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Human dendritic cell subsets: An updated view of their
ontogeny and functional specialization

Elodie Segura

Institut Curie, PSL Research University, Paris, France

Human DCs have been divided into several subsets based on their phenotype and
ontogeny. Recent high throughput single-cell methods have revealed additional hetero-
geneity within human DC subsets, and new subpopulations have been proposed. In this
review, we provide an updated view of the human DC subsets and of their ontogeny sup-
ported by recent clinical studies . We also summarize their main characteristics including

their functional specialization.
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Introduction

The heterogeneity of human DC has been described initially based
on their surface phenotype [1] and transcriptome [2]. Recently,
high-dimensional methods have refined the description of human
DC subsets by identifying previously overlooked DC populations.
The caveats and challenges of using single-cell transcriptomics
for defining novel DC subsets, in particular distinguishing bona
fide subsets from transitory cellular states, have already been
discussed elsewhere [3]. The consensus nomenclature for DC is
based on ontogeny [4], that is, a DC population is considered
to represent a distinct subset if it possesses a specific develop-
mental pathway including distinct transcription factors enforcing
their lineage commitment and/or identity. Following this nomen-
clature, human DC can be classified into classical DC (cDC) type
1 (cDC1), ¢DC type 2 (cDC2), DC3, plasmacytoid DC (pDC), and
monocyte-derived DC (mo-DC). As discussed in this review, there
is sufficient evidence that these DC populations develop along
distinct pathways. A population of AXL* SIGLEC6' DC has also
been described, but whether it represents a DC subset remains
unclear (discussed in Section “Characteristics of human transi-
tional AXL*™ SIGLEC6™ DC”). Langerhans cells, which are classi-
fied as a population of skin macrophages, will not be discussed in
this review.

Human DC subset identity is imprinted by their ontogeny, as
DC subsets from distinct organs display a common transcriptomic
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program [5] and shared phenotypic markers (Table 1). In addi-
tion, there is a level of tissue imprinting, as specific signatures
exist in mucosal tissue DC, for instance, the expression of CD103
for cDC1 or CDla for cDC2 [5-8]. Of note, there is also sig-
nificant interindividual variation in the phenotype of ¢cDC2 [7].
Recent single-cell RNA-seq (scRNA-seq) studies have also shown
that all human DC subsets express a common activation program
upon maturation, both homeostatic and induced by inflammatory
stimuli [3].

Ontogeny of human DC subsets

In vitro differentiation models have provided insights into the
ontogeny of human DC subsets (Figure 1). pDC and pre-cDC arise
from a common dendritic cell progenitor (CDP) downstream
of a IRF8M&" GMDP (granulocyte-monocyte-DC progenitor)
[9-11]. A series of studies have shown that pDC in the mouse
possess a dual origin, with pre-pDC deriving from CDP or from
a lymphoid progenitor [12]. Whether the same holds true for
human remains to be determined. Of note, human multipotent
lymphoid progenitors have also been shown to give rise to cDC,
with a bias toward ¢DC1 [13]. Pre-cDC display heterogeneity at
the transcriptomic level as shown by single-cell RNA-seq, and are
precommitted to become ¢DC1 or cDC2 [14, 15]. IRF8°Y GMDP
gives rise to monocytes and DC3 along separate routes [11].

Correction added on 28 June 2022, after first online publication: The copyright
line was changed.
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Table 1. Phenotypic markers of human DC subsets

Eur. J. Immunol. 2022. 52: 1759-1767

Markers cDC1 cDC2 pDC DC3 Mo-DC CD14*
monocyte

CADM1 + - - - - -
CD11c + ++ - ++ ++ ++
CD123 - - + - - -
CD14 — - — Low to + + +
CD141 ++ + - + + -
CD163 - - - + - -
CD172a - + - ? + +
CD1la - Tissue-dependent - - + -
CDlc - + - + + -
CD226 + - - - + -
CD303 - - + - - -
CD304 - - + - -
CD5 - Low to + - ? -
CD64 - Tissue-dependent ? + +
CD88 - - - + ++
Clec10A — + + + _
Clec9A + - - - -
FceRI - + + + -
S100A8/A9 — - + + +
XCR1 + - - - -

Monocytes are included for comparison. Markers are based on selected references [1, 8, 11, 16, 30, 35, 62, 73, 96-99].

Finally, monocytes differentiate into macrophages or mo-DC via
two distinct developmental pathways [16].

Studies of primary immunodeficiencies have confirmed the
essential role of IRF8 for human DC development in vivo. Patients
bearing a dominant negative IRF8 mutation (resulting in reduced
activity) have severely reduced numbers of pDC, cDC1, and cDC2
[17-20], but maintain DC3 numbers [11]. By contrast, patients
with a total loss-of-function IRF8 mutation lack monocyte and DC
development entirely [11].

Other transcription factors involved in pDC development
include SpiB and E2-2/Tcf4 as shown in in vitro models [21,
22]. Patients with a deficiency in IKZF1 (encoding Ikaros) have
reduced circulating pDC, showing a role for Ikaros in pDC devel-
opment in vivo [23]. By contrast, patients with a loss-of-function
mutation or deletion of E2-2 have normal numbers of pDC but
their phenotype and function are altered, suggesting a role for
E2-2/Tcf4 in a late stage of pDC differentiation in vivo [24].

Activation of the Notch pathway inhibits pDC development
but is critical for cDC1 differentiation in in vitro culture systems
[25-271].

Finally, mo-DC differentiation is dependent on IRF4, Blimp-1,
aryl hydrocarbon receptor and NCOR2, as evidenced in in vitro
models [16, 28].

Characteristics of human cDC1

¢DC1 are found in peripheral tissues and in lymphoid organs.
Analysis of mucosal tissues and associated draining LNs has sug-
gested that mucosal cDC1 have lower migratory ability than cDC2

© 2022 The Authors. European Journal of Immunology published by
Wiley-VCH GmbH

[6]. In lymphoid organs, cDC1 are dispersed in the T-cell areas
[6, 29, 30].

Blood, lymphoid organ, and lung cDC1 have been shown ex
vivo to stimulate naive CD4 T-cell polarization into both Th1 and
Th2 cells [29-32].

Blood, skin, and lymphoid organ cDC1 are efficient cross-
presenting cells, with a superior ability for the cross-presentation
of necrotic cell-associated material [8, 30, 31, 33-37]. In ex vivo
assays, they also promote the differentiation of cytotoxic CD8 T
cells [38, 39].

In terms of cytokine secretion, cDC1 are specialized for the
production of type III IFN [38, 40, 41].

Characteristics of human cDC2

c¢DC2 are found in peripheral tissues and in lymphoid organs,
where they are enriched at the border of T-B-cell zones [6, 29].
A recent scRNA-seq study has reported two populations of cDC2
(Clec10A™ and Clec10A™) present in the human spleen, but not
in the blood [42]. The significance of this finding is unclear, as
these populations have not yet been observed by others. Whether
Clec10A™ and Clec10A™ ¢DC2 constitute distinct subsets or differ-
ent cellular states remains unclear. In addition, their phenotype
may be imprinted by a particular tissue microenvironment and
their presence in other organs and tissues has to be confirmed.
Similar to cDC1, blood, lymphoid organ, skin, and lung ¢cDC2
can induce ex-vivo polarization of naive CD4 T cells into Thl
and Th2 cells [29-32, 43]. Blood and lung cDC2 have a superior
ability for the induction of Th1l7 responses, which is likely
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Figure 1. Ontogeny of human DC subsets. DC precursors originate from the bone marrow. pDC, cDC1, cDC2, and DC3 develop from precursors
distinct from the other DClineages. moDC are differentiated from monocytes in peripheral tissues. The developmental pathway of tDC remains to be
better characterized. Cell differentiation is indicated in black and cell migration in blue. Questions marks indicate aspects that remain unclear. CDP,
common DC progenitor; cMoP, common monocyte precursor; GMDP, granulocyte-monocyte and DC progenitor, mono, monocyte; moDC, monocyte-

derived DC; tDC, transitional AXL+ SIGLEC6" DC.

due to their ability to secrete IL-23 [44, 45]. Blood, lymphoid
organ, lung, and skin ¢cDC2 are also the most potent inducers of
T-follicular helper (Tfh) cells [29, 46, 47], due to their higher
expression of Activin A and OX40-ligand [29, 47]. Consistent
with their role in Tfh polarization, lung cDC2 are recruited to
tertiary lymphoid organs [47].

In the blood and lymphoid organs, cDC2 are as efficient as
cDC1 for the cross-presentation of soluble protein antigens ex vivo
[30, 33, 34, 37]. In addition, they can stimulate the differentiation
of cytotoxic CD8 T cells [38, 39].

Regarding cytokine secretion, in addition to IL-23 and activin
A, c¢DC2 are the most efficient for the production of IL-12p70
[29, 33, 38].

© 2022 The Authors. European Journal of Immunology published by
Wiley-VCH GmbH

Finally, intestinal cDC2 are superior to cDC1 for the induction
of CD4 Treg, due to their higher expression of integrin avf8 which
is essential for generating bioavailable TGF-§ [48].

Characteristics of human pDC

In the steady state, pDC are present in lymphoid organs but not
in peripheral tissues.

The most characteristic feature of pDC is their specialization
for the production of type I IFN upon activation [49].

Blood and lymphoid organ pDC are less efficient than ¢DC
for the stimulation of naive CD4 T cells in the steady state [29].

www.eji-journal.eu
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However, they can become potent stimulators of CD4 T cells after
ex-vivo activation, and are able to induce Th1 polarization [49].
It was reported that, upon ex-vivo activation, only a subpopula-
tion of pDC would become APCs, while others would be special-
ized for the secretion of type I IFN [50]. The physiological rele-
vance of this observation remains unclear. Of note, pDC recognize
virus-infected cells via cell-cell contact [51-53], which triggers
long-lasting IFN responses without the emergence of an antigen-
presenting population [51].

In the blood and lymphoid organs, pDC possess the ability to
cross-present soluble, cell-associated or viral antigens in ex-vivo
assays [34, 54-58]. However, they are poor stimulators of cyto-
toxic CD8 T-cell differentiation [39].

pDC are also able to induce CD4 Treg via their high expres-
sion of ICOS-ligand [59] or of IDO, an enzyme that catabolizes
tryptophan degradation [60].

Characteristics of human DC3

DC3 were initially identified in the blood by scRNA-seq analy-
sis [61]. They express a mixed cDC2-monocyte transcriptomic
and phenotypic profile (Table 1). They are best characterized by
their coexpression of CD1c and CD163 [11, 62]. They have also
been evidenced in the BM [11] and a population with charac-
teristics of DC3 has been observed in oropharyngeal carcinomas
[63] and in psoriatic skin [64], but the presence of DC3 in lym-
phoid organs and peripheral tissues remains to be better char-
acterized. Of note, the term “DC3” has been used to refer to a
DC population identified in multiple tumor samples, which should
not be mistaken for DC3, as they actually correspond to mature
DC [65].

Circulating DC3 are increased in the blood of systemic lupus
erythematosus patients and of melanoma patients [62, 66]. DC3
are also specifically increased in the blood of severe COVID-19
patients [67, 68]. Their potential role in the physiopathology of
these diseases is unclear.

Blood DC3 are efficient for the stimulation of naive CD4 T
cells ex vivo [61, 62, 69]. DC3 have been reported to preferen-
tially induce Th17 [62] or Thl [69] polarization, depending on
the study.

DC3 can also stimulate the proliferation of naive CD8 T cells
and their expression of maturation markers [69], but whether
they can actually cross-present antigens remains to be deter-
mined. It has also been proposed that DC3 have a superior ability
to induce tissue-resident memory T cells, as DC3 stimulate the
expression on CD8 T cells of tissue-homing molecule CD103 [69],
and highly express upon type I IFN exposure the costimulatory
molecule GITRL [70], which is important for the formation of
tissue-resident memory T cells.

Regarding cytokine production, DC3 are able to secrete IL-
12p70 and IL-23, similar to cDC2, as well as large amounts of
IL-1B, similar to monocytes [11, 69].

© 2022 The Authors. European Journal of Immunology published by
Wiley-VCH GmbH

Eur. J. Immunol. 2022. 52: 1759-1767

Characteristics of human mo-DC

mo-DC share numerous phenotypic markers with monocyte-
derived macrophages, and it can be difficult to distinguish the
two cell types from one another [71]. A key feature of mo-DC is
their dendritic morphology, similar to that of classical DC [72-
74], whereas macrophages show a large cytoplasm containing
numerous phagocytic vacuoles. Another typical characteristic of
mo-DC compared to macrophages is their superior ability to stim-
ulate naive T-cell activation [39, 73], but this is not always pos-
sible to assess due to the challenges associated with cell isolation
from human clinical samples. mo-DC also express DC-related tran-
scriptomic signatures [39, 74-76], including transcription factors
related to their molecular ontogeny such as IRF4 [16].

mo-DC have been described in clinical samples both in steady
state and inflammatory context. mo-DC are present in steady-state
peritoneum [72], nondiseased intestine [75, 76], and lungs [77].
A population of CD14*" DC in the steady-state skin is also believed
to be monocyte-derived [78, 79]. “Inflammatory” mo-DC are also
found in skin from atopic dermatitis and psoriasis patients [80,
81], pleural effusions from tuberculosis patients [82], peritoneal
ascites from cancer patients [73], synovial fluid from rheumatoid
arthritis patients [73], and intestinal lamina propria of Crohn’s
disease patients [83]. Finally, cells with phenotypic features of
mo-DC have been observed in breast [74], colorectal [84], lung
[84-86] cancers, and melanoma-draining LNs [87].

mo-DC from clinical samples efficiently stimulate naive CD4 T-
cell proliferation ex vivo and preferentially induce Th17 cells [73,
82] or Th1 cells [76, 81] depending on the context. mo-DC from
skin, synovial fluid, and peritoneal ascites have also been reported
to efficiently induce Tfh polarization [29, 30, 43].

Peritoneal mo-DC can cross-present soluble and particulate
antigens [39, 72], but use a nonconventional intracellular path-
way dependent on lysosomal proteases [39]. mo-DC are also effi-
cient for inducing the differentiation of effector cytotoxic CD8 T
cells [39].

Similar to cDC2, mo-DC have been shown to be specialized for
the secretion of IL-23 [73, 82] and IL-12p70 [39].

Characteristics of human transitional
AXL* SIGLEC6* DC

AXL*™ SIGLEC6™ DC were identified in the blood by scRNA-seq
analysis as a subpopulation of CD123* DC [15, 61]. They have
also been evidenced in lymphoid organs but not in steady-state
peripheral tissues [7], and are recruited to inflamed skin and
lungs [88, 89].

AXL* SIGLEC6™ DC display a mixed pDC-cDC transcriptomic
and phenotypic profile, however, they are closer to cDC2 function-
ally. They are efficient for stimulating CD4 T cells ex vivo, and do
not secrete type I IFN [7, 15, 51, 61, 90, 91].

Whether AXL* SIGLEC6" DC represent a bona fide DC
subset or an intermediate population remains to be confirmed
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Table 2. Functional properties of mouse and human DC subsets

Function cDC1 cDC2 pDC DC3 Mo-DC

Cross-presentation Yes Yes No Yes No Yes ? Yes Yes

Presentation on Yes Yes Yes Yes Limited Yes Yes Yes Yes
MHC II

Induction of Yes Yes No Yes No Limited ? Yes Yes
cytotoxic CD8 T
cells

Induction of Th1 Yes Yes No Yes No Yes Yes Yes Yes
cells

Induction of Th2 No Yes Yes Yes No No No ? ?
cells

Induction of Th17 No No Yes Yes No No Yes Yes Yes
cells

Induction of Tfh No No Yes Yes No No ? ? Yes
cells

Induction of Treg Yes No No Yes Yes Yes ? ? ?
cells

Secretion of Yes Limited No Yes No No Yes Yes Yes
IL12p70

Secretion of IL23 No No Yes Yes No No Yes Yes Yes

Secretion of type I No No No No Yes Yes No No No
interferon

Secretion of type Yes Yes No No Yes Yes ? No No

III interferon

The main immune functions of DC subsets are summarized, for humans and mice DC for comparison. Mouse DC characteristics are in blue, human
DC in orange. For mouse DC functions, see details in recent reviews [12, 93, 94]. Question marks indicate that this function has not been reported

yet in the literature. Tfh, T follicular helper, Treg, T regulatory.

(Figure 1). Because they can differentiate into ¢DC2 in culture
systems [15, 61, 92], they have been proposed to be DC precur-
sors or a “transitional” population between pDC and cDC2. Their
molecular ontogeny remains unclear and might be shared with
pDC. AXL* SIGLEC6™ DC are decreased in the blood of patients
with a mutation in TCF4 [15], suggesting a role for E2-2/TCF4
in their differentiation. AXLL™ SIGLEC6™ DC also highly express
the transcription factors BCL11A, RUNX2, and SPIB, which are
involved in pDC development [91].

Functional specialization of DC subsets

Numerous studies using genetic mouse models have identified
specific functions for murine DC subsets and contributed to the
concept of functional specializations of DC subsets and their “divi-
sion of labor” [12, 93, 94]. While DC subsets are conserved
between mice and humans [4], their functional properties are not
always similar (Table 2). In particular, the ability to cross-present
antigens seems to be less restricted in human DC compared to
murine DC subsets. However, DC subsets display distinct abilities
for antigen uptake, with pDC being inefficient for engulfing large
particles and cDC1 being superior for capturing necrotic cells,
leading to some specialization in the type of antigen being actually
cross-presented in vivo. Another important aspect is their in-situ
localization. While different subsets may display similar abilities

© 2022 The Authors. European Journal of Immunology published by
Wiley-VCH GmbH

ex vivo, they may actually play complementary roles in an in-vivo
immune response due to their distinct localization or migratory
capacity. For instance, monocytes are massively recruited during
inflammation, and mo-DC will outnumber other DC populations
in the inflamed tissue. With their large array of functional proper-
ties (Table 2), mo-DC could efficiently restimulate effector T cells
which have been primed by ¢DC in lymphoid organs, or resident
memory T cells being reactivated directly in the tissue.

In addition, when murine and human DC counterparts exert
the same function, the precise molecular mechanisms involved
can be different. This is the case for Tfth induction by c¢DC2,
which relies on the production by DC of IL12p70 and Activin A
in humans, but not in mice [29, 95]. Caution should, therefore,
be exercised when extrapolating results from mice models to the
human situation, and functional properties, including key molec-
ular aspects, should be confirmed using human DC isolated from
relevant tissues.

Conclusions and perspectives

Recent scRNA-seq studies have unraveled underappreciated het-
erogeneity within historical DC subsets. Based on their distinct
ontogeny, human DC can now be divided into ¢cDC1, ¢cDC2, DC3,
pDC, and mo-DC. Determining whether Clec10A* and Clec10A™
c¢DC2 and transitional AXL* SIGLEC6" DC represent additional
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DC subsets, cell states, or progenitors requires further investi-
gation. A better characterization of the functional properties of
DC3 and AXL* SIGLEC6' DC is also needed to understand their
potential specialization compared to cDC2. Refined sets of mark-
ers should be used in future studies to distinguish and accurately
identify human DC subsets, which will be essential for addressing
their respective contributions to health and diseases.
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