Blood, vol.118, issue.16, pp.4411-4432, 2011.
DOI : 10.1182/blood-2011-04-345181

M. Antoniou, K. Skipper, and O. Anakok, Optimizing Retroviral Gene Expression for Effective Therapies, Human Gene Therapy, vol.24, issue.4, pp.363-74, 2013.
DOI : 10.1089/hum.2013.062

R. Oinonen, K. Franssila, and E. Elonen, Central nervous system involvement in patients with mantle cell lymphoma, Annals of Hematology, vol.78, issue.3, pp.145-154, 1999.
DOI : 10.1007/s002770050491

I. Mackenzie and M. Neumann, FET proteins in frontotemporal dementia and amyotrophic lateral sclerosis, Brain Research, vol.1462, pp.40-43
DOI : 10.1016/j.brainres.2011.12.010

A. Tan, T. Riley, T. Coady, H. Bussemaker, and J. Manley, TLS/FUS (translocated in liposarcoma/fused in sarcoma) regulates target gene transcription via single-stranded DNA response elements, Proceedings of the National Academy of Sciences, vol.278, issue.6, pp.6030-6035, 2012.
DOI : 10.1111/j.1742-4658.2011.08020.x

T. Sugawara, H. Oguro, M. Negishi, Y. Morita, H. Ichikawa et al., FET family proto-oncogene Fus contributes to self-renewal of hematopoietic stem cells, Experimental Hematology, vol.38, issue.8, pp.696-706, 2010.
DOI : 10.1016/j.exphem.2010.04.006

M. Kai, Roles of RNA-Binding Proteins in DNA Damage Response, International Journal of Molecular Sciences, vol.51, issue.3, pp.1-9, 2016.
DOI : 10.1038/emboj.2009.206

T. Helleday, J. Loc, D. Gent, . Van, and B. Engelwardc, DNA double-strand break repair: From mechanistic understanding to cancer treatment, DNA Repair, vol.6, issue.7, pp.923-958, 2007.
DOI : 10.1016/j.dnarep.2007.02.006

K. Khanna and S. Jackson, DNA double-strand breaks: signaling, repair and the cancer connection, Nature Genetics, vol.404, issue.3, pp.247-54, 2001.
DOI : 10.1038/35004614

S. Jackson and J. Bartek, The DNA-damage response in human biology and disease, Nature, vol.37, issue.7267, pp.1071-1079, 2009.
DOI : 10.1016/j.mrfmmm.2007.02.011

T. Mazumder, S. Nath, N. Nath, and M. Kumar, Abstract, Open Life Sciences, vol.110, issue.6, pp.593-613, 2014.
DOI : 10.1038/nature05541

S. Bustany, J. Cahu, P. Guardiola, and B. Sola, Cyclin D1 sensitizes myeloma cells to endoplasmic reticulum stress-mediated apoptosis by activating the unfolded protein response pathway, BMC Cancer, vol.471, issue.1, pp.262-74, 2015.
DOI : 10.1038/nature09732

E. Ladikou and K. E. , The emerging role of estrogen in B cell malignancies, Leukemia & Lymphoma, vol.224, issue.11, pp.528-567, 2017.
DOI : 10.1038/sj.leu.2403043

J. Alao, The regulation of cyclin D1 degradation: roles in cancer development and the potential for therapeutic invention, Molecular Cancer, vol.6, issue.1, pp.1-16, 2007.
DOI : 10.1186/1476-4598-6-24

S. Jirawatnotai, Y. Hu, W. Michowski, J. Elias, L. Becks et al., A function for cyclin D1 in DNA repair uncovered by protein interactome analyses in human cancers, Nature, vol.463, issue.7350, pp.230-234, 2011.
DOI : 10.1038/nature08684

D. Solomon, Y. Wang, S. Fox, T. Lambeck, S. Giesting et al., Cyclin D1 Splice Variants, Journal of Biological Chemistry, vol.218, issue.32, pp.30339-30386, 2003.
DOI : 10.1074/jbc.271.14.8313

URL : http://www.jbc.org/content/278/32/30339.full.pdf

Z. Zhong, W. Yeow, C. Zou, R. Wassell, C. Wang et al., Cyclin D1/Cyclin-Dependent Kinase 4 Interacts with Filamin A and Affects the Migration and Invasion Potential of Breast Cancer Cells, Cancer Research, vol.70, issue.5, pp.2105-2119, 2010.
DOI : 10.1158/0008-5472.CAN-08-1108

G. Gravina, M. Tortoreto, A. Mancini, A. Addis, D. Cesare et al., XPO1/CRM1-Selective Inhibitors of Nuclear Export (SINE) reduce tumor spreading and improve overall survival in preclinical models of prostate cancer (PCa), Journal of Hematology & Oncology, vol.7, issue.1, p.46, 2014.
DOI : 10.1007/s12094-010-0555-z

Y. Tabe, K. Kojima, S. Yamamoto, K. Sekihara, H. Matsushita et al., Ribosomal Biogenesis and Translational Flux Inhibition by the Selective Inhibitor of Nuclear Export (SINE) XPO1 Antagonist KPT-185, PLOS ONE, vol.122, issue.21, pp.1-19, 2015.
DOI : 10.1371/journal.pone.0137210.s001

J. Turner, J. Dawson, S. Grant, K. Shain, W. Dalton et al., Treatment of acquired drug resistance in multiple myeloma by combination therapy with XPO1 and topoisomerase II inhibitors, Journal of Hematology & Oncology, vol.34, issue.17, p.73, 2016.
DOI : 10.1046/j.1365-2141.2000.01832.x

A. Mohanty, N. Sandoval, M. Das, R. Pillai, L. Chen et al., <i>CCND1</i> mutations increase protein stability and promote ibrutinib resistance in mantle cell lymphoma, Oncotarget, vol.7, issue.45, 2016.
DOI : 10.18632/oncotarget.12434

R. Rahal, M. Frick, R. Romero, J. Korn, R. Kridel et al., Pharmacological and genomic profiling identifies NF-??B???targeted treatment strategies for mantle cell lymphoma, Nature Medicine, vol.1, issue.1, pp.87-92, 2014.
DOI : 10.1093/bib/bbs017

N. Saba, D. Liu, S. Herman, C. Underbayev, X. Tian et al., Pathogenic role of B-cell receptor signaling and canonical NF-??B activation in mantle cell lymphoma, Blood, vol.128, issue.1, pp.82-93, 2016.
DOI : 10.1182/blood-2015-11-681460

J. Ma, P. Lu, A. Guo, S. Cheng, H. Zong et al., Characterization of ibrutinib-sensitive and -resistant mantle lymphoma cells, British Journal of Haematology, vol.12, issue.6, pp.849-61, 2014.
DOI : 10.1038/nrd3937

D. Acosta-alvear, M. Cho, T. Wild, T. Buchholz, A. Lerner et al., Author response image 1., eLife, vol.117, pp.1-19, 2015.
DOI : 10.7554/eLife.08153.020

B. Meissner, R. Kridel, R. Lim, S. Rogic, K. Tse et al., The E3 ubiquitin ligase UBR5 is recurrently mutated in mantle cell lymphoma, Blood, vol.121, issue.16, pp.3161-3166, 2013.
DOI : 10.1182/blood-2013-01-478834

A. Mastrocola, S. Kim, A. Trinh, L. Rodenkirch, and R. Tibbetts, The RNA-binding Protein Fused in Sarcoma (FUS) Functions Downstream of Poly(ADP-ribose) Polymerase (PARP) in Response to DNA Damage, Journal of Biological Chemistry, vol.60, issue.34, pp.24731-24772, 2013.
DOI : 10.1172/JCI31222

W. Wang, L. Pan, S. Su, E. Quinn, M. Sasaki et al., Interaction of FUS and HDAC1 regulates DNA damage response and repair in neurons, Nature Neuroscience, vol.523, issue.10, pp.1383-91, 2013.
DOI : 10.1186/gb-2006-7-10-r100

S. Bekker-jensen and N. Mailand, Assembly and function of DNA double-strand break repair foci in mammalian cells, DNA Repair, vol.9, issue.12, pp.1219-1247, 2010.
DOI : 10.1016/j.dnarep.2010.09.010

C. Sherr and J. Roberts, Living with or without cyclins and cyclin-dependent kinases, Genes & Development, vol.18, issue.22, pp.2699-711, 2004.
DOI : 10.1101/gad.1256504