K. Abremski, R. Hoess, and &. N. Sternberg, Studies on the properties of P1 site-specific recombination: Evidence for topologically unlinked products following recombination, Cell, vol.32, issue.4, pp.1301-1311, 1983.
DOI : 10.1016/0092-8674(83)90311-2

L. K. Arciszewska, R. A. Baker, B. Hallet, and &. D. Sherratt, Coordinated control of XerC and XerD catalytic activities during holliday junction resolution, Journal of Molecular Biology, vol.299, issue.2, pp.391-403, 2000.
DOI : 10.1006/jmbi.2000.3762

L. K. Arciszewska, I. Grainge, and &. D. Sherratt, Action of site-specific recombinases XerC and XerD on tethered Holliday junctions, The EMBO Journal, vol.16, issue.12, pp.3731-3743, 1997.
DOI : 10.1093/emboj/16.12.3731

L. Aussel, F. X. Barre, M. Aroyo, A. Stasiak, A. Z. Stasiak et al., FtsK Is a DNA Motor Protein that Activates Chromosome Dimer Resolution by Switching the Catalytic State of the XerC and XerD Recombinases, Cell, vol.108, issue.2, pp.195-205, 2002.
DOI : 10.1016/S0092-8674(02)00624-4

M. A. Azaro and . Landy, The isomeric preference of Holliday junctions influences resolution bias by lambda integrase, The EMBO Journal, vol.16, issue.12, pp.3744-3755, 1997.
DOI : 10.1093/emboj/16.12.3744

B. J. Bachmann, Pedigrees of some mutant strains of Escherichia coli K-12, Bacteriol Rev, vol.36, pp.525-557, 1972.

F. X. Barre, FtsK and SpoIIIE: the tale of the conserved tails, Molecular Microbiology, vol.180, issue.5, pp.1051-1055, 2007.
DOI : 10.1101/gad.9.11.1316

F. X. Barre, M. Aroyo, S. D. Colloms, A. Helfrich, F. Cornet et al., FtsK functions in the processing of a Holliday junction intermediate during bacterial chromosome segregation, Genes & Development, vol.14, issue.23, pp.2976-2988, 2000.
DOI : 10.1101/gad.188700

F. X. Barre and . Sherratt, Xer Site-Specific Recombination: Promoting Chromosome Segregation, pp.149-161, 2002.
DOI : 10.1128/9781555817954.ch8

F. X. Barre and . Sherratt, Chromosome Dimer Resolution, pp.513-524, 2005.
DOI : 10.1128/9781555817640.ch28

A. Basu, A. K. Mukhopadhyay, C. Sharma, J. Jyot, N. Gupta et al., Heterogeneity in the organization of the CTX genetic element in strains ofVibrio choleraeO139 Bengal isolated from Calcutta, India and Dhaka, Bangladesh and its possible link to the dissimilar incidence of O139 cholera in the two locales, Microbial Pathogenesis, vol.24, issue.3, pp.175-183, 1998.
DOI : 10.1006/mpat.1997.0186

K. J. Begg, S. J. Dewar, and &. W. Donachie, A new Escherichia coli cell division gene, ftsK., Journal of Bacteriology, vol.177, issue.21, pp.6211-6222, 1995.
DOI : 10.1128/jb.177.21.6211-6222.1995

K. J. Begg and . Donachie, Experiments on chromosome separation and positioning in Escherichia coli, New Biol, vol.3, pp.475-486, 1991.

T. G. Bernhardt and . De-boer, SlmA, a Nucleoid-Associated, FtsZ Binding Protein Required for Blocking Septal Ring Assembly over Chromosomes in E. coli, Molecular Cell, vol.18, issue.5, pp.555-564, 2005.
DOI : 10.1016/j.molcel.2005.04.012

S. Bigot, J. Corre, J. M. Louarn, F. Cornet, and &. F. Barre, FtsK activities in Xer recombination, DNA mobilization and cell division involve overlapping and separate domains of the protein, Molecular Microbiology, vol.180, issue.4, pp.876-886, 2004.
DOI : 10.1111/j.1365-2958.2004.04335.x

S. Bigot, O. A. Saleh, F. Cornet, J. F. Allemand, and &. F. Barre, Oriented loading of FtsK on KOPS, Nature Structural & Molecular Biology, vol.13, issue.11, pp.1026-1028, 2006.
DOI : 10.1038/nsmb1158

URL : https://hal.archives-ouvertes.fr/hal-00131558

S. Bigot, O. A. Saleh, C. Lesterlin, C. Pages, M. Karoui et al., KOPS: DNA motifs that control E. coli chromosome segregation by orienting the FtsK translocase, The EMBO Journal, vol.19, issue.21, pp.3770-3780, 2005.
DOI : 10.1046/j.1365-2958.2003.03574.x

URL : https://hal.archives-ouvertes.fr/hal-00013989

S. Bigot, V. Sivanathan, C. Possoz, F. X. Barre, and &. F. Cornet, FtsK, a literate chromosome segregation machine, Molecular Microbiology, vol.180, issue.6, pp.1434-1441, 2007.
DOI : 10.1111/j.1365-2958.2007.05755.x

URL : https://hal.archives-ouvertes.fr/hal-00154604

T. Biswas, H. Aihara, M. Radman-livaja, D. Filman, A. Landy et al., A structural basis for allosteric control of DNA recombination by ?? integrase, Nature, vol.276, issue.7045, pp.1059-1066, 2005.
DOI : 10.1107/S0907444998003254

J. A. Blake, N. Ganguly, and &. J. Sherratt, DNA sequence of recombinase-binding sites can determine Xer site-specific recombination outcome, Molecular Microbiology, vol.23, issue.2, pp.387-398, 1997.
DOI : 10.1046/j.1365-2958.1997.2261600.x

G. Blakely, S. Colloms, G. May, M. Burke, and &. D. Sherratt, Escherichia coli XerC recombinase is required for chromosomal segregation at cell division, New Biol, vol.3, pp.789-798, 1991.

G. Blakely, G. May, R. Mcculloch, L. K. Arciszewska, M. Burke et al., Two related recombinases are required for site-specific recombination at dif and cer in E. coli K12, Cell, vol.75, issue.2, pp.351-361, 1993.
DOI : 10.1016/0092-8674(93)80076-Q

G. D. Blakely and . Sherratt, Determinants of selectivity in Xer site-specific recombination., Genes & Development, vol.10, issue.6, pp.762-773, 1996.
DOI : 10.1101/gad.10.6.762

G. W. Blakely, A. O. Davidson, and &. J. Sherratt, Binding and cleavage of nicked substrates by site-specific recombinases XerC and XerD, Journal of Molecular Biology, vol.265, issue.1, pp.30-39, 1997.
DOI : 10.1006/jmbi.1996.0709

G. W. Blakely, A. O. Davidson, and &. J. Sherratt, Sequential Strand Exchange by XerC and XerD during Site-specific Recombination at dif, Journal of Biological Chemistry, vol.275, issue.14, pp.9930-9936, 2000.
DOI : 10.1074/jbc.275.14.9930

M. Bouvier, G. Demarre, and &. D. Mazel, Integron cassette insertion: a recombination process involving a folded single strand substrate, The EMBO Journal, vol.91, issue.24, pp.4356-4367, 2005.
DOI : 10.1038/sj.emboj.7600434

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1356339

M. Bregu, D. J. Sherratt, and &. S. Colloms, Accessory factors determine the order of strand exchange in Xer recombination at psi, The EMBO Journal, vol.21, issue.14, pp.3888-3897, 2002.
DOI : 10.1093/emboj/cdf379

R. A. Britton and . Grossman, Synthetic lethal phenotypes caused by mutations affecting chromosome partitioning in Bacillus subtilis, J Bacteriol, vol.181, pp.5860-5864, 1999.

D. Bui, J. Ramiscal, S. Trigueros, J. S. Newmark, A. Do et al., Differences in Resolution of mwr-Containing Plasmid Dimers Mediated by the Klebsiella pneumoniae and Escherichia coli XerC Recombinases: Potential Implications in Dissemination of Antibiotic Resistance Genes, Journal of Bacteriology, vol.188, issue.8, pp.2812-2820, 2006.
DOI : 10.1128/JB.188.8.2812-2820.2006

H. Capiaux, F. Cornet, J. Corre, M. I. Guijo, K. Perals et al., Polarization of the Escherichia coli chromosome. A view from the terminus, Biochimie, vol.83, issue.2, pp.161-170, 2001.
DOI : 10.1016/S0300-9084(00)01202-5

H. Capiaux, C. Lesterlin, K. Perals, J. M. Louarn, and &. F. Cornet, A dual role for the FtsK protein in Escherichia coli chromosome segregation, EMBO reports, vol.180, issue.6, pp.532-536, 2002.
DOI : 10.1093/embo-reports/kvf116

S. Casjens, THE DIVERSE AND DYNAMIC STRUCTURE OF BACTERIAL GENOMES, Annual Review of Genetics, vol.32, issue.1, pp.339-377, 1998.
DOI : 10.1146/annurev.genet.32.1.339

G. Chaconas, P. E. Stewart, K. Tilly, J. L. Bono, and &. P. Rosa, Telomere resolution in the Lyme disease spirochete, The EMBO Journal, vol.20, issue.12, pp.3229-3237, 2001.
DOI : 10.1093/emboj/20.12.3229

A. F. Chalker, A. Lupas, K. Ingraham, C. Y. So, R. D. Lunsford et al., Genetic characterization of gram-positive homologs of the XerCD site-specific recombinases, J Mol Microbiol Biotechnol, vol.2, pp.225-233, 2000.

Y. Chen, U. Narendra, L. E. Iype, M. M. Cox, and &. P. Rice, Crystal Structure of a Flp Recombinase???Holliday Junction Complex Assembly of an Active Oligomer by Helix Swapping, Molecular Cell, vol.6, issue.4, pp.885-897, 2000.
DOI : 10.1016/S1097-2765(00)00086-1

M. Clerget, Site-specific recombination promoted by a short DNA segment of plasmid R1 and by a homologous segment in the terminus region of the Escherichia coli chromosome, New Biol, vol.3, pp.780-788, 1991.

S. D. Colloms, J. Bath, and &. D. Sherratt, Topological Selectivity in Xer Site-Specific Recombination, Cell, vol.88, issue.6, pp.855-864, 1997.
DOI : 10.1016/S0092-8674(00)81931-5

S. D. Colloms, R. Mcculloch, K. Grant, L. Neilson, and &. J. Sherratt, Xermediated site-specific recombination in vitro, Embo J, vol.15, pp.1172-1181, 1996.

S. D. Colloms, P. Sykora, G. Szatmari, and &. D. Sherratt, Recombination at ColE1 cer requires the Escherichia coli xerC gene product, a member of the lambda integrase family of site-specific recombinases., Journal of Bacteriology, vol.172, issue.12, pp.6973-6980, 1990.
DOI : 10.1128/jb.172.12.6973-6980.1990

W. R. Cook and . Rothfield, Nucleoid-independent identification of cell division sites in Escherichia coli, J Bacteriol, vol.181, pp.1900-1905, 1999.

F. Cornet, B. Hallet, and &. D. Sherratt, Xer Recombination in Escherichia coli: SITE-SPECIFIC DNA TOPOISOMERASE ACTIVITY OF THE XerC and XerD RECOMBINASES, Journal of Biological Chemistry, vol.272, issue.35, pp.21927-21931, 1997.
DOI : 10.1074/jbc.272.35.21927

F. Cornet, J. Louarn, J. Patte, and &. J. Louarn, Restriction of the activity of the recombination site dif to a small zone of the Escherichia coli chromosome., Genes & Development, vol.10, issue.9, pp.1152-1161, 1996.
DOI : 10.1101/gad.10.9.1152

F. Cornet, I. Mortier, J. Patte, and &. J. Louarn, Plasmid pSC101 harbors a recombination site, psi, which is able to resolve plasmid multimers and to substitute for the analogous chromosomal Escherichia coli site dif., Journal of Bacteriology, vol.176, issue.11, pp.3188-3195, 1994.
DOI : 10.1128/jb.176.11.3188-3195.1994

J. Corre, F. Cornet, J. Patte, and &. J. Louarn, Unraveling a region-specific hyper-recombination phenomenon: genetic control and modalities of terminal recombination in Escherichia coli, Genetics, vol.147, pp.979-989, 1997.

J. J. Corre and . Louarn, Evidence from Terminal Recombination Gradients that FtsK Uses Replichore Polarity To Control Chromosome Terminus Positioning at Division in Escherichia coli, Journal of Bacteriology, vol.184, issue.14, pp.3801-3807, 2002.
DOI : 10.1128/JB.184.14.3801-3807.2002

J. J. Corre and . Louarn, chromosome terminus, Molecular Microbiology, vol.180, issue.6, pp.1539-1548, 2005.
DOI : 10.1111/j.1365-2958.2005.04633.x

J. Corre, J. Patte, and &. J. Louarn, Prophage lambda induces terminal recombination in Escherichia coli by inhibiting chromosome dimer resolution. An orientation-dependent cis-effect lending support to bipolarization of the terminus, Genetics, vol.154, pp.39-48, 2000.

M. M. Cox, M. F. Goodman, K. N. Kreuzer, D. J. Sherratt, S. J. Sandler et al., The importance of repairing stalled replication forks, Nature, vol.404, pp.37-41, 2000.

G. A. Cromie and . Leach, Control of Crossing Over, Molecular Cell, vol.6, issue.4, pp.815-826, 2000.
DOI : 10.1016/S1097-2765(05)00095-X

T. Cui, N. Moro-oka, K. Ohsumi, K. Kodama, T. Ohshima et al., Escherichia coli with a linear genome, EMBO reports, vol.183, issue.2, pp.181-187, 2007.
DOI : 10.1038/sj.embor.7400880

O. Danilova, R. Reyes-lamothe, M. Pinskaya, D. Sherratt, and &. C. Possoz, MukB colocalizes with the oriC region and is required for organization of the two Escherichia coli chromosome arms into separate cell halves, Molecular Microbiology, vol.179, issue.6, pp.1485-1492, 2007.
DOI : 10.1046/j.1365-2958.2000.02138.x

B. M. Davis, H. H. Kimsey, A. V. Kane, and &. K. Waldor, A satellite phage-encoded antirepressor induces repressor aggregation and cholera toxin gene transfer, The EMBO Journal, vol.21, issue.16, pp.4240-4249, 2002.
DOI : 10.1093/emboj/cdf427

B. M. Davis, K. E. Moyer, E. F. Boyd, and &. K. Waldor, CTX Prophages in Classical Biotype Vibrio cholerae: Functional Phage Genes but Dysfunctional Phage Genomes, Journal of Bacteriology, vol.182, issue.24, pp.6992-6998, 2000.
DOI : 10.1128/JB.182.24.6992-6998.2000

B. M. Davis and . Waldor, CTXphi contains a hybrid genome derived from tandemly integrated elements, Proceedings of the National Academy of Sciences, vol.97, issue.15, pp.8572-8577, 2000.
DOI : 10.1073/pnas.140109997

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC26989

B. M. Davis and . Waldor, Filamentous phages linked to virulence of Vibrio cholerae, Current Opinion in Microbiology, vol.6, issue.1, pp.35-42, 2003.
DOI : 10.1016/S1369-5274(02)00005-X

G. Demarre, A. M. Guerout, C. Matsumoto-mashimo, D. A. Rowe-magnus, P. Marliere et al., A new family of mobilizable suicide plasmids based on broad host range R388 plasmid (IncW) and RP4 plasmid (IncP??) conjugative machineries and their cognate Escherichia coli host strains, Research in Microbiology, vol.156, issue.2, pp.245-255, 2005.
DOI : 10.1016/j.resmic.2004.09.007

A. A. Diez, A. Farewell, U. Nannmark, and &. T. Nystrom, A mutation in the ftsK gene of Escherichia coli affects cell-cell separation, stationary-phase survival, stress adaptation, and expression of the gene encoding the stress protein UspA., Journal of Bacteriology, vol.179, issue.18, pp.5878-5883, 1997.
DOI : 10.1128/jb.179.18.5878-5883.1997

G. C. Draper, N. Mclennan, K. Begg, M. Masters, and &. W. Donachie, Only the N-terminal domain of FtsK functions in cell division, J. Bacteriol, vol.180, pp.4621-4627, 1998.

R. Dryselius, K. Kurokawa, and &. T. Iida, Vibrionaceae, a versatile bacterial family with evolutionarily conserved variability, Research in Microbiology, vol.158, issue.6, pp.479-486, 2007.
DOI : 10.1016/j.resmic.2007.04.007

N. Dubarry, F. Pasta, and &. D. Lane, ParABS Systems of the Four Replicons of Burkholderia cenocepacia: New Chromosome Centromeres Confer Partition Specificity, Journal of Bacteriology, vol.188, issue.4, pp.1489-1496, 2006.
DOI : 10.1128/JB.188.4.1489-1496.2006

URL : https://hal.archives-ouvertes.fr/hal-00021154

S. Duigou, K. G. Knudsen, O. Skovgaard, E. S. Egan, A. Lobner-olesen et al., Independent Control of Replication Initiation of the Two Vibrio cholerae Chromosomes by DnaA and RctB, Journal of Bacteriology, vol.188, issue.17, pp.6419-6424, 2006.
DOI : 10.1128/JB.00565-06

R. Durbin, Biological sequence analysis : probabalistic models of proteins and nucleic acids, p. xi, 356 p, 1998.
DOI : 10.1017/CBO9780511790492

E. S. Egan, S. Duigou, and &. M. Waldor, Autorepression of RctB, an Initiator of Vibrio cholerae Chromosome II Replication, Journal of Bacteriology, vol.188, issue.2, pp.789-793, 2006.
DOI : 10.1128/JB.188.2.789-793.2006

E. S. Egan, M. A. Fogel, and &. M. Waldor, MicroReview: Divided genomes: negotiating the cell cycle in prokaryotes with multiple chromosomes, Molecular Microbiology, vol.175, issue.Pt 1, pp.1129-1138, 2005.
DOI : 10.1111/j.1365-2958.2005.04622.x

E. S. Egan, A. Lobner-olesen, and &. M. Waldor, Synchronous replication initiation of the two Vibrio cholerae chromosomes, Current Biology, vol.14, issue.13, pp.501-502, 2004.
DOI : 10.1016/j.cub.2004.06.036

E. S. Egan and . Waldor, Distinct Replication Requirements for the Two Vibrio cholerae Chromosomes, Cell, vol.114, issue.4, pp.521-530, 2003.
DOI : 10.1016/S0092-8674(03)00611-1

O. Espeli, C. Lee, and &. J. Marians, A Physical and Functional Interaction between Escherichia coli FtsK and Topoisomerase IV, Journal of Biological Chemistry, vol.278, issue.45, pp.44639-44644, 2003.
DOI : 10.1074/jbc.M308926200

O. Espeli, C. Levine, H. Hassing, and &. K. Marians, Temporal Regulation of Topoisomerase IV Activity in E. coli, Molecular Cell, vol.11, issue.1, pp.189-201, 2003.
DOI : 10.1016/S1097-2765(03)00013-3

O. K. Espeli and . Marians, Untangling intracellular DNA topology, Molecular Microbiology, vol.11, issue.4, pp.925-931, 2004.
DOI : 10.1111/j.1365-2958.2004.04047.x

D. J. Esposito and . Scocca, The integrase family of tyrosine recombinases: evolution of a conserved active site domain, Nucleic Acids Research, vol.25, issue.18, pp.3605-3614, 1997.
DOI : 10.1093/nar/25.18.3605

H. Ferreira, B. Butler-cole, A. Burgin, R. Baker, D. J. Sherratt et al., Functional Analysis of the C-terminal Domains of the Site-specific Recombinases XerC and XerD, Journal of Molecular Biology, vol.330, issue.1, pp.15-27, 2003.
DOI : 10.1016/S0022-2836(03)00558-8

M. A. Fogel and . Waldor, Distinct segregation dynamics of the two Vibrio cholerae chromosomes, Molecular Microbiology, vol.142, issue.1, pp.125-136, 2005.
DOI : 10.1111/j.1365-2958.2004.04379.x

M. A. Fogel and . Waldor, A dynamic, mitotic-like mechanism for bacterial chromosome segregation, Genes & Development, vol.20, issue.23, pp.3269-3282, 2006.
DOI : 10.1101/gad.1496506

M. D. Gonzalez, C. A. Lichtensteiger, R. Caughlan, and &. E. Vimr, Conserved Filamentous Prophage in Escherichia coli O18:K1:H7 and Yersinia pestis Biovar orientalis, Journal of Bacteriology, vol.184, issue.21, pp.6050-6055, 2002.
DOI : 10.1128/JB.184.21.6050-6055.2002

D. N. Gopaul and . Duyne, Structure and mechanism in site-specific recombination, Current Opinion in Structural Biology, vol.9, issue.1, pp.14-20, 1999.
DOI : 10.1016/S0959-440X(99)80003-7

D. N. Gopaul, F. Guo, and &. G. Van-duyne, Structure of the Holliday junction intermediate in Cre???loxP site-specific recombination, The EMBO Journal, vol.17, issue.14, pp.4175-4187, 1998.
DOI : 10.1093/emboj/17.14.4175

I. Grainge, M. Bregu, M. Vazquez, V. Sivanathan, S. C. Ip et al., Unlinking chromosome catenanes in vivo by site-specific recombination, The EMBO Journal, vol.9, issue.19, pp.4228-4238, 2007.
DOI : 10.1038/sj.emboj.7601849

N. D. Grindley, K. L. Whiteson, and &. P. Rice, Mechanisms of Site-Specific Recombination, Annu Rev Biochem, 2006.

G. Grompone, V. Bidnenko, S. D. Ehrlich, and &. B. Michel, PriA Is Essential for Viability of the Escherichia coli Topoisomerase IV parE10(Ts) Mutant, Journal of Bacteriology, vol.186, issue.4, pp.1197-1199, 2004.
DOI : 10.1128/JB.186.4.1197-1199.2004

F. Guo, D. N. Gopaul, and &. D. Van-duyne, Structure of Cre recombinase complexed with DNA in a site-specific recombination synapse, Nature, vol.389, issue.6646, pp.40-46, 1997.
DOI : 10.1038/37925

F. Guo, D. N. Gopaul, and &. D. Van-duyne, Asymmetric DNA bending in the Cre-loxP site-specific recombination synapse, Proceedings of the National Academy of Sciences, vol.96, issue.13, pp.7143-7148, 1999.
DOI : 10.1073/pnas.96.13.7143

B. Hallet, L. K. Arciszewska, and &. D. Sherratt, Reciprocal Control of Catalysis by the Tyrosine Recombinases XerC and XerD, Molecular Cell, vol.4, issue.6, pp.949-959, 1999.
DOI : 10.1016/S1097-2765(00)80224-5

B. D. Hallet and . Sherratt, Transposition and site-specific recombination: adapting DNA cut-and-paste mechanisms to a variety of genetic rearrangements, FEMS Microbiology Reviews, vol.21, issue.2, pp.157-178, 1997.
DOI : 10.1111/j.1574-6976.1997.tb00349.x

D. Halpern, H. Chiapello, S. Schbath, S. Robin, C. Hennequet-antier et al., Identification of DNA Motifs Implicated in Maintenance of Bacterial Core Genomes by Predictive Modeling, PLoS Genetics, vol.95, issue.9, pp.1614-1621, 2007.
DOI : 10.1371/journal.pgen.0030153.st005

URL : https://hal.archives-ouvertes.fr/hal-01197542

F. Hayes, S. A. Lubetzki, and &. D. Sherratt, Salmonella typhimurium specifies a circular chromosome dimer resolution system which is homologous to the Xer site-specific recombination system of Escherichia coli, Gene, vol.198, issue.1-2, pp.105-110, 1997.
DOI : 10.1016/S0378-1119(97)00299-0

J. J. Colwell, J. C. Mekalanos, &. C. Venter, and . Fraser, DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae, Nature, vol.406, pp.477-483, 2000.

A. J. Heilpern and . Waldor, CTXphi Infection of Vibrio cholerae Requires the tolQRA Gene Products, Journal of Bacteriology, vol.182, issue.6, pp.1739-1747, 2000.
DOI : 10.1128/JB.182.6.1739-1747.2000

E. C. Hendricks, H. Szerlong, T. Hill, and &. P. Kuempel, Cell division, guillotining of dimer chromosomes and SOS induction in resolution mutants (dif, xerC and xerD) of Escherichia coli, Molecular Microbiology, vol.173, issue.4, pp.973-981, 2000.
DOI : 10.1016/0923-2508(91)90046-D

H. K. Hiasa and . Marians, Two distinct modes of strand unlinking during thetatype DNA replication, J Biol Chem, vol.271, pp.21529-21535, 1996.

A. B. Hickman, S. Waninger, J. J. Scocca, and &. F. Dyda, Molecular Organization in Site-Specific Recombination: The Catalytic Domain of Bacteriophage HP1 Integrase at 2.7 ?? Resolution, Cell, vol.89, issue.2, pp.227-237, 1997.
DOI : 10.1016/S0092-8674(00)80202-0

A. Hojgaard, H. Szerlong, C. Tabor, and &. P. Kuempel, Norfloxacin-induced DNA cleavage occurs at the dif resolvase locus in Escherichia coli and is the result of interaction with topoisomerase IV, Molecular Microbiology, vol.11, issue.5, pp.1027-1036, 1999.
DOI : 10.1046/j.1365-2958.1998.00958.x

K. E. Huber and . Waldor, Filamentous phage integration requires the host recombinases XerC and XerD, Nature, vol.63, issue.6889, pp.656-659, 2002.
DOI : 10.1006/plas.1996.0001

S. C. Ip, M. Bregu, F. X. Barre, and &. D. Sherratt, Decatenation of DNA circles by FtsK-dependent Xer site-specific recombination, The EMBO Journal, vol.94, issue.23, pp.6399-6407, 2003.
DOI : 10.1093/emboj/cdg589

R. B. Jensen, Analysis of the Terminus Region of the Caulobacter crescentus Chromosome and Identification of the dif Site, Journal of Bacteriology, vol.188, issue.16, pp.6016-6019, 2006.
DOI : 10.1128/JB.00330-06

R. B. Jensen, S. C. Wang, and &. L. Shapiro, A moving DNA replication factory in Caulobacter crescentus, The EMBO Journal, vol.20, issue.17, pp.4952-4963, 2001.
DOI : 10.1093/emboj/20.17.4952

L. G. Jouan and . Szatmari, site, FEMS Microbiology Letters, vol.222, issue.2, pp.257-262, 2003.
DOI : 10.1016/S0378-1097(03)00311-2

D. K. Karaolis, J. A. Johnson, C. C. Bailey, E. C. Boedeker, J. B. Kaper et al., A Vibrio cholerae pathogenicity island associated with epidemic and pandemic strains, Proceedings of the National Academy of Sciences, vol.95, issue.6, pp.3134-3139, 1998.
DOI : 10.1073/pnas.95.6.3134

D. K. Karaolis, R. Lan, J. B. Kaper, and &. P. Reeves, Comparison of Vibrio cholerae Pathogenicity Islands in Sixth and Seventh Pandemic Strains, Infection and Immunity, vol.69, issue.3, pp.1947-1952, 2001.
DOI : 10.1128/IAI.69.3.1947-1952.2001

D. K. Karaolis, S. Somara, D. R. Maneval, J. A. Jr, &. J. Johnson et al., A bacteriophage encoding a pathogenicity island, a type-IV pilus and a phage receptor in cholera bacteria, Nature, vol.399, issue.6734, pp.375-379, 1999.
DOI : 10.1038/20715

K. L. Keller, T. L. Overbeck-carrick, and &. D. Beck, Survival and induction of SOS in Escherichia coli treated with cisplatin, UV-irradiation, or mitomycin C are dependent on the function of the RecBC and RecFOR pathways of homologous recombination, Mutation Research/DNA Repair, vol.486, issue.1, pp.21-29, 2001.
DOI : 10.1016/S0921-8777(01)00077-5

S. P. Kennedy, F. Chevalier, and &. F. Barre, Delayed activation of Xer recombination at dif by FtsK during septum assembly in Escherichia coli, Molecular Microbiology, vol.180, issue.4, 2008.
DOI : 10.1111/j.1365-2958.2005.05033.x

H. H. Kimsey and . Waldor, The CTX?? Repressor RstR Binds DNA Cooperatively to Form Tetrameric Repressor-Operator Complexes, Journal of Biological Chemistry, vol.279, issue.4, pp.2640-2647, 2004.
DOI : 10.1074/jbc.M311109200

K. G. Kobryn and . Chaconas, ResT, a Telomere Resolvase Encoded by the Lyme Disease Spirochete, Molecular Cell, vol.9, issue.1, pp.195-201, 2002.
DOI : 10.1016/S1097-2765(01)00433-6

K. G. Kobryn and . Chaconas, Fusion of Hairpin Telomeres by the B. burgdorferi Telomere Resolvase ResT, Molecular Cell, vol.17, issue.6, pp.783-791, 2005.
DOI : 10.1016/j.molcel.2005.02.025

R. Kolodner, R. A. Fishel, and &. M. Howard, Genetic recombination of bacterial plasmid DNA: effect of RecF pathway mutations on plasmid recombination in Escherichia coli, J Bacteriol, vol.163, pp.1060-1066, 1985.

B. O. Krogh and . Shuman, Catalytic Mechanism of DNA Topoisomerase IB, Molecular Cell, vol.5, issue.6, pp.1035-1041, 2000.
DOI : 10.1016/S1097-2765(00)80268-3

P. Kuempel, A. Hogaard, M. Nielsen, O. Nagappan, and &. M. Tecklenburg, Use of a transposon (Tndif) to obtain suppressing and nonsuppressing insertions of the dif resolvase site of Escherichia coli., Genes & Development, vol.10, issue.9, pp.1162-1171, 1996.
DOI : 10.1101/gad.10.9.1162

P. L. Kuempel, J. M. Henson, L. Dircks, M. Tecklenburg, and &. F. Lim, ) dif, a recA-independent recombination site in the terminus region of the chromosome of Escherichia coli, New Biol, vol.3, pp.799-811, 1991.

K. Kusano, K. Nakayama, and &. H. Nakayama, Plasmid-mediated lethality and plasmid multimer formation in an Escherichia coli recBC sbcBC mutant. Involvement of RecF recombination pathway genes, Journal of Molecular Biology, vol.209, issue.4, pp.623-634, 1989.
DOI : 10.1016/0022-2836(89)90000-4

L. Bourgeois, P. , M. Bugarel, N. Campo, M. L. Daveran-mingot et al., The Unconventional Xer Recombination Machinery of Streptococci/Lactococci, PLoS Genetics, vol.216, issue.7, p.117, 2007.
DOI : 10.1371/journal.pgen.0030117.st001

URL : https://hal.archives-ouvertes.fr/hal-00180535

L. Roux, F. , J. Binesse, D. Saulnier, and &. D. Mazel, Construction of a Vibrio splendidus Mutant Lacking the Metalloprotease Gene vsm by Use of a Novel Counterselectable Suicide Vector, Applied and Environmental Microbiology, vol.73, issue.3, pp.777-784, 2007.
DOI : 10.1128/AEM.02147-06

L. Lee, L. C. Chu, and &. D. Sadowski, Cre Induces an Asymmetric DNA Bend in Its Target loxP Site, Journal of Biological Chemistry, vol.278, issue.25, pp.23118-23129, 2003.
DOI : 10.1074/jbc.M302272200

L. P. Lee and . Sadowski, Sequence of the loxP Site Determines the Order of Strand Exchange by the Cre Recombinase, Journal of Molecular Biology, vol.326, issue.2, pp.397-412, 2003.
DOI : 10.1016/S0022-2836(02)01429-8

L. P. Lee and . Sadowski, Strand Selection by the Tyrosine Recombinases, Prog Nucleic Acid Res Mol Biol, vol.80, pp.1-42, 2005.
DOI : 10.1016/S0079-6603(05)80001-7

N. R. Leslie and . Sherratt, Site-specific recombination in the replication terminus region of Escherichia coli: functional replacement of dif, EMBO J, vol.14, pp.1561-1570, 1995.

C. Lesterlin, R. Mercier, F. Boccard, F. X. Barre, and &. F. Cornet, Roles for replichores and macrodomains in segregation of the Escherichia coli chromosome, EMBO reports, vol.85, issue.6, pp.557-562, 2005.
DOI : 10.1046/j.1365-2958.2003.03574.x

C. Letzelter, M. Duguet, and &. M. Serre, Mutational Analysis of the Archaeal Tyrosine Recombinase SSV1 Integrase Suggests a Mechanism of DNA Cleavage in trans, Journal of Biological Chemistry, vol.279, issue.28, pp.28936-28944, 2004.
DOI : 10.1074/jbc.M403971200

O. Levy, J. L. Ptacin, P. J. Pease, J. Gore, M. B. Eisen et al., Identification of oligonucleotide sequences that direct the movement of the Escherichia coli FtsK translocase, Proceedings of the National Academy of Sciences, vol.102, issue.49, pp.17618-17623, 2005.
DOI : 10.1073/pnas.0508932102

W. Lin, K. J. Fullner, R. Clayton, J. A. Sexton, M. B. Rogers et al., Identification of a Vibrio cholerae RTX toxin gene cluster that is tightly linked to the cholera toxin prophage, Proceedings of the National Academy of Sciences, vol.96, issue.3, pp.1071-1076, 1999.
DOI : 10.1073/pnas.96.3.1071

A. J. Link, D. Phillips, and &. M. Church, Methods for generating precise deletions and insertions in the genome of wild-type Escherichia coli: application to open reading frame characterization., Journal of Bacteriology, vol.179, issue.20, pp.6228-6237, 1997.
DOI : 10.1128/jb.179.20.6228-6237.1997

G. Liu, G. C. Draper, and &. W. Donachie, FtsK is a bifunctional protein involved in cell division and chromosome localization in Escherichia coli, Molecular Microbiology, vol.29, issue.3, pp.893-903, 1998.
DOI : 10.1016/0378-1119(87)90095-3

J. R. Lobry and . Louarn, Polarisation of prokaryotic chromosomes, Current Opinion in Microbiology, vol.6, issue.2, pp.101-108, 2003.
DOI : 10.1016/S1369-5274(03)00024-9

URL : https://hal.archives-ouvertes.fr/hal-00427482

J. Louarn, F. Cornet, V. Francois, J. Patte, and &. J. Louarn, Hyperrecombination in the terminus region of the Escherichia coli chromosome: possible relation to nucleoid organization., Journal of Bacteriology, vol.176, issue.24, pp.7524-7531, 1994.
DOI : 10.1128/jb.176.24.7524-7531.1994

J. M. Louarn, J. Louarn, V. Francois, and &. J. Patte, Analysis and possible role of hyperrecombination in the termination region of the Escherichia coli chromosome., Journal of Bacteriology, vol.173, issue.16, pp.5097-5104, 1991.
DOI : 10.1128/jb.173.16.5097-5104.1991

D. Macdonald, G. Demarre, M. Bouvier, D. Mazel, and &. D. Gopaul, Structural basis for broad DNA-specificity in integron recombination, Nature, vol.54, issue.7088, pp.1157-1162, 2006.
DOI : 10.1038/nature04643

URL : https://hal.archives-ouvertes.fr/pasteur-00140781

T. H. Massey, L. Aussel, F. X. Barre, and &. D. Sherratt, Asymmetric activation of Xer site-specific recombination by FtsK, EMBO reports, vol.5, issue.4, pp.399-404, 2004.
DOI : 10.1038/sj.embor.7400116

T. H. Massey, C. P. Mercogliano, J. Yates, D. J. Sherratt, and &. J. Lowe, Double-Stranded DNA Translocation: Structure and Mechanism of Hexameric FtsK, Molecular Cell, vol.23, issue.4, pp.457-469, 2006.
DOI : 10.1016/j.molcel.2006.06.019

D. Mazel, Integrons: agents of bacterial evolution, Nature Reviews Microbiology, vol.91, issue.8, pp.608-620, 2006.
DOI : 10.1038/nrmicro1462

B. Mcclintock, A Correlation of Ring-Shaped Chromosomes with Variegation in Zea Mays, Proceedings of the National Academy of Sciences, vol.18, issue.12, pp.677-681, 1932.
DOI : 10.1073/pnas.18.12.677

J. D. Mccool and . Sandler, Effects of mutations involving cell division, recombination, and chromosome dimer resolution on a priA2::kan mutant, Proceedings of the National Academy of Sciences, vol.98, issue.15, pp.8203-8210, 2001.
DOI : 10.1073/pnas.121007698

R. Mcculloch, L. W. Coggins, S. D. Colloms, and &. D. Sherratt, Xer-mediated site-specific recombination at cer generates Holliday junctions in vivo, Embo J, vol.13, pp.1844-1855, 1994.

S. M. Mcleod, H. H. Kimsey, B. M. Davis, and &. K. Waldor, : exploring a newly recognized type of phage-host cell relationship, Molecular Microbiology, vol.5, issue.2, pp.347-356, 2005.
DOI : 10.1111/j.1365-2958.2005.04676.x

S. M. Mcleod and . Waldor, Characterization of XerC- and XerD-dependent CTX phage integration in Vibrio cholerae, Molecular Microbiology, vol.170, issue.4, pp.935-947, 2004.
DOI : 10.1111/j.1365-2958.2004.04309.x

K. E. Moyer, H. H. Kimsey, and &. M. Waldor, Evidence for a rolling-circle mechanism of phage DNA synthesis from both replicative and integrated forms of CTX??, Molecular Microbiology, vol.11, issue.2, pp.311-323, 2001.
DOI : 10.1046/j.1365-2958.2001.02517.x

S. Nandi, D. Maiti, A. Saha, and &. K. Bhadra, Genesis of variants of Vibrio cholerae O1 biotype El Tor: role of the CTX?? array and its position in the genome, Microbiology, vol.149, issue.1, pp.89-97, 2003.
DOI : 10.1099/mic.0.25599-0

L. Neilson, G. Blakely, and &. J. Sherratt, Site-specific recombination at dif by Haemophilus influenzae XerC, Molecular Microbiology, vol.92, issue.3, pp.915-926, 1999.
DOI : 10.1006/jmbi.1997.1157

H. Niki, A. Jaffe, R. Imamura, T. Ogura, and &. S. Hiraga, The new gene mukB codes for a 177 kd protein with coiled-coil domains involved in chromosome partitioning of E. coli, EMBO J, vol.10, pp.183-193, 1991.

S. E. Nunes-duby, M. A. Azaro, and &. A. Landy, Swapping DNA strands and sensing homology without branch migration in ?? site-specific recombination, Current Biology, vol.5, issue.2, pp.139-148, 1995.
DOI : 10.1016/S0960-9822(95)00035-2

S. E. Nunes-duby, L. Matsumoto, and &. A. Landy, Site-specific recombination intermediates trapped with suicide substrates, Cell, vol.50, issue.5, pp.779-788, 1987.
DOI : 10.1016/0092-8674(87)90336-9

K. Okada, T. Iida, K. Kita-tsukamoto, and &. T. Honda, Vibrios Commonly Possess Two Chromosomes, Journal of Bacteriology, vol.187, issue.2, pp.752-757, 2005.
DOI : 10.1128/JB.187.2.752-757.2005

P. J. Pease, O. Levy, G. J. Cost, J. Gore, J. L. Ptacin et al., Sequence-Directed DNA Translocation by Purified FtsK, Science, vol.307, issue.5709, pp.586-590, 2005.
DOI : 10.1126/science.1104885

K. Perals, H. Capiaux, J. B. Vincourt, J. M. Louarn, D. J. Sherratt et al., Interplay between recombination, cell division and chromosome structure during chromosome dimer resolution in Escherichia coli, Molecular Microbiology, vol.29, issue.4, pp.904-913, 2001.
DOI : 10.1046/j.1365-2958.2001.02277.x

K. Perals, F. Cornet, Y. Merlet, I. Delon, and &. J. Louarn, Functional polarization of the Escherichia coli chromosome terminus: the dif site acts in chromosome dimer resolution only when located between long stretches of opposite polarity, Molecular Microbiology, vol.180, issue.1, pp.33-43, 2000.
DOI : 10.1016/S0092-8674(00)81909-1

K. L. Perry, S. J. Elledge, B. B. Mitchell, L. Marsh, and &. C. Walker, umuDC and mucAB operons whose products are required for UV light- and chemical-induced mutagenesis: UmuD, MucA, and LexA proteins share homology., Proceedings of the National Academy of Sciences, vol.82, issue.13, pp.4331-4335, 1985.
DOI : 10.1073/pnas.82.13.4331

N. Philippe, J. P. Alcaraz, E. Coursange, J. Geiselmann, and &. D. Schneider, Improvement of pCVD442, a suicide plasmid for gene allele exchange in bacteria, Plasmid, vol.51, issue.3, pp.246-255, 2004.
DOI : 10.1016/j.plasmid.2004.02.003

URL : https://hal.archives-ouvertes.fr/hal-00266716

L. Postow, N. J. Crisona, B. J. Peter, C. D. Hardy, and &. R. Cozzarelli, Topological challenges to DNA replication: Conformations at the fork, Proceedings of the National Academy of Sciences, vol.98, issue.15, pp.8219-8226, 2001.
DOI : 10.1073/pnas.111006998

J. L. Ptacin, M. Nollmann, E. C. Becker, N. R. Cozzarelli, K. Pogliano et al., Sequence-directed DNA export guides chromosome translocation during sporulation in Bacillus subtilis, Nature Structural & Molecular Biology, vol.204, issue.5, 2008.
DOI : 10.1128/JB.182.4.1096-1108.2000

M. Quinones, B. M. Davis, and &. K. Waldor, Activation of the Vibrio cholerae SOS Response Is Not Required for Intestinal Cholera Toxin Production or Colonization, Infection and Immunity, vol.74, issue.2, pp.927-930, 2006.
DOI : 10.1128/IAI.74.2.927-930.2006

M. Quinones, H. H. Kimsey, and &. M. Waldor, LexA Cleavage Is Required for CTX Prophage Induction, Molecular Cell, vol.17, issue.2, pp.291-300, 2005.
DOI : 10.1016/j.molcel.2004.11.046

T. Rasmussen, R. B. Jensen, and &. O. Skovgaard, The two chromosomes of Vibrio cholerae are initiated at different time points in the cell cycle, The EMBO Journal, vol.100, issue.13, pp.3124-3131, 2007.
DOI : 10.1038/sj.emboj.7601747

G. D. Recchia, M. Aroyo, D. Wolf, G. Blakely, and &. J. Sherratt, FtsK-dependent and -independent pathways of Xer site-specific recombination, The EMBO Journal, vol.18, issue.20, pp.5724-5734, 1999.
DOI : 10.1093/emboj/18.20.5724

G. D. Recchia and . Sherratt, Conservation of xer site-specific recombination genes in bacteria, Molecular Microbiology, vol.34, issue.5, pp.1146-1148, 1999.
DOI : 10.1046/j.1365-2958.1999.01668.x

F. J. Reen, S. Almagro-moreno, D. Ussery, and &. E. Boyd, The genomic code: inferring Vibrionaceae niche specialization, Nature Reviews Microbiology, vol.65, issue.9, pp.697-704, 2006.
DOI : 10.1038/nrmicro1476

P. Sadowski, Site-specific recombinases: changing partners and doing the twist., Journal of Bacteriology, vol.165, issue.2, pp.341-347, 1986.
DOI : 10.1128/jb.165.2.341-347.1986

O. A. Saleh, C. Perals, F. X. Barre, and &. J. , Fast, DNA-sequence independent translocation by FtsK in a single-molecule experiment, The EMBO Journal, vol.180, issue.12, pp.2430-2439, 2004.
DOI : 10.1046/j.1365-2958.2003.03574.x

J. Sambrook, E. F. Fritsch, and &. T. Maniatis, Molecular cloning : a laboratory manual, 1989.

J. Santalucia and . Jr, A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics, Proceedings of the National Academy of Sciences, vol.95, issue.4, pp.1460-1465, 1998.
DOI : 10.1073/pnas.95.4.1460

J. S. Sawitzke and . Austin, An analysis of the factory model for chromosome replication and segregation in bacteria, Molecular Microbiology, vol.180, issue.4, pp.786-794, 2001.
DOI : 10.1007/s004380050073

S. A. Sciochetti, P. J. Piggot, and &. G. Blakely, Identification and Characterization of the dif Site from Bacillus subtilis, Journal of Bacteriology, vol.183, issue.3, pp.1058-1068, 2001.
DOI : 10.1128/JB.183.3.1058-1068.2001

S. A. Sciochetti, P. J. Piggot, D. J. Sherratt, and &. G. Blakely, The ripX locus of Bacillus subtilis encodes a site-specific recombinase involved in proper chromosome partitioning, J Bacteriol, vol.181, pp.6053-6062, 1999.

J. F. Senecoff and . Cox, Directionality in FLP protein-promoted sitespecific recombination is mediated by DNA-DNA pairing, J Biol Chem, vol.261, pp.7380-7386, 1986.

M. C. Serre, C. Letzelter, J. R. Garel, and &. M. Duguet, Cleavage Properties of an Archaeal Site-specific Recombinase, the SSV1 Integrase, Journal of Biological Chemistry, vol.277, issue.19, pp.16758-16767, 2002.
DOI : 10.1074/jbc.M200707200

M. E. Sharpe and . Errington, Postseptational chromosome partitioning in bacteria., Proceedings of the National Academy of Sciences, vol.92, issue.19, pp.8630-8634, 1995.
DOI : 10.1073/pnas.92.19.8630

D. J. Sherratt, L. K. Arciszewska, G. Blakely, S. Colloms, K. Grant et al., Site-Specific Recombination and Circular Chromosome Segregation, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.347, issue.1319, pp.37-42, 1995.
DOI : 10.1098/rstb.1995.0006

V. Sivanathan, M. D. Allen, C. De-bekker, R. Baker, L. K. Arciszewska et al., The FtsK ?? domain directs oriented DNA translocation by interacting with KOPS, Nature Structural & Molecular Biology, vol.177, issue.11, pp.965-972, 2006.
DOI : 10.1093/emboj/19.9.2094

A. J. Spiers and . Sherratt, C-terminal interactions between the XerC and XerD site-specific recombinases, Molecular Microbiology, vol.92, issue.5, pp.1031-1042, 1999.
DOI : 10.1016/0378-1119(85)90120-9

P. D. Srivastava and . Chattoraj, Selective chromosome amplification in Vibrio cholerae, Molecular Microbiology, vol.262, issue.4, pp.1016-1028, 2007.
DOI : 10.1111/j.1365-2958.2004.04389.x

P. Srivastava, R. A. Fekete, and &. D. Chattoraj, Segregation of the Replication Terminus of the Two Vibrio cholerae Chromosomes, Journal of Bacteriology, vol.188, issue.3, pp.1060-1070, 2006.
DOI : 10.1128/JB.188.3.1060-1070.2006

W. Steiner, G. Liu, W. D. Donachie, and &. P. Kuempel, The cytoplasmic domain of FtsK protein is required for resolution of chromosome dimers, Molecular Microbiology, vol.180, issue.2, pp.579-583, 1999.
DOI : 10.1046/j.1365-2958.1998.00958.x

W. W. Steiner, Cell division is required for resolution of dimer chromosomes at the dif locus of Escherichia coli, Molecular Microbiology, vol.27, issue.2, pp.257-268, 1998.
DOI : 10.1073/pnas.94.2.559

W. W. Steiner, Sister chromatid exchange frequencies in Escherichia coli analyzed by recombination at the dif resolvase site, J Bacteriol, vol.180, pp.6269-6275, 1998.

P. S. Stewart and . Ari, Genetic and morphological characterization of an Escherichia coli chromosome segregation mutant., Journal of Bacteriology, vol.174, issue.13, pp.4513-4516, 1992.
DOI : 10.1128/jb.174.13.4513-4516.1992

C. J. Stirling, G. Stewart, and &. J. Sherratt, Multicopy plasmid stability in Escherichia coli requires host-encoded functions that lead to plasmid site-specific recombination, MGG Molecular & General Genetics, vol.46, issue.1, pp.80-84, 1988.
DOI : 10.1007/BF00340183

C. J. Stirling, G. Szatmari, G. Stewart, M. C. Smith, and &. J. Sherratt, The arginine repressor is essential for plasmid-stabilizing site-specific recombination at the ColE1 cer locus, EMBO J, vol.7, pp.4389-4395, 1988.

D. K. Summers, C. W. Beton, and &. L. Withers, Multicopy plasmid instability: the dimer catastrophe hypothesis, Molecular Microbiology, vol.138, issue.6, pp.1031-1038, 1993.
DOI : 10.1016/0092-8674(84)90060-6

D. K. Summers and . Sherratt, Multimerization of high copy number plasmids causes instability: Cole 1 encodes a determinant essential for plasmid monomerization and stability, Cell, vol.36, issue.4, pp.1097-1103, 1984.
DOI : 10.1016/0092-8674(84)90060-6

D. K. Summers and . Sherratt, Resolution of ColE1 dimers requires a DNA sequence implicated in the three-dimensional organization of the cer site, EMBO J, vol.7, pp.851-858, 1988.

M. Tecklenburg, A. Naumer, O. Nagappan, and &. P. Kuempel, The dif resolvase locus of the Escherichia coli chromosome can be replaced by a 33-bp sequence, but function depends on location., Proceedings of the National Academy of Sciences, vol.92, issue.5, pp.1352-1356, 1995.
DOI : 10.1073/pnas.92.5.1352

J. D. Thompson, D. G. Higgins, and &. J. Gibson, CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice, Nucleic Acids Research, vol.22, issue.22, pp.4673-4680, 1994.
DOI : 10.1093/nar/22.22.4673

M. E. Val, M. Bouvier, J. Campos, D. Sherratt, F. Cornet et al., The Single-Stranded Genome of Phage CTX Is the Form Used for Integration into the Genome of Vibrio cholerae, Molecular Cell, vol.19, issue.4, pp.559-566, 2005.
DOI : 10.1016/j.molcel.2005.07.002

URL : https://hal.archives-ouvertes.fr/inserm-01285606

G. D. Van-duyne, A Structural View of Tyrosine Recombinase Site-Specific Recombination, pp.93-117, 2002.
DOI : 10.1128/9781555817954.ch6

G. D. Van-duyne, Lambda Integrase: Armed for Recombination, Current Biology, vol.15, issue.17, pp.658-660, 2005.
DOI : 10.1016/j.cub.2005.08.031

V. Vanhooff, C. Galloy, H. Agaisse, D. Lereclus, B. Revet et al., Self-control in DNA site-specific recombination mediated by the tyrosine recombinase TnpI, Molecular Microbiology, vol.146, issue.3, pp.617-629, 2006.
DOI : 10.1038/384122a0

M. &. Villion and . Szatmari, gene, FEMS Microbiology Letters, vol.164, issue.1, pp.83-90, 1998.
DOI : 10.1111/j.1574-6968.1998.tb13071.x

M. &. Villion and . Szatmari, : characterization and interaction with other tyrosine recombinases, FEMS Microbiology Letters, vol.226, issue.1, pp.65-71, 2003.
DOI : 10.1016/S0378-1097(03)00577-9

F. C. Volkert, L. C. Wu, P. A. Fisher, and &. J. Broach, Survival Strategies of the Yeast Plasmid Two-Micron Circle, Basic Life Sci, vol.40, pp.375-396, 1986.
DOI : 10.1007/978-1-4684-5251-8_29

M. K. Waldor and . Friedman, Phage regulatory circuits and virulence gene expression, Current Opinion in Microbiology, vol.8, issue.4, pp.459-465, 2005.
DOI : 10.1016/j.mib.2005.06.001

M. K. Waldor and . Mekalanos, Lysogenic Conversion by a Filamentous Phage Encoding Cholera Toxin, Science, vol.272, issue.5270, pp.1910-1914, 1996.
DOI : 10.1126/science.272.5270.1910

S. C. Wang, L. West, and &. L. Shapiro, The Bifunctional FtsK Protein Mediates Chromosome Partitioning and Cell Division in Caulobacter, Journal of Bacteriology, vol.188, issue.4, pp.1497-1508, 2006.
DOI : 10.1128/JB.188.4.1497-1508.2006

G. J. Warren and . Clark, Sequence-specific recombination of plasmid ColE1., Proceedings of the National Academy of Sciences, vol.77, issue.11, pp.6724-6728, 1980.
DOI : 10.1073/pnas.77.11.6724

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC350361

Q. Xu, M. Dziejman, and &. J. Mekalanos, Determination of the transcriptome of Vibrio cholerae during intraintestinal growth and midexponential phase in vitro, Proceedings of the National Academy of Sciences, vol.100, issue.3, pp.1286-1291, 2003.
DOI : 10.1073/pnas.0337479100

Y. Yamaichi, M. A. Fogel, and &. M. Waldor, par genes and the pathology of chromosome loss in Vibrio cholerae, Proceedings of the National Academy of Sciences, vol.104, issue.2, pp.630-635, 2007.
DOI : 10.1073/pnas.0608341104

J. Yates, M. Aroyo, D. J. Sherratt, and &. F. Barre, Species specificity in the activation of Xer recombination at dif by FtsK, Molecular Microbiology, vol.180, issue.1, pp.241-249, 2003.
DOI : 10.1046/j.1365-2958.2003.03574.x

J. Yates, I. Zhekov, R. Baker, B. Eklund, D. J. Sherratt et al., Dissection of a functional interaction between the DNA translocase, FtsK, and the XerD recombinase, Molecular Microbiology, vol.180, issue.6, pp.1754-1766, 2006.
DOI : 10.1046/j.1365-2958.2003.03574.x

X. C. Yu, E. K. Weihe, and &. W. Margolin, Role of the C terminus of FtsK in Escherichia coli chromosome segregation, J Bacteriol, vol.180, pp.6424-6428, 1998.

D. R. Zusman, A. Carbonell, and &. J. Haga, Nucleoid condensation and cell division in Escherichia coli MX74T2 ts52 after inhibition of protein synthesis, J Bacteriol, vol.115, pp.1167-1178, 1973.