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Abstract

Dry eye disease (DED) is a common eye condition worldwide and a primary

reason for visits to the ophthalmologist. DED diagnosis is performed through a

combination of tests, some of which are unfortunately invasive, non-

reproducible and lack accuracy. The following review describes methods that

diagnose and measure the extent of eye dryness, enabling clinicians to quantify

its severity. Our aim with this paper is to review classical methods as well as

those that incorporate automation. For only four ways of quantifying DED, we

take a deeper look into what main elements can benefit from automation and

the different ways studies have incorporated it. Like numerous medical fields,

Artificial Intelligence (AI) appears to be the path towards quality DED diagno-

sis. This review categorises diagnostic methods into the following: classical,

semi-automated and promising AI-based automated methods.
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1 | INTRODUCTION

As developed by the International Dry Eye Workshop
(DEWS), dry eye disease (DED) is a multifactorial pathol-
ogy, affecting tears and ocular surface (Lemp et al. 2007).
It is a major pathology, with a growing prevalence due to
the increase in longevity, the integration of screen-based
activities at all ages, and environmental pollution; all
conditions that induce meibomian dysfunction. Addition-
ally, refractive surgery, whether corneal or intraocular,
can cause transient or chronic dry syndrome through an
inflammatory and neurogenic mechanism if homeostasis
is not restored.1 These circumstances of occurrence have
been added to the classical etiologies represented by the
deficiencies of tear secretion observed in primary or

secondary Sjogren's syndrome (SjS) syndrome and the
immune or allergic causes, which remain the source of
severe dry eyes. DED results in tear film instability, dam-
aged ocular surface and thus in discomfort and pain.2 It
also decreases visual performance in terms of visual acu-
ity but also in the quality of vision (fluctuations, degrada-
tion of contrast sensitivity, optical aberrations induced by
the instability of the tear film). The impact on the quality
of life can be major and responsible for a significant rate
of absenteeism at work and induced depression. This
added to the increase of the lubricant market more than
25% in 10 years, placing DED at the rank of public health
problem in industrialised countries.3

The following review explores these diagnostic tests
and the practicality of automating the quantification
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methods. Each section considers the quantification of
one characteristic that signals dry eye. Our goal is to shed
light on which diagnostic methods are more than likely
to benefit from automation. We also want to show the
most prominent studies for each of the diagnostic
methods that indicate DED. We believe such a study is of
importance to clinicians that are interested in the impact
AI has, and will continue to have, specifically in the field
of dry eye. This review shows the course of DED diagno-
sis which, like various fields, is headed towards incorpo-
rating more AI solutions. The major goal of our analysis
is to emphasise the present demand for automation. The
methods described differ in terms of what they quantify,
the amount of quantification they accomplish, and the
level of automation they employ. However, the overall
tendency in our analysis is that automation resulted in
either easier acquisition or better accuracy. This review
shows the course of DED diagnosis which, like retinal
image analysis for instance is headed towards incorporat-
ing more AI solutions.4–8

The Tear Film Ocular Surface Society (TFOS,
DEWS I, DEWS II) presented two reports in 2007 and
2017, which updates the definition and how we classify
DED2,9. The DEWS II report provides an etiological clas-
sification of DED and the basis of its symptoms. DED
was divided into two major subtypes: evaporative and
aqueous-deficient. Evaporative DED is due to a high
evaporation rate of the tear film, caused intrinsically,
meibomian oil insufficiency, or extrinsically. The most
common cause of evaporative DED is Meibomian gland
dysfunction (MGD).10 MGD changes the tear components
causing instability and goblet cell loss.11 Evaporative
DED is often due to extrinsic causes, including vitamin A
deficiency, contact lens wear and the use of topical
agents.2 Aqueous-deficient DED is due to a decrease in
tear production from the lacrimal glands. It can be cat-
egorised into SjS related or non-SjS related. Ten percent
of patients diagnosed with DED also have SjS, and both
are difficult to diagnose.12 Dry eye diseases can be diag-
nosed by the lack of stability of the tear film, the produc-
tion of tears, the damage caused to the epithelium or
gland dysfunction.

Following both DEWS studies we decided to orga-
nise our review into four main sections that each
addresses a way of diagnosing DED. Each
section contains three subcategories: classical diagnostic
methods, semi-automated and fully automated methods.
Section 2 includes methods that evaluate a decrease in
tear secretion and volume. Reproducible tests that mea-
sure secretion, meniscus shape, regularity and residual
volume of tears are key indicators of DED. Section 3
considers methods that focus on the damaged ocular
surface. The instillation of a dye penetrates the lipid

layer of the epithelium, staining-damaged areas. The
staining can quantify the damage and its severity, but
there are limitations of ocular surface damage grading.
Following that, Section 4 tackles methods that measure
tear film stability. The quality of each layer within the
tear film is essential to characterise DED. Section 5 dis-
cusses meibomian gland diagnostic methods and exam-
ining the lid margin. Glands of the ocular surface
produce tear fluid components and diagnosis can be of
tear content or glandular structures. This section focuses
on MGD diagnostic methods as it significantly correlates
with DED. The subsections of each include classical
diagnostic methods implement simple medical tests and
often require full participation of a specialist. Semi-
automated methods exploit either automated acquisition
or algorithms that help in quantifying DED but still
require manual intervention. Alternatively, fully auto-
mated methods cut out the need for manual interven-
tion and in some cases, automate both the diagnosis and
DED severity grading.

Several reviews and surveys also have similar objec-
tives but focus mainly on classical clinical diagnostic
methods.13–20 Other articles and reviews discussing
current and future AI applications in ophthalmology
include.7,8,21–27

1.1 | Method of literature search

The systematic approach for this review included the fol-
lowing search terms: dry eye disease, dry eye, quantifica-
tion, automated. Using Elsevier's Scopus as a main
database, as well as arXiv and IEEE Xplore. We included
papers published up to beginning of March 2021
(included). As for the selection process, abstracts of the
search results were used to identify methods that can be
used. Classical methods were mostly found in clinical
papers, as well as existing surveys. As for automated
methods or semi-automated methods, those chosen had
to include quantification in their results. The framework
should also present clearly where the automation was
incorporated.

2 | TEAR SECRETION AND
VOLUME

The reduction in tear secretion is a primary indicator of
DED. Tear film is composed of three layers: oil, water
and a mucin layer. The aqueous and mucin layers are a
single layer of mucoaqueous gel with a viscosity gradient
along the tear film.28 A deficiency in any layer, ultimately
causes discomfort and disrupts the tear film.

654 BRAHIM ET AL.
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2.1 | Clinical diagnostic tests

Assessing tear secretion dates back to 1903 when
Schirmer29 first presented his test. The test determines
whether enough tears are being produced measuring
both basal and reflex tears.17 The test uses a small piece
of filter paper (35 � 5 mm) placed over the lower eyelid
for 5 min. The length of the wetted filter paper is the tear
secretion grade. Schirmer describes variations of the test,
including using a topical anaesthetic and nasal stimula-
tion to measure reflex tears. Despite the controversy and
lack of reproducibility, sensitivity and specificity,16,30,31

the test is still frequently used. Moderate modifications
have been made to reduce them but without major
improvements.31–39 Further modifications include the
fluorescein clearance test, which assesses tear clearance
or turnover rate. Fluorescein clearance test consists of
1-min Schirmer's tests performed consecutively for
30-min after the application of the fluorescein dye.40,41

Tear clearance rate is the rate at which the dye fades
5-min after instillation and is graded visually: 1–1/256.
Dogru et al.42 showed that strip meniscometry eliminates
the need for fluorescein dye, or any touching of the eyelid
and can be performed in 5 s to evaluate tear secretion.
Lastly, tear function index value was proposed by Xu
et al.,43 which consists of both Schirmer's test and mea-
suring the tear clearance rate. Scores correlated with tear
quantity and stability and can be computed as follows:

Tear function index¼ schirmer test value
tear clearance rate

2.2 | Semi-automated methods

All the semi-automated methods measure the tear meniscus
height from images after instilling fluorescein dye. First,
used by Guillon in 1998, images were acquired from a video
camera attached to a slit-lamp or an interference device.44

Tearscope-plus (Keeler, Windsor, United Kingdom) was
also used to visualise the tear meniscus height by Uchida
et al.45 in healthy, DED and SjS subjects. The captured
images were later analysed using a software to obtain the
tear meniscus height. Fodor et al.46 compare the measure-
ment of tear meniscus height using images from Keeler
Tearscope-plus (Keeler Instruments Inc.) against slit-lamp
images with or without fluorescein staining. Measurements
of the lower tear meniscus height using a tearscope were
found to be more repeatable than fluorescein tear film
break up time and Schirmer's test. Optical coherence
tomography (OCT) is a more recent non-invasive technique
that can scan the tear meniscus in cross-section. A modern

acquisition method is the Topcon ImageNET 2000 (Topcon,
Japan), in Johnson et al.’s study,47 includes a full program
of image enhancements such as; contrast adjustment, box
enhancement, are measurement tools, to help the evalua-
tion process. Tear meniscus height measurements were
compared between OCT, optical pachymeter and video cap-
ture en-face (IMAGEnet2000), optical pachymetry en-face
and in cross-section.47 The study found all five techniques
to have a similar average tear meniscus height. Savini
et al.48 concluded that OCT can be used to measure tear
meniscus height. Raj et al.49 also found a positive correla-
tion between Schirmer's and tear meniscus and concluded
that OCT enables a better understanding and treatment of
DED. Tear meniscus height measurements obtained by fre-
quency domain OCT and a keratograph were compared by
Baek et al.50 and Arriola et al.51 Baek et al. concluded that
tear meniscus height measurements correlated with each
other and other tests [Schirmer test, tear film breakup time
(TBUT), dry eye severity] with good repeatability while
Arriola et al. found more reliable measurements using the
frequency domain OCT and weak correlation with
keratograph.

Courrier et al.52 presented an all-in-one non-contact
ocular surface imaging device (LacryDiag-Quantel Medi-
cal) that measures various dry eye parameters that
include the tear meniscus height. It also provides lipid
layer analysis, non-invasive breakup time (NIBUT), and
meibography analysis, which all require manual inter-
vention to obtain the final quantification. Other devices
capable of tear meniscus height measurement include
Dry Eye Monitor KOWA DR-1 (Kowa), Oculus
Keratograph 5M (K5M; Oculus Optikgerate GmbH) and
Optovue RTVue (Optovue Inc.).

2.3 | Automated methods

Yedidya et al. presented an algorithm that evaluates the
tear meniscus from slit-lamp images after fluorescein
instillation.53 Based on asymmetric graph-cuts, the
method segments the tear meniscus and determine its
grade through height and number of branches. Another
method presented by Cheazemin et al.54 also automati-
cally measures the tear meniscus height from video
sequences. Using k-means segmentation, and a threshold
determined using the Otsu's method, tear meniscus height
was determined based on the length of the segmentation.
The method requires calibration to obtain a physical value
from the measurement unit (pixels). The first two methods
operate on the same imaging modality (slit-lamp images)
and are based on similar image processing techniques.

A more recent method that also automatically assesses
the characteristics of the tear film including, tear meniscus,

BRAHIM ET AL. 655
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area, height, depth and radius was presented by Stegmann
et al.55 Using ultrahigh-resolution OCT measurements to
automatically segment the tear meniscus and extract the
tear film characteristics. It was tested on 10 healthy sub-
jects only, a significant correlation was found between all
tear meniscus parameters and literature values. All three
methods showed that tear characteristics can be extracted
with simple methods and two data types, namely slit-lamp
images and ultrahigh-resolution OCT, although none were
extensively validated.

3 | OCULAR SURFACE DAMAGE

The lesions that appear on the epithelial and sub-
epithelial tissues are clinical signs of various ocular
surface diseases.56 Referred to as superficial punctate
keratitis (SPK),57 which is a small damaged groups of
cells on the surface of the cornea or conjunctiva.

3.1 | Clinical diagnostic tests

The damaged parts of the cornea are made more visible
using a dye. Fluorescein dates back to 1882 when it was
first used to stain corneal abrasions.58 Fluorescein sodium
is still used and instilled by preserved doses or paper strips.
Lesions are more visible if a yellow (blue-free) filter is
used.16 Damage to the conjunctival epithelium however is
more difficult to detect with fluorescein staining due to the
poor scleral contrast. Another dye, derivative of fluorescein,
rose bengal is mainly used on the conjunctiva to detect the
damage areas.16 Lastly, lissamine green is a synthetic
organic acid dye that is interchangeable with RB15 and
used more often since it's been proven to be less toxic and
more easily tolerated. Bron et al. present a more exhaustive
coverage of clinical ocular surface staining.59 To quantify
the staining and track its evolution, clinicians refer to
numerous grading scales that were detailed by Begley
et al.13 Another more detailed method for grading recently
developed by Woods et al. includes a scale of 0–100 for
staining type and area, and 0–4 for depth.60 Named the
CORE (Center for Ocular Research Education) staining
scale, and is reported for five zones [central (C), superior
(S), nasal (N), inferior (I) and temporal (T)]. The staining
scale helps in tracking the evolution of the damage.

3.2 | Semi-automated methods

The following methods process slit-lamp recorded images
with a semi-automated algorithm. Ornberg et al.61

improve fluorescein images with image processing tech-
niques. The stains are also measured by size, intensity
and position relative to the pupil, which improves
quantification. The method does not automate the
staining quantification but helps in identifying them.
Amparo et al. compared their corneal fluorescein
staining index, an index given using their proposed
method, to the National Eye Institute/Industry grading
scale.62 The proposed method divides the cornea in five
zones and quantify each of them separately. The cor-
neal fluorescein staining index scoring system
summarised the result in a 0–100 score. The corneal
fluorescein staining index provides a plateau gap that
allows for the evolution of the staining to be docu-
mented. The corneal fluorescein staining index has a
larger grading range and is computer guided, which
resulted in increased consistency and accuracy com-
pared to the National Eye Institute/Industry grading
scale. Although not fully automated, the method brings
forward a great contribution which is a new grading
scale. It also has a better interobserver agreement when
compared to that of the National Eye Institute/Industry
grading scale. Another study using lissamine green dye
by Bunya et al. evaluates ocular surface damage only to
the bulbar conjunctiva.63 The image is then processed
and a random forest regression classifier is trained
using the extracted features. The method uses auto-
mated acquisition and grading but requires user assis-
tance for the region of interest selection. The scores
correlated with the van Bijsterveld scale better than the
National Eye Institute/Industry grading scale.

3.3 | Automated methods

Chun et al.64 propose a method that takes advantage of
several digital image processing steps to enhance corneal
punctate epithelial erosions. The method uses median fil-
ters, noise removal, contrast-limited adaptive histogram
equalisation filters that improve contrast without ampli-
fying the noise, as well as erosion filters to better high-
light the ocular surface damage.

The method resulted in a strong correlation with the
Oxford scale and a better correlation with the National
Eye Institute/Industry grading scale than both methods
by References 62 and 63, which were similar. Another
automated method of staining detection that uses image
processing was developed by Rodriguez et al.56 The
binary images are used for blob detection, and those are
the punctate dots. The algorithm then counts the dots
(Ndots). Lastly, the predicted grade (Gpred) is calculated
using Equation (1).

656 BRAHIM ET AL.
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Gpred ¼ 1:48log Ndotsð Þ�0:206 ð1Þ

Gpred ¼ 1:3244log Ndotsð Þ�0:0612 ð2Þ

A similar approach summarised with a different
Equation (2) was presented by Bagbaba et al.65 The
method employs image processing techniques such as
Hough transform, active contour models and connected
component labelling. This method had a larger data set
(70 images) and a better correlation with clinical scores
compared to that presented by Rodriguez et al.
(54 images). The grades predicted using Equation 2 have
a higher precision and thus a better correlation with clin-
ical grading scales.

An approach to quantify staining and distinguish SjS
from Ocular Graft versus-host Disease was recently
described by Pellegrini et al.66 Pellegrini et al.’s method
calculates the corneal staining index, which is defined as
the ratio between the detected staining area and the area
of the cornea. The particles' morphological patterns are
described to help distinguish between SjS and Ocular
Graft versus-host Disease staining. The parameters
include area, circularity and roundness of each stain. The
study found that Ocular Graft versus-host Disease
staining spots were more circular and round compared to
SjS. The approach resulted in a less significant correlation
with the oxford and National Eye Institute/Industry grad-
ing scales compared with methods by.56,64,65 Benefiting
from deep learning, Su et al. propose the automatic detec-
tion and grading of punctate dots with a convolutional
neural network (CNN).67 Images were manually seg-
mented only to train the model using five pre-defined
classes: tear film, eyelash, eyelid, punctate dots and con-
junctiva. The model then produces a probability map of
punctate dots, used to calculate the CNN-SPK value. A
newly defined grading scale, which is:

CNN�SPK¼ area of the punctate dot predicted
area of the cornea

Obtaining significant correlations with clinical grading
scales, this method is close to those by.56,64,66 The more
recent fully automated methods all use slit-lamp exami-
nations and achieve similar results. It is evident that
using only staining examinations we can extract valuable
information that can help refine ocular surface diagnosis.
One advantage of slit lamp acquisitions is that the data,
namely images, can easily be extracted and are compati-
ble with popular computer vision AI algorithms. There-
fore, we expect significant development along this
direction in the near future.

4 | TEAR FILM STABILITY

A healthy human tear film is composed of a lipid layer,
and the aqueous and mucin layer. The evaluation of tear
film stability can be through the components or a normal
blink function. Any impairment can result in the tear
film not reforming properly.

4.1 | Clinical diagnostic tests

The most referenced and useful technique to assess the
extent of tear evaporation is the tear breakup time
(TBUT). Introduced by Norn et al. (1969) the test diagno-
ses the tear film instability by first instilling sodium fluo-
rescein then observing through a slit-lamp. The timing
between the last blink and appearance of the first break
or dry spot is TBUT. Results of less than 10 s are abnor-
mal, 5–10 s being marginal, and less than 5 s suggest dry
eye.68 Vanely et al. also found TBUT to be highly repro-
ducible but stated that it remains a supportive value for
DED diagnosis.69 TBUT is performed in various ways
and is continuously modified. The main difference
between the ways is the degree of invasiveness. Some
BUT measurement methods instill sodium fluorescein
then observe using a cobalt blue light with a yellow fil-
ter. Alternatively, non-invasive methods do not use dye
and instead use different instruments. Guillon et al.
measured in a non-invasive manner using a tearscope,
giving NIBUT.

Besides TBUT, another way to measure tear film sta-
bility is changes in ocular temperature.70,71 The tempera-
ture change mapped using an ocular thermogram allowed
Morgan et al.72 to determine that the mean ocular surface
temperature was greater in DED patients. Fujishima et al.
determined a change in the corneal temperature using an
infrared radiation thermometer.73 Changes in temperature
with each blink were observed to be larger in patients with
DED. Both studies showed a correlation between corneal
temperature change and TBUT.

Mengher et al. also assessed tear film stability via
NIBUT measurements.74 The method described is using
a slit-lamp and observing a grid reflection from the tear.
Discontinuities in the pattern observed are caused by
loss of tear film integrity. The keratometer that measures
the corneal curvature and shows an illuminated grid pat-
tern reflected from the tear surface.19,36 A modified
method using the keratometer, proposed by Hirji et al.
includes adding a circular grid and the mean of five mea-
surements to obtain TBUT.75 Another instrument used
to asses NIBUT is the hand held keratoscope which also
uses a grid (Loveridge grid).76 Wang et al. underlined the

BRAHIM ET AL. 657
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importance of documenting the instrument used when
measuring NIBUT.77 The comparison study highlighted
that instrument-mounted interferometric and
keratoscopic measurements had good repeatability
unlike hand-held device.

4.2 | Semi-automated methods

Corneal topography, also referred to as photokeratoscopy
or videokeratography is another method used to measure
NIBUT.78 Their automated acquisition maps the surface
curvature of the cornea. Goto et al. implemented a new
videokeratography software that captures consecutive
corneal surface images every 10 s.79 A positive correlation
was found between the topographic map and the fluores-
cein staining TBUT results. Goto et al. also proposed
another analysis study of tear lipid thickness through tear
interference images that quantify lipid spread time and
tear lipid stability.80 In this study, interference images are
compared with colour charts and the lipid layer thickness
is correlated with the intensity of the post-processed
image. There was no quantitative correlation or evalua-
tion for the study.

The degree of irregularity of corneal surface shape
can be expressed by the surface asymmetry index and
surface regularity index. Surface asymmetry index pro-
vides a quantitative measure of the radial symmetry of
the four central videokeratoscope mires surrounding the
vertex of the cornea and surface regularity index is a
measure of central and paracentral corneal irregular-
ity.81,82 Tear film stability is measured by timing tear film
build up, and changes in surface asymmetry index and
surface regularity index. Tear Stability Analysis System
was evaluated by Kojima et al.83

The system results in 10 consecutive corneal top-
ograms and proved effective. The tear stability regularity
and tear surface asymmetry index were derived by
Kojima et al. from surface asymmetry index and surface
regularity index for analysis. The study resulted in a
higher tear stability regularity and tear surface asymme-
try indexes for the dry eye group.

Digital videos were used to measure the total area of
the breakup and then the TBUT.84 Employing only an
automated method of acquisition as well as analysis on
grey-scale images, area of the breakup and TBUT were
measured using a program that calculates the number of
pixels in the area divided by the pixels of the exposed cor-
nea. Chiang et al. studied another non-invasive diagnosis
using an infrared thermal imager system.85 DED patients
often exhibit a faster cooling of the ocular surface. The
study showed that analysing thermal images and ocular
temperature decay can be used as a DED diagnostic.

The tearscope records the lipid layer interference pat-
tern and can help assess the tear lipid stability. Rolando
et al. used the tearscope as a method of acquisition to
count the number of blinks, number of waves of the
interference patterns and evaluate changes in their shape
and position.86 The dynamic lipid layer interference pat-
terns had a very significant correlation with TBUT.
Videokeratoscopy also assesses tear film surface quality,
the model used by Alonso-Caneiro et al. relates changes
in tear film topography and the placido image obtaining
very similar results to Mengher et al.74,87 Most recently,
the methodology presented by Carpente et al.88 includes
blink detection and image processing to detect the
breakup area. The videos used were recorded using a
Topcon DV-3 camera attached to a slit-lamp. Frame
intensity helps identify blinks and after that the region of
interest is located and extracted using image processing
techniques. The NIBUT is then detected at the appear-
ance of the break up area.

A study by Niu et al. Comparing three different
methods to evaluate TBUT; NIBUT measured by video-
interferometer (DR-1™), NIBUT by video topography
(TNIBUT) and finally using fluorescein dye (FBUT).
Results of the study showed that all methods were reliable
in tear film breakup evaluation and significant difference
was between FBUT and NIBUT, TNIBUT and between
NIBUT and TNIBUT. Another by Ali Khan et al. com-
pares BUT and NIBUT in contact lens users and found no
significant difference between values.89 The study used
FBUT, video keratograph and keratometer. Lastly, Vidas
et al. found NIBUT measurements by tearscope to have
higher sensitivity, specificity and area under the curve.90

4.3 | Automated methods

A fully automated tear film stability diagnosis algorithm
is presented by Yedidya et al.91 The algorithm analyses
videos from slit-lamp examination (fluorescein instilla-
tion) and locates the iris and region of interest. The
region of interest in this case are the dry areas where the
tear film breaks and appears darker in fluorescent
images. The method produces a graph of the evolution of
dry areas in real time. An optometrist manually seg-
mented the dry areas for evaluation and the method had
a high segmentation accuracy. Shortly after, the method
was extended to include TBUT measurement, analysis of
tear film thinning, and the detection of meniscus-induced
dryness.92 The study reports an average error of 1.06 s for
TBUT estimation and detects the region of break with
encouraging results (segmentation accuracy ≥84%). Both
methods have a very small database and test set but
encouraging results.
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Another method proposed by Cebreiro et al. also mea-
sures the TBUT, by analysing the colour information
from tear film videos.93 Dark spots characterise the
breakup of the tear film, and by extracting the percentage
of dark pixels that denotes the frame corresponding to
the TBUT. The method also had a small data set but pro-
vides a good methodology for automated BUT measure-
ment with results that correlated with experts.

Su et al. proposed two parameters, the temperature
difference value and compactness value, which deal with
the irregularity of temperature distribution on the tear
film.94 Results showed statistically significant differences
between DED and normal eye group. Compactness value
is described as a spatial indicator of tear film stability and
both parameters correlate to BUT. The study encourages
further development of infrared thermal image systems
in order to obtain another non-invasive DED diagnostic
method.

The lipid layer can also be assessed from interferome-
try images and patterns can be recognised to estimate its
thickness. Wu et al. segment interferometry images based
on texture to detect film breakup areas.95 The automated
method is able to classify with a high accuracy. By com-
bining both texture and colour analysis, Ramos et al.96

classify interferometry images following the Guillon cate-
gories44 as well as Wu et al.’s method. Bolon-Canedo
et al. address how automatic classification can be time
consuming and proposes a feature selection technique
that does not compromise accuracy.97 The method corre-
lated well to optometrists' annotations, and achieved a
higher classification accuracy than Ramos et al. and
Wu et al.

A similar approach by Remeseiro et al. also uses col-
our and texture analysis on the region of interest to
obtain a descriptor.98 Interferometry images are cat-
egorised based on pattern recognition. The proposed
method compares four machine learning algorithms:
naive bayes (Finn V. 1996), random tree,99 random
forest,100 support vector machine101 and different param-
eter configurations. With grading scales of five clinical
categories, the support vector machine classifier pro-
duced the most promising results. Acharya et al. tested
the above machine learning algorithms using infrared
thermography images along with; the k-nearest neigh-
bour, decision tree and probabilistic neural network to
classify normal and DED cases.102 It resulted with a
much higher accuracy than Beatriz Remeseiro et al. using
probabilistic neural network and k-nearest neighbour for
the left eye and support vector machine for the right
eye.98

An optimization and expansion on Mendez et al.’s
method are proposed by Peteiro-barrel et al. for lipid
layer pattern recognition.103,104 The method tested

different classifiers: support vector machine, decision
tree, naive bayes, Fisher's linear discriminant, and multi-
layer perceptron to classify tear film. Results showed that
class binarization and feature selection both affect the
performance of the machine learning algorithms, multi-
layer perceptron was ranked first regardless of the
decision-making method applied. Several methods have
been proposed to classify interferometry images using
feature selection and machine learning algorithms.98,105

A more advanced study in the incorporation of AI to
detect TBUT uses a CNN. Proposed by Su et al.,106 digital
slit-lamp recordings were used to train the CNN model.
The method first labels patches of each frame into the fol-
lowing: breakup, non-break, eyelash, eyelid and sclera.
The trained model, able to identify patches as break
region, then results in a probability map of breakup area.
This study is the first CNN application to evaluate TBUT
and it resulted in strong correlations with clinical
measurements.

DED diagnosis through tear film stability is a very
rich form of diagnosis that has seen more automation
attempts. There are fully automated devices that are com-
mercial and widely used in healthcare facilities. The
LipiView®II Ocular Surface Interferometer (TearScience)
is a commercialised system that provides both quantita-
tive assessment and imaging. The system includes blink
analysis, visualisation and measurement of lipid layer
thickness, and illumination of the meibomian glands.
Lastly the NIBUT is automatically quantified by various
commercialised systems including Kanghua Ruiming's
SLM-6E(A) Dry Eye Analyser, the LacryDiag, and
Antares by Lumenis.

5 | MEIBOMIAN GLAND
DYSFUNCTION

Tear Film and Ocular Surface Society (TFOS) completed
a report on MGD in 2011, a leading cause of DED.107 The
report develops a classification of MGD, assesses the diag-
nosis, grading of severity and creates a summary of
recommendations to further the research. MGD is
characterised by terminal duct obstruction and any quali-
tative or quantitative changes to the glands.107 Studies
also show the contribution of MGD to ocular surface dis-
eases including DED.108

5.1 | Clinical diagnostic tests

Meibomian glands are responsible for secreting lipid,
which makes up the tear film along with an aqueous and
mucin layer.109 Clinical diagnostic tests commonly
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visually identify duct obstruction, referred to as diagnos-
tic expression. The examination is performed using slit-
lamp bio-microscopy to check if the glands are blocked
or open. Wang et al.’s study showed that 3 years may be
an important time node for DED in primary SjS patients
before meibomian glands get affected, signifying the
importance of early detection.110 The most used method
in practice is to apply small physical force to the outer
surface of the eyelid and observe the outflow from the
glands.111,112 Graded using a 0–4 scale, where zero is no
obstruction and four is complete obstruction.113 Turbid-
ity, a characteristic used in common practice, is also
graded 0–4. Zero is for clear meibum and four when it's
cloudy and toothpaste like. Bron et al. present a compre-
hensive classification by grading various features for both
lids.114

Arita et al. developed and validated various grading
scales through the following parameters: telangiectasia,
mucocutaneous junction, irregularity, plugging, foaming,
thickness, meiboscore and each parameter was scored 0–
2 or 0–3.115 The six new grading scales proved to be reli-
able, although the study evaluated only one eye for each
subject. These are a few of the classical clinical diagnostic
tests, some of which have been enhanced. A detailed
study by Foulks et al. includes all the MGD clinical diag-
nostic methods, classification and grading.10

5.2 | Semi-automated methods

The most common automated acquisition method is
meibography (contact or non-contact), which is used to
visualise the meibomian gland's structure. Two forms are
described, a transillumination technique that uses white
light first introduced in 1977 by Tapie et al., and infrared
meibography where the glands appear as white struc-
tures.116,117 Robin et al. studied both transillumination
biomicroscopy and infrared meibography finding both
techniques able to classify clinical MGD.118

Devices capable of meibography are Keratograph 5M
(Oculus) and the LipiScan Dynamic Meibomian Imager
(TearScience, Johnson and Johnson Vision). Pult et al.
found better intra and interobserver repeatability when
using a five-grade scale after digital grading versus the
four-grade scale.119 Lin et al. also used the Keratogaph
5M and measured the MG perimeter and quantified the
tortuosity, an effective MGD index.120

Image analysis is one of the main forms of diagnosis
in recent studies. The hyperspectral imaging technique,
was studied by Shehieb et al. proving that MGD monitor-
ing and early detection are possible.121 In vivo confocal
microscopy, a non-invasive imaging technique was used
by Randon et al. as a classification method along with

the In vivo confocal microscopy score.122,123 The study
showed a strong correlation between the in vivo confocal
microscopy and meibography scores. Qazi et al. and Zhou
et al. also use in vivo confocal microscopy.124,125

Meibometer is an instrument used for meibomian
lipid quantification, although the procedure is invasive, it
has been enhanced overtime.126,127 Yokoi et al. studied
MGD function using both direct meibometry and inte-
grated meibometry and found reduced lipid levels in
patients with MGD.128 The study concluded that inte-
grated meibometry is less effective but provides a visual
of the lipid imprint that could be useful.

Napoli et al. found that both spectral-domain OCT
and infrared meibography have a close agreement when
used to evaluate gland changes.129 A semi-automated
software by Shehzad et al. used infrared images for
analysis.130 The software proved to be highly practical
and reproducible compared with manually analysed
meibography images. Images used in their study were
taken using the CSO Sirius Topographer (CSO, Italy),
and a correlation was found between manual analysis
and the semi-automated software (used by various oper-
ators). Some issues include eyelid folds, focus problems
and the software sometimes detects white areas or
reflections as MG, which are areas that could be
improved. Lastly, and more recently Garcia-Marques
et al. also assess MG using infrared meibography
(Keratograph 5M).131 With a new metric based on MG
visibility, the proposed method measures MGD in an
objective and repeatable manner that could aid diagno-
sis and treatment follow-ups. A detailed review by
Villani et al. looks into the most recent publications on
MGD imaging diagnostic techniques with well-reported
studies on humans.132

5.3 | Automated methods

Most of the following fully automated image-based solu-
tions rely on certain tasks that have been enhanced by
AI. Automatic segmentation has been significantly
enhanced by deep learning and used to quantify MG
dropout. Celik et al.’s algorithm segmented enhanced
infrared images and, using an support vector machine,
classified them as healthy, intermediate or unhealthy
with a good accuracy.133 Arita et al. developed a software,
which objectively evaluated the MG area for non-invasive
meibography.134 It first detects the area, uses image-
processing techniques and then measures it. Some limita-
tions include the need for manual corrections and image
quality that could affect the detection of certain areas.
MGD can also be detected via tear film lipid layer thick-
ness. Hwang et al. developed an algorithm that can
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determine the iris radius, locate, track a region of inter-
est, process the lipid layer interference pattern and ana-
lyse the lipid layer thickness distributions.135 The
algorithm obtained results consistent with an ophthal-
mologist's evaluation. Wang et al.’s proposed model seg-
ments and computes atrophy percentage achieving a very
good accuracy for both tasks.136

Images from the Keratograph 5M and a hand-held
camera were used by Prabhu et al. to train a segmenta-
tion model.137 Images were processed then segmented
and five metrics were measured: gland-drop, tortuosity,
width, length and total number of glands. The proposed
method proved to be quite accurate as the metrics
derived were close to the ground truth metrics. Also
using images from a Keratograph 5M Xiao et al.’s auto-
mated method relies on image processing techniques to
quantify MGD using newly defined diameter deforma-
tion index, gland tortuosity index and glands signal
index.138 Maruoka et al. evaluated deep learning models
and their ability to detect obstructive MGD using in vivo
laser confocal microscopy images.139 The proposed
model detects healthy MG and obstructed MG with a
high sensitivity and specificity. Wang et al.’s proposed
method also segments MGs, analyzes morphological fea-
tures and predicts ghost glands.140 The paper shows that
detecting ghost glands is more challenging than
detecting MG, obtaining average scores for segmentation
and ghost gland prediction accuracy. Dai et al. enhanced
a well-known segmentation model (U-Net) to segment
MGs as well, achieving a high score in segmentation
evaluation metric (intersection-over-union) and a repeat-
ability of 100%.141 The performance results for segmenta-
tion of the gland and MGs correlated well with a manual
approach. Another image-based analysis method quan-
tifies MGD automatically using deep learning by training
a model to define and measure contours of each MG.142

Khan et al.’s method out-performed the state-of-the-art
methods for detection and analysis of MGD drop-out
area compared to manual segmentation. The LipiView®

is also currently used in practice for MGD assessment
and imaging. It includes dynamic meibomian imaging
and near infrared surface imaging. The system also facil-
itates patient data management but not disease evolu-
tion. MGD quantification is currently seeing a lot of
novel developments as the image segmentation task is
currently very popular in AI.

6 | DISCUSSION AND
CONCLUSIONS

The ocular surface is a recent concept and represents an
anatomical crossroads in which the cornea and tear film

play a major role. A subject of great importance, its
exploration is becoming more systematic. Particularly in
the context of refractive surgery, and Sjogren syndrome
(SjS). In routine practice and during clinical trials, quan-
tification is subjective since it's based on a rough
estimate.

Effective DED treatment is based on effective quanti-
fication. Highlighting the importance of having an objec-
tive, reproducible and reliable measurement. As
discussed in this, review DED can be detected, measured
and assessed in several ways. As a result, there is cur-
rently a bias in the evaluation of treatments. A bias stem-
ming from experience, quantification method or even the
time taken to evaluate a patient. Based on this and the
pathophysiology clarified by the work accomplished in
the DEWS, measurement tools have been developed to
better quantify the changes of the tear film and its reper-
cussions on the ocular surface.

The objective of developing artificial intelligence
(AI) into this field is to obtain a more precise evaluation
index, whether simple or composite. Although the stand-
ardisation of data for AI training could be time-consuming
and require qualified operators, using the trained algorithm
is fast and requires very few resources. Any ophthalmolo-
gist can benefit from it, regardless of their specialisation.
Making quantification less ambiguous can ultimately help
ophthalmologists see patients at any stage of DED and still
have a detailed non-biased accurate history. Allowing for
timely detection and personalised treatment. The develop-
ments possible are at several levels: improving the grading
proposed by the platforms, objectively quantifying the qual-
itative measurements from the slit-lamp examination with
dyes. This approach is by far the most important, since
these indices are the reference examinations for clinical
research. The third axis of development would be the
multi-modal approach, gathering all the examinations and
parameters to define a severity and/or evolution and prog-
nosis score.

Methods that have incorporated deep learning to
evaluate and quantify DED emerged in the last couple of
years. Most of the semi and fully automated methods that
we presented focus on evaluating tear film stability.
Including automation has proved to enhance test repeat-
ability. Full automation, although less, is recent and is
growing exponentially. The automated methods include
only nine deep learning methods, the earliest being publi-
shed in 2018. This shows that the improvement to be
obtained from deep learning is yet to be solidified. The
recent development of imaging tools dedicated to the
ocular surface now provides a more precise acquisition
and visualisation. In fact, all the new parameters pro-
posed by these new tools remain to be optimised in the
definition of the thresholds of normality and in their
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reproducibility, then to aim at a multi-modal analysis.
An automated method that incorporates various diagnos-
tics can help evaluate treatments, assess how well
patients are responding to them across time, also improve
clinical trials and standardise them. In our opinion, the
evolution of eye dryness can only be obtained through
patient-specific diagnosis, that captures every fine
change. It is evident that the severity of DED cannot be
accurately detected by a single technique.

Our review's main objective is to make the current
strive for automation more evident. We believe it to be
most beneficial to clinicians with an interest in AI and
deep learning. The presented methods differ in what
they quantify, the level of quantification they achieve,
and the automation level incorporated. Yet, the com-
mon trend shown in this review is that both facilitated
acquisition and increased accuracy were gained
through automation. We also noted that meibomian
gland dysfunction could be the method of quantifica-
tion that AI can drive forward. MGD examinations have
data acquisition method that are easily acquired, just as
ocular surface examinations. Slit-lamp videos and imag-
ing can be easily used in deep learning implementation
for automation. A pivotal point in DED research is cur-
rently occurring, and vast improvements are yet to
be seen.
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90. Vidas Pauk S, Petriček I, Juki�c T, et al. Noninvasive tear film
break-up time assessment using handheld lipid layer exami-
nation instrument. Acta Clin Croat. 2019;58(1):63-71.

91. Yedidya T, Hartley R, Guillon JP, Kanagasingam Y. Automatic
dry eye detection. In: Ayache N, Ourselin S, Maeder A, eds.
Medical Image Computing and Computer-Assisted Intervention –
MICCAI 2007. Springer Berlin Heidelberg; 2007:792-799. doi:
10.1007/978-3-540-75757-3_96

664 BRAHIM ET AL.

 14429071, 2022, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/ceo.14119 by C

ochraneItalia, W
iley O

nline L
ibrary on [06/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://ieeexplore.ieee.org/document/6881873/
http://ieeexplore.ieee.org/document/6881873/
info:doi/10.1007/978-3-540-75757-3_96


92. Yedidya T, Hartley R, Guillon JP. Automatic detection of pre-
ocular tear film break-up sequence in dry eyes. 2008 Digital
Image Computing: Techniques and Applications [Internet].
IEEE; 2008:442-448. Available from:. http://ieeexplore.ieee.
org/document/4700055/

93. Cebreiro E, Ramos L, Mosquera A, Barreira N, Penedo MFG.
Automation of the tear film break-up time test. Proceedings of
the 4th International Symposium on Applied Sciences in Bio-
medical and Communication Technologies - ISABEL '11. ACM
Press; 2011:1-5. Available from:. http://dl.acm.org/citation.
cfm?doid=2093698.2093821

94. Su TY, Hwa CK, Liu PH, et al. Noncontact detection of dry
eye using a custom designed infrared thermal image system.
J Biomed Opt. 2011;16(4):046009.

95. Wu D, Boyer KL, Nichols JJ, King-Smith PE. Texture based
prelens tear film segmentation in interferometry images.
Mach Vis Appl. 2010;21(3):253-259.

96. Ramos L, Penas M, Remeseiro B, Mosquera A, Barreira N,
Yebra-Pimentel E. Texture and color analysis for the auto-
matic classification of the eye lipid layer. In: Cabestany J,
Rojas I, Joya G, eds. Advances in Computational Intelligence.
Springer; 2011:66-73 (Lecture Notes in Computer Science).

97. Bolon-Canedo V, Peteiro-Barral D, Remeseiro B, et al. Inter-
ferential tear film lipid layer classification: an automatic dry
eye test. 2012 IEEE 24th International Conference on Tools
with Artificial Intelligence [Internet]. IEEE; 2012:359-366.
Available from:. http://ieeexplore.ieee.org/document/
6495068/

98. Remeseiro B, Oliver KM, Tomlinson A, Martin E, Barreira N,
Mosquera A. Automatic grading system for human tear films.
Pattern Anal Applic. 2014;18(3):677-694.

99. Biau G. Analysis of a Random Forests Model. J Mach Learn
Res. 2012;13:33-1586.

100. Breiman L. Random forests. Mach Learn. 2001;45(1):5-32.
101. Burges CJC. A tutorial on support vector machines for pattern

recognition. Data Min Knowl Disc. 1998;2(2):121-167.
102. Acharya UR, Tan JH, Koh JEW, et al. Automated diagnosis of

dry eye using infrared thermography images. Infrared Phys
Technol. 2015;71:263-271.

103. Méndez R, Remeseiro B, Peteiro-Barral D, Penedo MG. Evalua-
tion of class Binarization and feature selection in tear film clas-
sification using TOPSIS. In: Filipe J, Fred A, eds. Agents and
Artificial Intelligence. Springer; 2014:179-193 (Communications
in Computer and Information Science).

104. Peteiro-Barral D, Remeseiro B, Méndez R, Penedo MG.
Evaluation of an automatic dry eye test using MCDM
methods and rank correlation. Med Biol Eng Comput. 2017;
55(4):527-536.

105. Remeseiro B, Penas M, Barreira N, Mosquera A, Novo J,
García-Resúa C. Automatic classification of the interferential
tear film lipid layer using colour texture analysis. Comput
Methods Prog Biomed. 2013;111(1):93-103.

106. Su TY, Liu ZY, Chen DY. Tear film break-up time measure-
ment using deep convolutional neural networks for screening
dry eye disease. IEEE Sensors J. 2018;18(16):6857-6862.

107. Nichols KK, Foulks GN, Bron AJ, et al. The international
workshop on meibomian gland dysfunction: executive sum-
mary. Invest Ophthalmol Vis Sci. 2011;52(4):1922-1929.

108. Barabino S. Pathological alterations in Meibomian gland dys-
function as an important factor in ocular surface disease. Acta
Ophthalmol. 2009;87(s244):s224.

109. Nicolaides N, Kaitaranta JK, Rawdah TN, Macy JI,
Boswell FM, Smith RE. Meibomian gland studies: comparison
of steer and human lipids. Invest Ophthalmol Vis Sci. 1981;
20(4):522-536.

110. Wang Y, Qin Q, Liu B, et al. Clinical analysis: aqueous-
deficient and Meibomian gland dysfunction in patients with
primary Sjogren's syndrome. Front Med. 2019;6:291.

111. Craig JP, Blades K, Patel S. Tear lipid layer structure and sta-
bility following expression of the meibomian glands. Ophthal-
mic Physiol Opt. 1995;15(6):569-574.

112. Ong BL, Larke JR. Meibomian gland dysfunction: some clini-
cal, biochemical and physical observations. Ophthalmic Phy-
siol Opt. 1990;10(2):144-148.

113. Arita R, Zavala M, Yee RW. MGD Diagnosis. Curr
Ophthalmol Rep. 2014;2(2):49-57.

114. Bron AJ, Benjamin L, Snibson GR. Meibomian gland disease.
Classification and grading of lid changes. Eye (Lond). 1991;
5(Pt 4):395-411.

115. Arita R, Minoura I, Morishige N, Shirakawa R, Fukuoka S.
Development of definitive and reliable grading scales for
meibomian gland dysfunction. Am J Ophthalmol. 2016;1:169-137.

116. Arita R, Itoh K, Inoue K, Amano S. Noncontact infrared
meibography to document age-related changes of the
meibomian glands in a normal population. Ophthalmology.
2008;115(5):911-915.

117. Tapie R. Biomicroscopic study of the glands of meibomius.
Ann Ocul. 1977;210(210):637-648.

118. Robin JB, Jester JV, Nobe J, Nicolaides N, Smith RE. In vivo
transillumination biomicroscopy and photography of
meibomian gland dysfunction: a clinical study. Ophthalmol-
ogy. 1985;92(10):1423-1426.

119. Pult H, Riede-Pult BH. An Assement of subjective and objec-
tive grading of meibography images. Invest Ophthalmol Vis
Sci. 2012;53(14):588.

120. Lin X, Fu Y, Li L, et al. A novel quantitative index of
meibomian gland dysfunction, the meibomian gland tortuos-
ity. Transl Vis Sci Technol. 2020;9(9):34.

121. Shehieb WG, Assaad M, AESA T, Shehieb WG. Analysis and
recovery monitoring of meibomian gland dysfunction disease
using hyperspectral imaging. IEEE International Symposium
on Signal Processing and Information Technology (ISSPIT).
IEEE Available from:; 2019. https://research.ajman.ac.ae/
publication/analysis-and-recovery-monitoring-of-meibomian-
gland-dysfunction

122. Randon M, Liang H, Abbas R, et al. A new classification for
meibomian gland diseases with in vivo confocal microscopy.
J Fr Ophtalmol. 2016;39(3):239-247.

123. Randon M, Aragno V, Abbas R, Liang H, Labbé A,
Baudouin C. In vivo confocal microscopy classification in the
diagnosis of meibomian gland dysfunction. Eye (Lond). 2019;
33(5):754-760.

124. Qazi Y, Kheirkhah A, Blackie C, et al. Clinically relevant
immune-cellular metrics of inflammation in meibomian
gland dysfunction. Invest Ophthalmol Vis Sci. 2018;59(15):
6111-6123.

BRAHIM ET AL. 665

 14429071, 2022, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/ceo.14119 by C

ochraneItalia, W
iley O

nline L
ibrary on [06/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://ieeexplore.ieee.org/document/4700055/
http://ieeexplore.ieee.org/document/4700055/
http://dl.acm.org/citation.cfm?doid=2093698.2093821
http://dl.acm.org/citation.cfm?doid=2093698.2093821
http://ieeexplore.ieee.org/document/6495068/
http://ieeexplore.ieee.org/document/6495068/
https://research.ajman.ac.ae/publication/analysis-and-recovery-monitoring-of-meibomian-gland-dysfunction
https://research.ajman.ac.ae/publication/analysis-and-recovery-monitoring-of-meibomian-gland-dysfunction
https://research.ajman.ac.ae/publication/analysis-and-recovery-monitoring-of-meibomian-gland-dysfunction


125. Zhou S, Robertson DM. Wide-field in vivo confocal micros-
copy of meibomian gland acini and rete ridges in the eyelid
margin. Invest Ophthalmol Vis Sci. 2018;59(10):4249-4257.

126. Benz P, Tichy A, Nell B. Review of the measuring precision of
the new meibometer MB550 through repeated measurements
in dogs. Vet Ophthalmol. 2008;11(6):368-374.

127. Chew CKS, Jansweijer C, Tiffany JM, Dikstein S, Bron AJ.
An instrument for quantifying meibomian lipid on the lid
margin: the Meibometer. Curr Eye Res. 1993;12(3):247-254.

128. Yokoi N, Mossa F, Tiffany JM, Bron AJ. Assessment of
meibomian gland function in dry eye using meibometry. Arch
Ophthalmol. 1999;117(6):723-729.

129. Napoli PE, Coronella F, Satta GM, Iovino C, Sanna R,
Fossarello M. A simple novel technique of infrared meibography
by means of spectral-domain optical coherence tomography: a
cross-sectional clinical study. PLoS One. 2016;11(10):e0165558.

130. Shehzad D, Gorcuyeva S, Dag T, Bozkurt B. Novel application
software for the semi-automated analysis of infrared
meibography images. Cornea. 2019;1(38):1-1464.

131. García-Marqués JV, García-L�azaro S, Martínez-Albert N,
Cerviño A. Meibomian glands visibility assessment through a
new quantitative method. Graefes Arch Clin Exp Ophthalmol.
2021;259(5):1323-1331.

132. Villani E, Marelli L, Dellavalle A, Serafino M, Nucci P. Latest
evidences on meibomian gland dysfunction diagnosis and
management. Ocul Surf. 2020;18(4):871-892.

133. Celik T, Lee HK, Petznick A, Tong L. Bioimage informatics
approach to automated meibomian gland analysis in infrared
images of meibography. J Optom. 2013;6(4):194-204.

134. Arita R, Suehiro J, Haraguchi T, Shirakawa R, Tokoro H,
Amano S. Objective image analysis of the meibomian gland
area. Br J Ophthalmol. 2014;98(6):746-755.

135. Hwang H, Jeon HJ, Yow KC, Hwang HS, Chung E. Image-based
quantitative analysis of tear film lipid layer thickness for
meibomian gland evaluation. Biomed Eng Online. 2017;16(1):135.

136. Wang J, Yeh TN, Chakraborty R, Yu SX, Lin MC. A deep
learning approach for meibomian gland atrophy evaluation in
meibography images. Transl Vis Sci Technol. 2019;8(6):37.

137. Prabhu SM, Chakiat A, Shashank S, Vunnava KP, Shetty R.
Deep learning segmentation and quantification of
meibomian glands. Biomed Signal Process Control. 2020;
1(57):101776.

138. Xiao P, Luo Z, Deng Y, Wang G, Yuan J. An automated and
multiparametric algorithm for objective analysis of
meibography images. Quant Imaging Med Surg. 2021;11(4):
1586-1599.

139. Maruoka S, Tabuchi H, Nagasato D, et al. Deep neural
network-based method for detecting obstructive Meibomian
gland dysfunction with in vivo laser confocal microscopy.
Cornea. 2020;39(6):720-725.

140. Wang J, Li S, Yeh T, Chakraborty R, Yu S, Lin M. Meibomian
gland morphology and ghost prediction with deep learning.
Invest Ophthalmol Vis Sci. 2020;61(7):2634.

141. Dai Q, Liu X, Lin X, et al. A novel Meibomian gland morphol-
ogy analytic system based on a convolutional neural network.
IEEE Access. 2021;9:23083-23094.

142. Khan ZK, Umar AI, Shirazi SH, Rasheed A, Qadir A, Gul S.
Image based analysis of meibomian gland dysfunction using
conditional generative adversarial neural network. BMJ Open
Ophthalmol. 2021;6(1):e000436.

How to cite this article: Brahim I, Lamard M,
Benyoussef A-A, Quellec G. Automation of dry eye
disease quantitative assessment: A review. Clin
Experiment Ophthalmol. 2022;50(6):653‐666. doi:10.
1111/ceo.14119

666 BRAHIM ET AL.

 14429071, 2022, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/ceo.14119 by C

ochraneItalia, W
iley O

nline L
ibrary on [06/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

info:doi/10.1111/ceo.14119
info:doi/10.1111/ceo.14119

	Automation of dry eye disease quantitative assessment: A review
	1  INTRODUCTION
	1.1  Method of literature search

	2  TEAR SECRETION AND VOLUME
	2.1  Clinical diagnostic tests
	2.2  Semi-automated methods
	2.3  Automated methods

	3  OCULAR SURFACE DAMAGE
	3.1  Clinical diagnostic tests
	3.2  Semi-automated methods
	3.3  Automated methods

	4  TEAR FILM STABILITY
	4.1  Clinical diagnostic tests
	4.2  Semi-automated methods
	4.3  Automated methods

	5  MEIBOMIAN GLAND DYSFUNCTION
	5.1  Clinical diagnostic tests
	5.2  Semi-automated methods
	5.3  Automated methods

	6  DISCUSSION AND CONCLUSIONS
	ACKNOWLEDGEMENTS
	FUNDING INFORMATION
	CONFLICT OF INTEREST
	REFERENCES


