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SUMMARY

Nonsense-mediated mRNA decay (NMD) destabi-
lizes eukaryotic transcripts with long 30 UTRs. To
investigate whether other transcript features affect
NMD, we generated yeast strains expressing chro-
mosomal-derived mRNAs with 979 different pro-
moter and open reading frame (ORF) regions and
with the same long, destabilizing 30 UTR. We devel-
oped a barcode-based DNA microarray strategy to
compare the levels of each reporter mRNA in strains
with or without active NMD. The size of the coding
region had a significant negative effect on NMD effi-
ciency. This effect was not specific to the tested 30

UTR because two other different NMD reporters
became less sensitive to NMD when ORF length
was increased. Inefficient NMD was not due to a
lack of association of Upf1 to long ORF transcripts.
In conclusion, in addition to a long 30 UTR, short
translation length is an important feature of NMD
substrates in yeast.
INTRODUCTION

Nonsense-mediated decay (NMD) is a translation-dependent

mechanism that leads to degradation of eukaryotic RNAs with

long 30 UTRs (reviewed in Kervestin and Jacobson, 2012).

Such transcripts are often described as having a premature

termination codon (PTC) and can arise from inefficiently spliced

pre-mRNAs that were exported to the cytoplasm (Sayani et al.,

2008), RNAs generated through alternative splicing (He et al.,

2003; Mendell et al., 2004), or cytoplasmic unstable ‘‘noncod-

ing’’ RNAs (Thompson and Parker, 2007). In contrast to the com-

mon assumption that NMD substrates are rare in eukaryotes,

recent large-scale transcript analyses have uncovered an impor-

tant fraction of yeast transcripts that contain short open reading

frames (ORFs) in the 50 UTR of annotated coding sequences
C

(upstreamORFs [uORFs]) (Arribere and Gilbert, 2013; Pelechano

et al., 2013). Such uORF-containing transcripts are good sub-

strates for NMD in both yeast (He et al., 2003) and mammals

(Hurt et al., 2013).

NMD depends on three major conserved factors: Upf1 (Nam7

in yeast), an ATP-dependent RNA helicase, Upf2 (Nmd2 in

yeast), and Upf3, with additional proteins involved in the process

in metazoans and possibly in yeast (He and Jacobson, 1995;

Luke et al., 2007). Binding of Upf1 to transcripts is correlated

with degradation of these transcripts through NMD in yeast

(Johansson et al., 2007). It has been recently postulated that

Upf1 binding to long 30 UTR regions could represent the molec-

ular mark that leads to mammalian mRNA degradation through

NMD (Hogg and Goff, 2010). Large-scale Upf1 crosslinking to

RNA data indicate that although NMD substrates are more likely

to be bound by Upf1 (Hurt et al., 2013), Upf1 binds many

transcripts not affected by NMD (Zünd et al., 2013). These

studies have shown that blocking translation results in a loss of

specificity of Upf1 binding to 30 UTRs. Whether Upf1 is actively

recruited on 30 UTRs during translation termination (Kurosaki

and Maquat, 2013; Shigeoka et al., 2012) or is displaced from

ORF regions by translation is unclear.

The presence of Upf1 on a long 30 UTR thus seems required,

but not sufficient, for NMD. Additional molecular events, like an

aberrant translation termination, are likely to affect the stability

of an Upf1-bound mRNA. Results obtained with NMD reporters

with PTCs that are far from the poly(A) tail in S. cerevisiae (Amrani

et al., 2004), D. melanogaster (Behm-Ansmant et al., 2007), and

mammalian cells (Eberle et al., 2008; Singh et al., 2008) led to the

proposal that the long distance between the PTC and the poly(A)

tail affects translation termination and thus triggers NMD (Amrani

et al., 2004).

Although many studies were focused on the influence of the

30 region on NMD efficiency, little is known about the influence

of the region upstream of the stop codon in the process. To

address this issue, and to analyze the importance of the region

upstream of the stop codon in NMD, we have set up an experi-

mental system that addresses on a large scale the context in

which an otherwise normal termination codon is able to trigger
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Figure 1. DAmP Modification Preferentially Affects Short Essential

Genes Function

(A) Schematics of the DAmP modification. TSS, transcription start site; TER,

natural transcription termination region; pTEF0, KanR, and TerTEF0 indicate the

promoter, G418 resistance ORF, and terminator of the KanMX4 cassette,

respectively. Filled black rectanglesmark barcode regions flanked by universal

priming sequences, whereas a black diamond indicates the ORF stop codon.

(B) Strategy for large-scale analysis of the effect of NMD inactivation on DAmP

and gene deletion strains based on the GIM method (Decourty et al., 2008).

Filled symbols correspond to gene deletion (blue and green) or DAmP modi-

fication (orange) alleles.

(C) Correlation between the effects on growth for deletion and DAmP strains

when NMD was inactivated via deletion of either UPF1 or UPF2 (n = 4,488,

p < 10�16, Kendall). Each value is the average of results from two independent

screens. Orange crosses correspond to DAmP strains and blue dots corre-

spond to deletion strains.

(D) The DAmP strains showing the strongest growth recovery when combined

with NMD inactivation (log2 value > 1) correspond to genes that have shorter

than average ORFs; p < 33 10�12,Mann-Whitney U test, n = 744 (less than one

category), n = 63 (more than one category).

See also Figure S1.
translation-dependent mRNA decay. This system originates

from the observation that lengthening the 30 UTR destabilizes

yeast mRNAs by changing the status of the normal termination

codon to a PTC (Muhlrad and Parker, 1999). We studied the

steady-state levels of hundreds of mRNAs with an artificial

long 30 UTR expressed from chromosomal-modified genes and

their changes in response to NMD inactivation or translation in-

hibition. These experiments revealed a role for the length of the

coding sequence in defining NMD efficiency. These data sug-

gest that the ability of ribosomes to signal a defect in translation

termination decreases with longer distances between start and
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stop codons and reveal short ORF length as a feature of NMD

substrates in yeast.

RESULTS

Obtaining and Using a Barcoded Collection of NMD
Reporters in Yeast
Replacing natural 30 UTRs with artificially long sequences allows

the generation of strains with altered gene expression that are

useful for phenotype or genetic studies of essential genes

(decreased abundance by mRNA perturbation [DAmP] strategy;

Schuldiner et al., 2005). We have built a collection of 979 DAmP-

modified strains (Figures 1A and S1A; Table S1) that can be

directly used for large-scale genetic interaction mapping (GIM)

screens (Decourty et al., 2008). The DAmP strains that we have

generated differ from similar strains reported earlier (Breslow

et al., 2008; Yan et al., 2008) because they include molecular

barcodes at each modified locus. The locus-specific barcodes

situated upstream of the inserted KanMX4 cassette are present

in the transcribed DAmPmRNAs, which allows the study of NMD

efficiency on hundreds of reporter mRNAs that have the same

1.4-kb-long 30 UTR yet originate from various promoters and

have different 50 UTR and coding regions.

The GIM method allows one to get a large number of haploid

yeast cells that contain two genomic modifications tagged by

two different antibiotic resistance markers. The populations of

double mutants are then used to investigate quantitative out-

comes of combining two mutations in a single cell, which most

commonly can lead to a growth rate change. We measured the

relative growth rate of 807 DAmP and 3,681 deletion strains

(Giaever et al., 2002) inactivated for NMD through deletion of

either UPF1 or UPF2 as compared with their NMD-competent

equivalents (strategy depicted in Figure 1B). Less than 1% of

nonessential gene deletion strains displayed an improved

growth under these conditions. In contrast, about 8% of DAmP

strains showed faster growing rates in combination with NMD

mutants (upper right quadrant in Figure 1C; Table S2). This result

can be explained by the stabilization of DAmP mRNAs in mutant

strains deficient for NMD, followed by increased protein produc-

tion for the affected gene. We directly tested DAmP mRNA level

changes following NMD inactivation in cells expressing the

DAmP version of SMT3, a strain among those showing a growth

improvement when combined with upf1D or upf2D (average

log2[NMD inactivation/reference] of 1.9). UPF1 deletion

increased ten times smt3-DAmP RNA levels (Figures S1B and

S1C). Growth defect suppression by NMD inactivation is thus

an indirect indication of the extent of mRNA destabilization

elicited by DAmP modification.

The mRNAs most sensitive to the destabilizing effect of a long

30 UTR, as judged from the growth rate improvement for the

corresponding DAmP strains in both upf1D and upf2D screens

(log2[NMD inactivation/reference] over 1; Figure 1C) had signifi-

cantly (p < 3 3 10�12) shorter than average ORFs (Figure 1D).

This potential effect of ORF size on NMD efficiency wasmirrored

by the observation that short gene DAmP strains were more

affected for growth than longer gene DAmP strains. A correlation

between ORF size and growth defect was not present in the

nonessential gene deletion collection (Figure S1D; Table S3).



Figure 2. Short ORF DAmP mRNAs Are More Sensitive to NMD

Despite Similar Levels of Associated Upf1

(A) The strategy used to measure DAmP mRNA level changes in mixed pop-

ulations of hundreds of strains consisted of (I) reverse transcription with an

oligonucleotide specific to the DAmP cassette, followed by (II) an enrichment

PCR and (III) amplification with fluorescent U2 (Cy3 or Cy5) and U1 universal

primers. In parallel, DNA samples were used for barcode-region amplification

and fluorescent labeling as done for GIM screens. Cyan and magenta rect-

angles depict universal sequences flanking the barcode region.

(B) Deletions of UPF1 and YEL068C (reference mutation) were added to all the

DAmP strains using the mating and sporulation strategy of the GIM method.

The increase in the levels of DAmP mRNA in a upf1D context was inversely

correlated with the length of the translated ORF.

(C) The results obtained with the large-scale method were validated by reverse

transcription followed by quantitative PCR testing of 17 mRNAs selected from

several categories of ORF size. Each DAmP mRNA level was compared with

C

A Strategy for Barcode- and GIM-Based Large-Scale
Tests of NMD
Although the observed effects on growth indicated a possible

link betweenNMDefficiency andORF size, wewanted to directly

test this effect by measuring the changes in all DAmP mRNA

levels when NMD is functional or not. To this end, we developed

an experimental strategy that takes advantage of the barcodes

specific to each mutant to estimate the levels of DAmP mRNAs

in a complex population of strains (depicted in Figure 2A). The

barcode-based strategy led to estimates of RNA abundance

that were highly correlated (n = 565, r = 0.77, p < 2.2 3 10�16,

Pearson) with published abundance values (Lipson et al., 2009)

for the corresponding mRNAs (Figure S2A).

We used the RNA-derived barcode-based method to evaluate

the changes in the levels of hundreds of DAmP mRNAs in

populations of strains where NMD was inactivated by UPF1 or

UPF2 deletion (GIM method). YEL068C deletion, affecting an in-

tergenic region that has no impact on any known yeast process,

was used to generate a reference DAmP population. The strong

negative correlation (n = 470, r = �0.57, p < 2.2 3 10�16,

Pearson) observed between the increase in mRNA levels in the

absence of Upf1 and the initial ORF size (Figure 2B; Table S4)

suggested that ORF size could be a major determinant of NMD

efficiency. Because NMD depends on translation, we also eval-

uated changes in DAmP mRNA levels after blocking translation

for 30 min with 50 mg/ml cycloheximide. A significant inverse

correlation (n = 523, r = �0.44, p < 2.2 3 10�16, Pearson) was

observed between the size of the affected ORFs and DAmP

mRNA accumulation upon translation inhibition (Figure S2B;

Table S4).

The results obtained with the barcode-based strategy com-

bined with the presence or absence of NMD factors were

strongly correlated with changes in the steady-state levels of a

set of 17 different mRNAs in individual strains before and after

DAmP modification, which were measured by quantitative PCR

(Figure 2C). To test the potential influence of cellular phenotypes

that could bias the results on the levels of DAmP mRNAs in

haploid strains, wemeasured the relative levels of DAmPmRNAs

in heterozygous diploid strains obtained by batch mating of

the DAmP strains with a wild-type BY4742 strain. The DAmP

mRNA levels in haploid and diploid cells were strongly correlated

(p < 1.2 3 10�13, r2 = 0.91) (Figure S2C). Altogether, these data

show that addition of a long 30 UTR to a yeast mRNA elicits trans-

lation-dependent transcript instability by NMD only if the ORF is

relatively short, whereas longer ORF mRNAs escape NMD.
the corresponding mRNA from a wild-type strain. The correlation with the

barcode-based results was excellent (n = 17, r = 0.9, p < 9.53 10�7, Pearson).

Error bars represent SD based on three independent experiments.

(D) The degree of association for a selection of six DAmP mRNAs to Upf1 was

measured in diploid strains expressing Upf1-TAP. The levels of each mRNA

(native, white bars; DAmP, black bars) in the purified fraction and in the total

cell extract were measured by reverse transcription and quantitative PCR, and

fold enrichment was calculated by using mature RPL28 mRNA as control.

Unspliced RPL28 pre-mRNA served as a positive control. Error bars represent

SD (three independent experiments). A color code based on the size of the

corresponding ORFs was used throughout the figure.

See also Figure S2.
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Figure 3. Extending the Translated ORF Decreases NMD Efficiency

on a Model Substrate

The stability of GAL1 promoter-driven PGK1 reporter mRNA differing in ORF

length was tested by transcriptional shutoff and northern blot.

(A) PGK1 without a PTC had an estimated half-life longer than 30 min.

(B) The insertion of a termination codon 97 nt from start destabilized themRNA

(estimated half-life of 3 min), a situation reversed by UPF1 deletion.

(C) Increasing the length of the ORF to 1,401 nt by inserting a copy of the PGK1

ORF upstream of the original PTC-containing PGK1 led to stabilization of the

mRNA (estimated half-life of 11 min). Filled and empty diamond symbols

indicate stop codons.

Figure 4. The Size of the Coding Region, Independent of its

Sequence, Affects NMD Efficiency

(A) A region of ALA1 coding sequence was cut in three fragments, and each

fragment was inserted in a single copy vector allowing expression of mRNAs

with a long 30 UTR under the control of a doxycycline-repressible promoter. A

tandem repetition of fragments 1, 2, and 3 was inserted in the same vector.

(B and C) mRNA stability was measured by northern blotting at different time

points after doxycycline addition in synthetic complete medium without uracil

at 20�C in a wild-type (B) or upf2D (C) strain. Each decay assay was performed

in triplicate, and the median of the results is shown.

See also Figure S4.
The inability of NMD to degrade long-ORF-containing DAmP

mRNAs could be due to a decreased association of Upf1

with the transcripts. To test this hypothesis, we affinity purified

Upf1-TAP-associated mRNAs from strains expressing DAmP

mRNAs and found that the addition of a long 30 UTR extension

to mRNAs with ORFs longer than 2 kb (RRP5 and ALA1) or to

mRNAs with ORFs shorter than 1.5 kb (PGK1, PRO3, SHR3,

andMMF1) led to the same consistent enrichment in association

with Upf1 (Figure 2D). Despite the similar association with Upf1,

only short ORF DAmP mRNAs (PRO3, SHR3, and MMF1)

showed a marked accumulation after a cycloheximide treatment

(Figure S2D). The specificity of association of Upf1 with DAmP

transcripts decreased after 30 min of treatment with cyclohexi-

mide for five of the six DAmP mRNAs tested (Figures S2E and

S2F). This result is well correlated with the observed loss of

specificity of Upf1 binding to 30 UTRs when translation is in-

hibited (Hurt et al., 2013; Zünd et al., 2013). We conclude that

Upf1 associates indiscriminately with both long and short ORF

mRNAs having a long 30 UTR extension.

Increasing ORF Length Stabilizes Reporter NMD
Substrates
We wondered if the effect we identified with the large-scale

study could be observed on typical NMD reporters with a
596 Cell Reports 6, 593–598, February 27, 2014 ª2014 The Authors
different long 30 UTR, promoter, and coding sequence. We

used the extensively studied PGK1 reporter system to test the

effect of translated ORF size on the stability of a reporter

mRNA. Placing an additional copy of PGK1 ORF upstream and

in frame with a PGK1-derived reporter bearing a PTC led to

stabilization of the corresponding NMD-affected mRNA (Fig-

ure 3). The increase in ORF size was accompanied by a

decrease in the ratio of coding-sequence length to 30 UTR

length, and we wondered if this ratio could have an influence

on NMD efficiency. To test this hypothesis, we measured the

steady-state levels of transcripts containing a long ORF (ADE3;

ORF length 2,841 nt) combined with various 30 UTR lengths.

Only a modest decrease in mRNA levels was elicited by a 1.7

kb 30 UTR inserted downstream the stop codon of the ADE3

gene, and this decrease was not enhanced when the 30 UTR
size was increased from 1.7 to 4.8 and 5.9 kb (Figures S3A

and S3B). It is thus likely that it is the ORF size and not its ratio

compared with the 30 UTR that plays a role in NMD sensitivity

of transcripts.

To establish if ORF size alone, independent of the translated

sequence, could affect NMD, we designed a series of NMD re-

porters consisting of an identical 50 UTR, start and stop codon

context, and a long 30 UTR. Transcripts containing three different

fragments of ALA1 ORF were tested either alone or in a tandem

repeat that created a long coding sequence (Figure 4A). Because

mRNA decay for this reporter was too fast to allow precise mea-

surements at 30�C, we measured decay rates of transcripts at



20�C. Increasing the coding sequence length slowed down the

NMD-dependent degradation rate of the reporter mRNA (Figures

4B, 4C, and S4B). Because all the sequences contained in the

long reporter are translated in one or another of the short tran-

scripts (as verified by western blots; Figure S4C), we concluded

that it is ORF size and not the translated sequence that affects

NMD efficiency on this reporter. Thus, coding sequence size

affected translation-dependent mRNA decay of three different

NMD reporters and can potentially affect NMD efficiency on

any substrate.

DISCUSSION

Molecular barcodes allow multiplexing of DNA based assays in

mixtures of cells or plasmids. We show here that inclusion of

barcodes in transcribed sequences also allows parallel tests

on hundreds of reporter mRNAs. Barcoded mRNA NMD re-

porters served to identify short ORF length as an important

feature of NMD substrates. Contrary to the model in which

Upf1 binding to a long 30 UTR alone is sufficient to trigger NMD

(Hogg and Goff, 2010), our data suggest that ORF size modu-

lates NMD for transcripts associated with Upf1. We do not

know yet if the ORF-size effect is due to molecular events

affecting translation termination (Amrani et al., 2004) or other

steps in the degradation pathway.

The number of ribosomes reaching the termination codon

could affect the stability of an Upf1-bound transcript. Ribosome

density decreases along the transcripts from initiation to the stop

codon (Ingolia et al., 2009), and the ORF length could thus influ-

ence the number of translation-termination events. More ribo-

somes at translation termination could lead, in the presence of

a long 30 UTR, to faster degradation rates. However, we could

find no correlation between ribosome density in the 50 nt pre-

ceding the stop codon of a given mRNA (Ingolia et al., 2009)

and the level of destabilization induced by a long 30 UTR (not

shown). Thus, ribosome density changes along mRNAs are

unlikely to explain the ORF-size effect on NMD efficiency. It is

possible that it is not the number but the quality of the termination

events that is different between long ORF and short ORF tran-

scripts. Inefficient translation termination at early times after

translation initiation could allow optimal coupling with the action

of NMD factors.

Our observations are consistent with the preference for short

ORFs among natural NMD substrates. The bulk of NMD sub-

strates in yeast consists of transcripts that have short ORFs

upstream of a long untranslated sequence (Arribere and Gilbert,

2013; He et al., 2003). Abundant mRNAs lack such uORFs (Yun

et al., 2012). A paucity of ATG in the 50 UTR of mRNAs

characterizes not only yeast but also many studied organisms

(Rogozin et al., 2001). Thus, transcripts with short ORFs (prob-

ably mostly uORFs) are likely to be both excellent substrates

for degradation, as shown here, and the most prevalent type of

NMD substrate in eukaryotes.

EXPERIMENTAL PROCEDURES

The collection of barcoded DAmP strains was built by homologous recombi-

nation using PCR products. Oligonucleotide sequences and protocols for
C

analyzing RNA aswell as the building strategies for the NMD reporter plasmids

are detailed in Supplemental Experimental Procedures.

GIM Screens, Growth Rates, and Double-Mutant Strains

GIMwas done as previously described (Decourty et al., 2008), with two excep-

tions: the barcoded 979 DAmP strains were added to the pool of mutants and a

custom-made constant turbidity system for haploids selection and culture was

used. This system uses a stream of sterile air that allows continuous culture of

yeast in 10ml reaction flasks. Data analysis of the microarray results was done

using R to perform loess normalization with marray independently for the UP

and DOWN measured sets of ratios (corresponding to the two barcodes situ-

ated in the 50 and 30 region of the KANMX cassette). Only the measurements

coming from at least two independent experiments were further used.

Individual double-mutant strains were obtained by mating and sporulation

using the same protocol as the one used in GIM screens. The strains used

for GIM screens were obtained from the collection of haploid BY4742-derived

strains through replacement of the KANMX4 cassette by a PrMFalpha2-Nat1

cassette, as described elsewhere (Decourty et al., 2008). GIM screens were

performed with strains with deletions of UPF1 (GIM0113), UPF2 (GIM0461),

and YEL068C (GIM0139).

mRNA Estimations Based on Barcodes

DAmP strains were generated in such a way that transcription continues over

the upstream barcode region and terminates in the TEF0 terminator of the

KanMX4 cassette, as estimated from northern blot experiments. To be able

to individually measure the level of the DAmP mRNAs in a mixture of more

than 900 yeast strains, we performed a three-step labeling protocol (outlined

in Figure 2A). First, total RNA was isolated from the pool of DAmP strains

without other manipulation or from the pool of double mutants that were

obtained through GIM screens done with upf1D, upf2D, or yel068cD. Ten

micrograms of RNA were DNase I treated and used in reverse-transcription

reactions using an oligonucleotide complementary to a region of the KanMX4

cassette downstream the U2 universal barcode (oligonucleotide CS800;

50-ATTCAGGGATCCTACCGTCGGCGCGCCTTAATTAACCCG-30). This oligo-
nucleotide is extended with an artificial sequence that served as a template

in a second step of PCR amplification with oligonucleotide U1 (50-GATGTC

CACGAGGTCTCT-30) and oligonucleotide CS798 (50-ATTCAGGGATCCT

ACCGTCG-30) and helps to avoid potential cross-contamination with PCR

products. The intermediate PCR products obtained in the second step

were fluorescently labeled using 50-labeled Cy3 or Cy5 oligonucleotide U2

(50-GTCGACCTGCAGCGTACG-30) and unlabeled U1 oligonucleotide. The

final PCR products were hybridized on 8x15k Agilent custom microarrays

(Gene Expression Omnibus accession number GPL18088), and R (http://

www.cran.r-project.org) was used to filter low signal-to-noise ratios, adjust

the median of the log2-transformed ratios to 0, and calculate average values

from two independent reverse-transcription experiments for each tested

mutant strain. The differences in cell numbers, when the initial population of

cells was coming from GIM screens, were corrected using the formula

(RNAmutant/DNAmutant)/(RNAref/DNAref).
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The Gene Expression Omnibus accession number for the data reported in this
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four figures, and four tables and can be found with this article online at
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