Physiopathologie du lymphome à cellules du manteau : de la mécanistique aux modèles précliniques

Abstract : Mantle cell lymphoma (MCL) is a mature malignant hemopathy, belonging to the non-Hodgkin's lymphoma family. The MCL is characterized by the translocation t(11;14)(q13;q32) which causes an aberrant expression of cyclin D1. It is a rare disease but at high risk of relapse, and it is most often incurable due to the appearance of chemoresistant clones. The acquisition of resistance is intimately linked to the interactions between the tumor cells and their microenvironment. In order to mimic, in the most relevant way, these interactions, we have implemented a mouse xenograft model using the MCL cell lines JeKo1, REC1, Z138 and Granta-519 which we have modified so that they express a fluorophore (GFP or m-cherry) and / or the gene encoding the luciferase. After injection to the mice of the luciferase substrate, luciferin, we are able to follow over time the tumor progression. We can also assess the degree of tumor infiltration in bone marrow, spleen, brain and blood after euthanasia of animals, by flow cytometry and immunocytochemistry. This model allowed us to show the therapeutic interest of an inhibitor of exportin 1 (XPO1): the KPT 330 (or selinexor) which is able to contain cyclin D1 only on the nuclear level. We have shown that the subcellular localization of cyclin D1 is mainly cytoplasmic in some LCM (2/7) cell lines and in a number of patients (6/42, 14%), and is associated with a high potential Invasion, migration and an aggressive phenotype. Moreover, thanks to this model, we have been able to objectify the in vivo lack of efficacy of agonists to β-type estrogen receptors (ER β). These receptors, present on B lymphocytes, were thought to inhibit cell proliferation and cause cell death by apoptosis. The use of two ER β agonists, diarylpropionitrile (DPN) and ERB-041 showed an absence of effect of these molecules, when the tumor cells are in contact with their microenvironment. On the other hand, in order to better understand the mechanisms of resistance to chemotherapies, we studied the resistance of the REC-1 cell line treated with genotoxic agents. We have shown that this line has an abnormality of cyclin D1 degradation associated with decreased activity of the 26S proteasome. Finally, we have shown in preliminary work that the fused in sarcoma protein (FUS) could, when associated with cyclin D1, be able to regulate the repair pathways of DNA damage. Abnormalities of these pathways induce a great genetic instability responsible for the escape of tumors to treatments, the targeting of FUS could therefore be of therapeutic interest.Taken as a whole, these results reinforce or invalidate the interest of certain therapeutic targets in the hope of continuing to improve the management of patients. They also provide a tool for evaluating new molecules in a murine model that takes into account the interactions between the tumor cell and its microenvironment.
Document type :
Theses
Complete list of metadatas

Cited literature [272 references]  Display  Hide  Download

https://tel.archives-ouvertes.fr/tel-01768551
Contributor : Abes Star <>
Submitted on : Tuesday, April 17, 2018 - 12:09:06 PM
Last modification on : Thursday, November 28, 2019 - 3:28:51 AM

File

2017-BODY-SIMON-VA.pdf
Version validated by the jury (STAR)

Identifiers

  • HAL Id : tel-01768551, version 1

Citation

Simon Body. Physiopathologie du lymphome à cellules du manteau : de la mécanistique aux modèles précliniques. Médecine humaine et pathologie. Normandie Université, 2017. Français. ⟨NNT : 2017NORMC419⟩. ⟨tel-01768551⟩

Share

Metrics

Record views

454

Files downloads

1786