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Abstract

Some imprinted genes exhibit parental origin specific expression bias rather than being tran-

scribed exclusively from one copy. The physiological relevance of this remains poorly under-

stood. In an analysis of brain-specific allele-biased expression, we identified that Trappc9, a

cellular trafficking factor, was expressed predominantly (~70%) from the maternally inher-

ited allele. Loss-of-function mutations in human TRAPPC9 cause a rare neurodevelopmen-

tal syndrome characterized by microcephaly and obesity. By studying Trappc9 null mice we

discovered that homozygous mutant mice showed a reduction in brain size, exploratory

activity and social memory, as well as a marked increase in body weight. A role for Trappc9

in energy balance was further supported by increased ad libitum food intake in a child with

TRAPPC9 deficiency. Strikingly, heterozygous mice lacking the maternal allele (70%

reduced expression) had pathology similar to homozygous mutants, whereas mice lacking

the paternal allele (30% reduction) were phenotypically normal. Taken together, we con-

clude that Trappc9 deficient mice recapitulate key pathological features of TRAPPC9 muta-

tions in humans and identify a role for Trappc9 and its imprinting in controlling brain

development and metabolism.

Author summary

Every person has inherited two copies of each gene, one from each parent. In most cases

two copies contribute equally. Other genes may express only from one parental copy, or
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express both copies but prefer one over another, a phenomenon called genomic imprint-

ing. Here we first investigated the expression bias between two parental copies in the

brain, then focused on one gene with maternal biased expression called Trappc9. Muta-

tions in human TRAPPC9 cause a neurodevelopmental disorder marked by smaller brain

size and increased body weight. Indeed, we found mice lacking of Trappc9 showed a

reduction in brain size, behavioral changes and a marked increase in body weight. A func-

tional role for Trappc9 in metabolism was further supported by increased food intake in a

child lacking this gene. Interestingly, we also found mice lacking the preferred copy (from

mother) of the gene showed similar disorders, whereas mice lacking the other copy (from

father) appeared normal. We provide an animal model of a rare genetic disease and iden-

tify a role for Trappc9 and its imprinting in controlling brain development and

metabolism.

Introduction

Allelic imbalance, the unequal level of expression between the two alleles of a gene, has been

extensively reported in the mammalian genome [1–3]. Imprinted genes exhibiting clear par-

ent-of-origin effects have been well-characterized [4]. These canonical imprinted genes are

predominantly expressed from one of the two parental alleles and tightly regulated to control

gene dosage [3]. They exhibit diverse functions in pre- and post- natal growth, often with roles

in energy homeostasis and behavior [5, 6].

Imprinted genes can exhibit a complex pattern of tissue-specific parental-specific expres-

sion, leading to unique physiological consequences. For instance, the paternally inherited copy

of the imprinted growth factor receptor bound protein 10 (Grb10) is exclusively expressed in the

murine brain and spinal cord, whereas the maternally inherited copy is expressed in the rest of

the body [7]. As a result, paternal heterozygous mutant mice have abnormal social hierarchies

[8], whereas mice deficient in the maternally inherited copy exhibit increased body weight [7].

In human, GRB10 is also paternally expressed in the brain, but biallelically expressed in most

non-neuronal tissues except placental villous trophoblasts and skeletal muscle (maternally

expressed) [9, 10]. Disruption of GRB10 imprinting is suggested to cause Russell-Silver syn-

drome (RSS), characterized by pre- and post- natal growth retardation and dysmorphology

[11].

Imprinted genes are abundant in the brain [5, 12, 13] and abnormal imprinting can cause

cognitive developmental disorders [5]. In humans, the loss of maternally expressed Ubiquitin

protein ligase E3A (UBE3A) is a cause of Angelman Syndrome (AS), a neurodevelopmental

disorder [14]. In mice, depletion of maternally expressed Ube3a results in many deficits

including disruption of circadian rhythm [15], impaired synaptic plasticity and learning per-

formance [16, 17]. Ube3a and UBE3A are predominantly expressed from the maternally inher-

ited copy in the brain and equally expressed from both copies outside the nervous system [12,

18].

High-throughput sequencing studies have recently identified various forms of “non-canon-

ical” allelic imbalance, one of which encompasses parent-of-origin specific expression bias

rather than being transcribed exclusively from one parental copy [19]. Such effects have been

described in particular regions of the brain [12, 13, 20, 21]. However, the functional signifi-

cance and phenotypic consequences of this new type of imprinting remain largely

uncharacterized.

Trappc9 gene (human synonym: NIBP) encodes a protein that forms a component of mam-

malian TRAPP (TRAnsport Protein Particle) complex involved in vesicular protein trafficking
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between the endoplasmic reticulum (ER) and Golgi apparatus, and has also been implicated in

NF-κB signaling [22, 23]. Trappc9 is reported to be highly expressed within the murine brain,

with transcripts abundant in the hippocampus and hypothalamus as well as the glomeruli and

mitral layers of the olfactory bulb [24]—regions with a role in the control of metabolism, mem-

ory and behavior. In humans, both homozygous and compound heterozygous mutations in

TRAPPC9 (NIBP) associate with developmental delay, microcephaly (95% reported cases), and

obesity (52% reported cases) [25–31]. Reports to date have provided only limited insights into

the impact of TRAPPC9 deficiency on energy balance and body composition, although obesity

is frequently noted. Interestingly, human TRAPPC9 and murine Trappc9 both reside within a

cluster of imprinted genes, known as the PEG13-KNCK9 cluster [32], suggesting its expression

might be biased towards one of the parental alleles.

In this study, we quantified the allele-specific transcriptome exclusive to murine brain and

non-brain structures of the olfactory system. We identified Trappc9 as a gene exhibiting repro-

ducible brain-specific, parental-biased expression, with 30% of the transcripts derived from

the paternal allele and 70% from the maternally inherited chromosome. To examine the role of

Trappc9 allelic biased expression we analyzed Trappc9 deficient mice. These mice phenocopy

the major features of human TRAPPC9 deficiency syndrome with a reduction in brain size,

altered behavior and memory defect, as well as a marked increase in body weight and fat mass.

Strikingly and consistent with its imprinting, heterozygous mice lacking the maternal allele

(Trappc9 m(tm1a)/p+, 70% reduced expression) have a phenotype similar to homozygous mutant

mice, whereas mice lacking the paternal allele are phenotypically normal. Our findings indi-

cate that the brain-specific, parental-biased allelic expression of Trappc9 regulates brain size,

behavior and body weight.

Results

Allelic imbalance is robust in the olfactory system

To reliably determine allele-biased gene expression in neuronal versus non-neuronal struc-

tures, we analyzed genome-wide allelic expression in the olfactory bulb (OB) and main olfac-

tory epithelium (MOE). The OB and MOE are important sequential relays in the sensory

circuitry that promote learned and innate olfactory-mediated behavior in mice, specifically

social behavior [33]. Whereas the OB is of neuronal origin and part of the brain, the MOE

resides in the nasal cavity and is placodal in origin [34]. Comparing allele-specific expression

in the OB and MOE, we aimed to understand the tissue-specific role of allelic imbalance in

developmentally distinct but functionally related anatomical regions.

To measure allele-specific gene expression we used strain-specific single-nucleotide poly-

morphisms (SNPs) and indels present in the genome of distantly related inbred mouse strains

C57BL/6J (B6) and CAST EiJ (CAST). B6 and CAST hybrid transcriptomes were generated

using transcripts containing strain-specific genetic variations (S1 Fig) [20, 35, 36]. We aligned

reads to the diploid transcriptome with Bowtie and used EMASE [37] to quantify allele-level

expression. Parent-of-origin specific gene expression was only considered for transcripts with

�5 unique reads (SNP-containing and resolved) in both reciprocal crosses. Our analysis (S2,

S3 and S4 Figs) resulted in reliable quantification of allele-specific expression of 12,101 genes

in OB and 11,418 genes in MOE, representing approximately 50% of the total expressed genes

(24,152 in OB and 22,952 in MOE) in the respective tissues.

As expected [2, 38], we found large strain effects on allelic expression (Fig 1A and 1B, S1

Data). Strain-specific differences in gene expression were present in 15% of expressed genes in

the OB, and 18% in the MOE (defined by a 0.6:0.4 ratio or larger between B6 and CAST,

observed in both reciprocal crosses). Similar numbers of genes were biased to the B6 strain
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versus biased to the CAST strain. Most notably, strain-biased expression of olfactory receptors

was enriched in the main olfactory epithelium (χ2 test, p<0.0001), with 184 olfactory receptor

genes, or 41% of the total detectable olfactory receptors, expressed at unequal levels depending

on the strain-of-origin (S1 Table).

We quantified 54 genes with robust parent-of-origin biased expression (defined by a 0.6:0.4

ratio or larger between maternal and paternal allelic expression [39], observed in both recipro-

cal crosses) - 32 genes in OB and 35 genes in MOE with 13 genes showing parent-of-origin

allelic biased expression in both tissues (Fig 1C and 1D, S2 Data). This accounted for ~0.3% of

total genes with allele-specific quantified expression in each tissue. Of the genes identified,

~75% in OB and ~40% in MOE were previously defined to be imprinted (S5 Fig) [39, 40]. To

validate our dataset, we used allelic discriminative quantitative-PCR to determine allelic

expression of twelve genes (Fig 2), including four positive controls (Meg3, Peg13, Grb10,

Ube3a), one negative control (Th) and seven candidate genes identified in this study. Of the

seven candidates, three have not been reported previously (Cyp1a1, Fosb, Phf7), whereas four

show conflicting data in previous studies (Trappc9, Eif2c2 (Ago2), Cdh15, Gabar5) [12, 21, 40,

41].

Consistent with previous studies, Meg3 showed mono-allelic expression of the maternally-

inherited allele in the OB and did not express in the MOE, whereas Peg13 showed mono-allelic

expression of the parental allele in both the OB and MOE. Grb10 showed reciprocal allelic

expression in OB (parental) and MOE (maternal) and Ube3a showed brain-specific imprinting

in the OB but not MOE; whereas Th showed equal expression from both parental alleles in

both the OB and MOE as expected (Fig 2). Of our candidate genes, Cdh15 and Cyp1a1 showed

~80% and ~65% paternal-biased expression in the OB, respectively, whereas Trappc9 and

Eif2c2 (Ago2) showed ~70% and ~65% maternal biased expression in the OB, with expression

of all four genes being bi-allelic (~50:50 paternal: maternal) in the MOE. We were unable to

validate parental-biased expression of Garab5 or Fosb in the MOE and Phf7 expression in

either tissue (Fig 2, S3 Data).

Our analyses, therefore, identified allelic biased expression within the OB and MOE of the

mouse olfactory system, and validated parent-of-origin dependent allelic-biased expression of

four candidate genes: Trappc9, Cyp1a1, Eif2c2 (Ago2) and Cdh15 within the OB. We next

focused on understanding the biological relevance of this brain-specific imprinting, using one

of these candidate genes, the Trafficking protein particle complex 9 (Trappc9).

Characterization of allelic imbalance in Trappc9 mutant mice

Consistent with a role in brain function, mouse Trappc9 was highly expressed in the postnatal

brain (S6 Fig). Our imprinting study suggested mouse Trappc9 was expressed 70% from the

maternal allele with 30% from paternal allele, specifically in the brain (OB) with equal allelic

expression in other tissues (MOE). This observation has been confirmed in previous studies of

allelic biased expression [12, 35]. Although it is currently unclear whether human TRAPPC9 is

imprinted, both human and mouse TRAPPC9/Trappc9 reside in the characterised

Fig 1. Analysis of allelic imbalance in the mouse olfactory system. (A-B) Scatter plots of the average allelic bias ratios in olfactory bulb (OB)

and main olfactory epithelium (MOE) in F1 individuals (females, aged 14 weeks) from reciprocal crosses between C57BL/6J (B6) and CAST/

EiJ (CAST) strains. Pink: maternal biased expression; blue: paternal biased expression. Black: B6 strain biased expression; brown: CAST strain

biased expression. The cut off ratio applied for biased expression is 0.6:0.4. (C-D) Heatmaps of parental allelic ratios for individual genes in

each sample. The allelic ratios are quantified as the ratio of B6 allelic expression: %B6 = B6/(B6+CAST) and are clustered by samples (each

column) and by allelic ratio of the genes expressed in OB and MOE (each row). Genes with average %B6 ratios>0.6 in B6 ♀x CAST ♂F1 mice

and ratios<0.4 in CAST♀x B6 ♂F1 mice, are maternally-biased; whereas genes with average %B6 ratios<0.4 in B6♀x CAST♂F1 mice and %

B6 ratios>0.6 for CAST♀xB6♂F1 mice are paternally-biased.

https://doi.org/10.1371/journal.pgen.1008916.g001
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Peg13-Kcnk9 imprinting cluster [32]. Allelic biased expression of this cluster, including the

maternally-expressed brain-specific potassium channel KCNK/Kcnk9, is thought to be regu-

lated by the non-coding RNA PEG13/Peg13 expressed from an intron within the TRAPPC9/
Trappc9 gene (Fig 3A) [12, 32, 42].

To study the role of Trappc9 in brain function and disease and to understand the biological

importance of its imprinting, we generated Trappc9 knock-out mice (Trappc9 tm1a[EUCOMM)

Wtsi) of four genotypes: 1) homozygous Trappc9 knockouts (Trappc9 -/-); 2) heterozygous

Trappc9 knockout mice lacking expression from the paternal allele (Trappc9 m+/p-); 3) the

maternal allele (Trappc9 m-/p+) and 4) wild type mice (Trappc9 +/+)(Fig 3B) [43]. Consistent

with our imprinting study, heterozygous paternal (Trappc9 m+/p-), maternal (Trappc9 m-/p+)

and homozygous (Trappc9 -/-) knock-outs showed respectively 25%, 60% and 80% reduction

in Trappc9 transcript abundance in the OB (Fig 3C, p<0.0001, one-way ANOVA with Dun-

nett’s post hoc test, S4 Data). A similar reduction was confirmed in other brain regions by

RNA sequencing. Thus, in the hippocampus, the Trappc9 transcript levels in paternal hetero-

zygous, maternal heterozygous and homozygous mutant mice decreased by respectively 18%,

53% and 74%, of the levels seen in wild-type mice (S7A and S7C Fig). Similarly, in the hypo-

thalamus, transcript levels in the same three mutant genotypes showed 23%, 63% and 79%

reduction compared to the wild-type levels (S7B and S7D Fig). Heterozygous loss of Trappc9
thus results in a parent-of-origin dependent decrease in Trappc9 transcript abundance in the

Fig 2. Validation of parental allelic biased gene expression. Allele-specific gene expression was determined for selected genes using Allelic Discriminant qRT-PCR on

F1 reciprocal hybrid samples (females, aged 14 weeks) of the (A) olfactory bulb and (B) main olfactory epithelium. The percentage of parental and maternal expression

is shown as an average of the results from two reciprocal crosses with n = 5 for each cross. Four genes with previous identified parent-of-origin expression (Meg3, Peg13,

Ube3a and Grb10) were as positive controls and Th was a negative control. As expected, Meg3 showed monoallelic maternal expression and Peg13 showed monoallelic

paternal expression; Meg3 did not express in non-brain tissue while Peg13 did. Ube3a showed brain-specific imprinting with maternal allelic-biased expression. Grb10
shows opposite imprinting in the brain (maternal allelic-biased) versus in a non-brain tissue (paternal allelic-biased). Th expression was bi-allelic in both tissues as

expected. For candidate genes, we confirmed that Trappc9 and Eif2c2(Ago2) showed maternal allelic-biased and Cdh15 showed paternal allelic-biased expression, both

were in OB but not in MOE, suggesting brain specific imprinting. The expression of Garba5 and Fosb in MOE and Phf7 in both tissues was bi-allelic; but Cyp1a1
showed a paternal biased expression in the OB, as a previously unknown gene with brain-specific imprinting.

https://doi.org/10.1371/journal.pgen.1008916.g002
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brain. In contrast, in the MOE Trappc9 expression levels decreased by respectively 39%, 43%

and 83% of wild-type levels, in the paternal, maternal and homozygous knock-outs respec-

tively (Fig 3D, p>0.05, S4 Data), reflecting a lack of Trappc9 imprinting in non-neuronal tis-

sue. Trappc9 transcripts remaining in the homozygous Trappc9 knock-out (21~25%, Fig 3C)

Fig 3. Generation of Trappc9 deficient mice. (A) Schematic depiction of the Trappc9 locus and Peg13 imprinted cluster on mouse

chromosome 15 with allelic biased expression indicated. (B) Schematic view of the tm1a(EUCOMM)wtsi conditional gene-trap cassette

in intron 4 of Trappc9. (C-D) Confirmation of maternal-biased Trappc9 expression in heterozygous Trappc9 knock-out mice

(�p<0.05, ����p<0.0001, one-way ANOVA with Dunnet’s post hoc test). Trappc9 mRNA abundance was determined relative to β-

actin in OB (C) and MOE (D) of wild-type (+/+), maternal (m-/p+) / paternal (m+/p-) heterozygous and homozygous (-/-) Trappc9
deficient mice using quantitate RT-PCR (males, n = 5 per genotype).

https://doi.org/10.1371/journal.pgen.1008916.g003
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likely reflected alternative splicing and do not result in protein expression, since Trappc9 pro-

tein expression was fully lost in the homozygous knock-out (S8 Fig).

A parent-of-origin dependent decrease in Trappc9 was also evident at the protein level,

whereby loss of the maternal allele (Trappc9 m-/p+) resulted in a greater loss of Trappc9 protein

expression compared to loss of the paternal allele (Trappc9 m+/p-) in the OB, but not MOE (S8

Fig). Importantly, the Trappc9 gene-trap did not affect expression of neighboring imprinted

genes, including Kcnk9 and the non-coding RNA Peg13 (S9A and S9B Fig). Of the upstream

genes Chrac1 was modestly increased in expression only in the OB of Trappc9 m-/p+ mice but

unchanged in Trappc9 m+/p- and Trappc9 -/- mice, while Eif2c2(Ago2) RNA abundance showed

an increase in Trappc9 -/- mice but remained unchanged in Trappc9 heterozygous knockouts

(S9C and S9D Fig). Indeed, loss of Trappc9 had limited impact on the transcriptome of the

hippocampus and hypothalamus (S7C and S7D Fig).

Trappc9 deficient mice develop microcephaly in a parent-of-origin

dependent manner

One of the most striking features of the patients with TRAPPC9 loss-of-function mutations is

microcephaly [25–31]. Consistent with this disease phenotype, homozygous Trappc9 deficient

mice displayed an 11% reduction in adult brain weight (0.42±0.02g, mean ± SD, n = 6) com-

pared to the wild-type littermates (0.47±0.01g, n = 7). This reduction in brain size exceeds the

3-fold standard deviation threshold [44] of mean brain size commonly used as a benchmark of

microcephaly (Fig 4A, p<0.0005, Fisher’s LSD test, S5 Data).

To further characterize the brain defect in Trappc9 deficient mice, we analyzed brain mor-

phology in 16-week old homozygous Trappc9 knock-out mice and wild-type littermates,

assessing 40 brain parameters across 22 distinct brain regions (S2 Table, also see Material and

Methods). Compared to wild-type littermates, the total brain area in Trappc9 -/- mice was

decreased by 12.7% (p = 0.011), with a 4.1% decrease in width (p = 0.036) and 9.8% decrease of

height (-9.8%, p = 0.014) of the whole brain (n = 4 per genotype, Fig 4B). Significant changes

were evident for a further eleven parameters (Fig 4B, S2 Table), showing that both grey and

white matter were affected, including a reduction in total area of the cortex (-10.0%,

p = 0.030), thickness of the primary motor cortex (-11.7%, p = 0.020), area and height of the

cingulate cortex (-25.7%, p = 0.018; -12.1%, p = 0.050), area of the thalamus (-15.9%,

p = 0.017), areas of the corpus callosum (-12.7%, p = 0.037) and area of the fimbria of the hip-

pocampus (-17.7%, p = 0.048) (Fig 4B). Intriguingly the brain region of greatest reduction was

the substantia nigra, showing a 49.1% overall decrease in area in Trappc9-/- mice (p = 0.017,

Fig 4B).

To assess the importance of imprinting on Trappc9 function, we next measured brain

weight in heterozygous maternal (Trappc9 m-/p+) and paternal (Trappc9 m+/p-) knock-out mice.

Consistent with its imprinting, mice lacking the Trappc9 maternal allele (Trappc9 m-/p+)

showed a reduction in brain weight (0.45±0.01g,� -2×SD, p<0.05, two-tailed t-test, n = 6),

whereas mice lacking the paternal allele (Trappc9 m+/p-) showed no significant difference in

brain weight (0.46±0.03g, p>0.05, two-tailed t-test, n = 7, Fig 4A). Trappc9 deficient mice

therefore exhibit microcephaly with parent-of-origin effects.

Trappc9 deficient mice show reduced exploratory activity and impaired

social memory

To assess the functional impact of neuroanatomical defects, we next determined the effect of

Trappc9 deficiency on behavior in the form of exploratory activity and social memory. In a

20-minute Open Field (OF) Test, in which mice were allowed to freely explore an open arena,
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Trappc9 -/- mice (n = 13) moved 22% less than their wild-type littermates (n = 22) (p<0.01,

one-way ANOVA with Tukey’s post hoc test, Fig 5A, S10A Fig, S6 Data). Similarly, in a

Fig 4. Trappc9 deficient mice show a decrease in brain weight and size. (A) Trappc9 deficient mice show a decrease in brain weight in a parent-

of-origin manner. Trappc9 m-/p- mice (n = 7) have a significant reduction of brain weight (Fisher’s LSD test, ����p<0.0001) compared to that of

the wild-types littermates (n = 7), whereas Trappc9 m-/p+ mice show a milder but significant reduction (n = 6, Fisher’s LSD test, �p<0.05), and

Trappc9 m+/p- mice have a normal brain weight (n = 7, n.s.). Female brains were used in this analysis. (B) Trappc9 is associated with smaller brain

size in adult homozygous knockout mice. X-Y plot shows the percentage of changes relative to the controls (100%) against the p-values (in log2

scale) testing the difference in 16-week aged Trappc9-/- mice comparing to their wild-type littermates at Lateral 0.72mm section (n = 4 brains in

each group, 3 females and 1 male). Yellow dots with numbers represent a total of 12 regions (parameters in bold) that were significantly affected

(p<0.05, 2-tail Student t-test; black dots: n.s.).

https://doi.org/10.1371/journal.pgen.1008916.g004
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10-minute Elevated Plus Maze (EPM) Test, where mice freely explored a four-arm elevated

platform with open and closed arms, Trappc9 -/- mice moved 21% less compared to their wild-

type littermates (p<0.01, one-way ANOVA with Tukey’s post hoc test, Fig 5B, S10B Fig, S6

Data). The reduction in explorative activity was unlikely due to anxiety, as we observed no sig-

nificant difference in time spent in the periphery and center in OF, or in the closed versus

open arms in EPM tests (S11 Fig).

We tested social learning ability using a habituation-dishabituation test [45]. Mice were

repeatedly exposed to an anesthetized unfamiliar mouse (trial 1–4), followed by exposure to an

unfamiliar mouse (trial 5, Fig 5C, S6 Data). Trappc9 -/- females habituated in a similar manner

to wild-type littermates and showed reduced sniffing time towards the familiar versus the

unfamiliar mouse, suggesting normal olfactory detection and short-term social memory (Fig

5D, S6 Data). However, upon re-exposure after 24h, wild-type mice still spent longer sniffing

the unfamiliar versus the familiar mouse–suggesting social recognition, whereas Trappc9 -/-

females failed to display a significant preference (p>0.05, Fig 5E, S6 Data), indicating impaired

social memory. This effect was unlikely to be caused by a defect in recognition or motivation,

as Trappc9 -/- mice showed normal social preference towards conspecifics in a three-chamber

sociability test (p>0.05, one-way ANOVA with Tukey’s post hoc test, S12 Fig). Male Trappc9 -/-

mice showed persistent sniffing towards any anesthetized mouse and could not be assessed

using this assay (S13 Fig).

Consistent with a defect in brain development, homozygous Trappc9 deficient mice showed

impaired explorative behavior and social recognition. Intriguingly, in OF and EPM tests, mice

lacking the maternal Trappc9 allele (Trappc9 m-/p+, n = 12) showed reduced exploratory activ-

ity similar to homozygous knock-outs (p<0.05, one-way ANOVA with Tukey’s post hoc test,

Fig 5A and 5B), whereas mice lacking the paternal Trappc9 allele (Trappc9 m+/p-, n = 12)

retained normal levels of exploratory activity. The situation was slightly more complex in the

social memory test. With normal olfactory detection and short-term memory (Fig 5F), six out

of ten maternal knock-outs (Trappc9 m-/p+, n = 10) either erroneously preferred the familiar

stimulus or showed no difference in long-term social memory test (Fig 5G, orange dots), and

paternal knock-outs (Trappc9 m+/p-, n = 8) showed a similar but milder defect (Fig 5G, blue

dots). Thus, Trappc9 deficient mice showed a parent-of-origin dependent decrease in explor-

ative activity, and an impaired long-term social memory.

Trappc9 deficient mice develop obesity in a parent-of-origin dependent

manner

Besides microcephaly and intellectual disability, obesity is a phenotype commonly observed in

TRAPPC9 loss-of-function patients. Indeed, our pipeline screening of homozygous Trappc9

Fig 5. Trappc9 deficient mice show a parent-of-origin dependent reduction in exploratory activity, and impaired social

memory. In (A) Open Field Test and (B) Elevated Plus Maze Test, mice lacking the maternal (m-/p+, n = 12) or both Trappc9
alleles (-/-, n = 13) show a significant reduction in exploratory activity compared to mice lacking the paternal allele (m+/p-,

n = 12) or their wild-type littermates (+/+, n = 22). One-way ANOVA with Tukey’s post hoc test, �p<0.05, ��p<0.01. In (C)

Two-step social recognition test in which mice were assessed for their social learning and memory, (D) Trappc9 homozygous

knock-outs (-/-, n = 11) and their wild-type littermates (+/+, n = 10) both showed normal social learning, but (E) 24 hours later

in the discriminative test, homozygous Trappc9 m-/p- mice show a significant defect in social recognition as they did not

distinguish a familiar mouse from a novel one (one-sample t-test, +/+ (n = 9): p<0.005, -/- (n = 8): n.s.). Preference Index (1� PI

�- 1) = (sniffing time to the novel stimulus—sniffing time to the familiar stimulus) / (sniffing time to the novel stimulus

+ sniffing time to the familiar stimulus). (F) Maternal (m-/p+, n = 11) and paternal (m+/p+, n = 8) Trappc9 heterozygous knock-

out mice show normal learning abilities compared to wild-types (+/+, n = 15), but (G) heterozygous knock-outs show similar

but more variable social memory defects (one-sample t-test: +/+ (n = 14), p<0.01, m+/p- (n = 8), m-/p+ (n = 10): n.s.) Two-way

ANOVA with repeat measurement for 1–4 trials: p<0.0001 for trial, n.s. for genotype; two-tail t-test for 4 and 5 trials, � p<0.05,
�� p<0.01, ���p<0.001. Mice tested in (A) and (B) were males and from (C) to (E) were females.

https://doi.org/10.1371/journal.pgen.1008916.g005
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deficient mice found a significant and steady increase in body weight of both sexes compared

to wild-types (~1.5-fold at week 16, n = 7), with a larger effect in female mice (Fig 6A, S14A

Fig, S7 Data). In females, this weight gain derives from a marked increase in fat mass and

more moderate increase in lean tissue mass (Fig 6B). Furthermore, female mice displayed ele-

vated plasma glucose levels during a glucose tolerance test (Fig 6C), and elevated serum insulin

levels (Fig 6D), elevated steady-state plasma levels of triglycerides (TAG), cholesterol (Chol),

lipoprotein (HDL/LDL) and glycerol at necropsy (Fig 6E). Male mice also had elevated serum

insulin but showed no difference from wild-type in other biochemical markers analyzed

(S14B–S14E Fig).

The combination of increased body weight and fat mass in female Trappc9-/- mice indicate

an obesity phenotype similar to that observed in over half of TRAPPC9 deficient patients [31].

To further assess the effect of Trappc9 deficiency and its imprinting on body weight, we

tracked weight gains of a second, independent, larger cohort of mice containing all four paren-

tal genotypes and both sexes. Consistent with our initial finding seen in the pipeline study,

homozygous Trappc9 deficient females (Trappc9-/-) showed a significant increase in weight

starting from week 5 after birth (Fig 6F, S8 Data) and cumulatively gained 16% more weight

by week 16 (29.49±3.22g) compared to wild-type littermates (25.29±2.16g). Similar weight

gains were observed in homozygous Trappc9 deficient males (Trappc9 -/-, Fig 6G, 11% at week

16, 34.91±3.60g vs. 31.59±3.63g, S8 Data).

Similar to homozygous knock-out mice, we observed a significant increase in the body

weight of both male and female heterozygous knock-out mice lacking the maternal Trappc9
allele (Trappc9 m-/p+) (Fig 6F and 6G). Weight increases in these mice started from week 6 after

birth in males and week 8 in females and resulted in a weight gain of respectively 21%

(38.3 ± 2.7g) and 13% (28.7 ± 2.5g) at week 16 compared to wild-type littermates (Fig 6F and

6G). In contrast to the maternal Trappc9 knock-outs, a weight increase was not observed in

heterozygous knock-out mice lacking the paternal Trappc9 allele (Trappc9 m+/p-), whose body

weight remained indistinguishable from that of wild-type littermates (male: 31.8 ± 2.8g,

n = 13; female: 26.0 ± 3.3g, n = 15). As maternal Trappc9 knock-out mice (Trappc9 m-/p+) retain

30% brain Trappc9 expression versus 70% in paternal Trappc9 knock-out mice (Trappc9 m-/p+)

mice (Fig 3C), the obesity phenotype positively correlates with the degree of Trappc9 depletion

and therefore with Trappc9 allelic-biased expression in the brain.

We attempted to determine if loss of Trappc9 impacts upon food intake, energy expenditure

or both by studying mice in an indirect calorimetry system. However, the Trappc9 homozy-

gous knockout mice lost weight during the acclimatisation periods when singly housed, mak-

ing it difficult to draw conclusion about the drivers of the obesity phenotype.

Obesity associated with TRAPPC9 deficiency may be caused by

hyperphagia

Through recruitment to the Deciphering Developmental Disorder (DDD) consortium we had

the rare opportunity to examine a 12-year-old child with bi-allelic splice-site mutations in

TRAPPC9 (c.2851-1G>C; c.2148+1G>A), regarding her eating behavior and energy intake.

This participant had severe global developmental delay with minimal speech, a disordered

sleep-wake cycle (sleeping ~3–5 hours a night), stereotyped behaviors and obesity

(weight = 57.6kg; height = 146.9 cm; BMI = 27 kg/m2; BMI sds = 1.8). Body composition was

measured by dual energy x-ray absorptiometry (DEXA); percentage body fat was increased at

45 percent (normal range, 15 to 25 percent). Intriguingly, the child also had a history of severe

hyperphagia, showing strong food seeking behavior since infancy (locks required on cupboard

doors) and impaired satiety. Her energy intake at an 18MJ ad libitum test (meal given after an
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Fig 6. Trappc9 deficient mice show a parent-of-origin-dependent obesity phenotype. (A-E) Female Trappc9 -/- mice (-/-, n = 8, age = 16 weeks) showed

increased body weight (A), increased lean mass and fat mass (B), glucose intolerance (C), increase blood insulin levels (D) and levels of triacylglycerol (TAG),
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overnight fast) was significantly greater than that of 10 normal weight and age-matched con-

trols (98 vs 55 +/- 12 KJ/kg lean mass). The basal metabolic rate (BMR) measured by indirect

calorimetry was comparable to that predicted based on the basis of age, gender and body com-

position (4.3 MJ/day). Based on a single case, this suggests an essential role for TRAPPC9 in

normal functioning of the brain feeding circuitry, with deficiency leading to hyperphagia and

obesity in human.

Discussion

In this study, we explored allelic biased gene expression in the mouse olfactory system and

identified brain-specific allelic biased expression of the cellular trafficking factor gene Trappc9,

with 70% of Trappc9 transcripts in the brain derived from the maternal allele and 30% from

the paternal allele. Loss of function mutations in human TRAPPC9 is a rare hereditary condi-

tion that causes a form of intellectual disability, many features of which are recapitulated in the

Trappc9 deficient mouse model described here, including a reduction in brain size (micro-

cephaly), behavioral abnormalities and an increase in fat mass and body weight. We demon-

strated the physiological relevance of allelic imbalance in Trappc9 expression and its brain-

specific function, with clear differences observed in adiposity, brain size and behavior depen-

dent on whether deficiency is inherited from the mother or the father. Hence, our study sug-

gests a role for Trappc9 imprinting in brain development and brain control of energy balance,

and provides a new mouse model for TRAPPC9-associated intellectual disability.

Genomic imprinting, broadly described as parent-of-origin dependent allelic biased expres-

sion, is suggested to be widespread in the human and mouse genome [12]. We here explored

brain-specific allelic biased expression by comparing genome-wide, allele-specific expression

in the neuronal olfactory bulb (OB) versus the non-neuronal derived main olfactory epithe-

lium (MOE) in mice. The OB shows a robust and reproducible parent-of-origin effect in

expression of a number of genes, whereas this bias was observed less frequently in the MOE,

consistent with previous studies suggesting enrichment of imprinted gene expression in the

brain [13, 19–21].

Besides canonical imprinting with monoallelic expression, we confirmed a new type of

imprinted genes with consistent maternal or paternal allelic bias (e.g. Trappc9, H13), and iden-

tified genes of parental allelic bias with high variability across individuals (e.g. Cyp1a1,

Gm14097). Some of these genes are novel (e.g. Cyp1a1) whereas others have been character-

ized with variable results in previous imprinting studies, e.g. Cdh15, Eif2c2 (Ago2) and Trappc9
[4, 5, 35]. P450-type monooxygenase gene Cyp1a1 (Fig 2A and 2B), does not reside near a

known imprinted region and is possibly regulated by a different, stochastic process for its alle-

lic biased expression [46], whereas Trappc9 shows consistent, maternally-biased, brain-specific

allelic biased expression [12, 13] and resides in the characterized Peg13-Kcnk9 imprinting clus-

ter regulated by the intronic long non-coding RNA Peg13. Without single-cell level single-mol-

ecule imaging data or single-cell allele-specific RNA-sequencing data, we cannot know

whether all cells in the relevant regions are allelically biased for Trappc9 or whether some cells

are fully imprinted and others fully biallelic.

cholesterol (Chol), lipoproteins (HDL & LDL), non-essential fatty acids (Nefac), and glycerol (E), contrasting to wild-type controls (+/+, n = 25–28, 16-week old).

Statistical methods for A, B and E: two-tailed unpaired t-test; for C: two-way ANOVA with Sidak’s test; for D: two-tailed Mann-Whitney test. (F-G) Homozygous

(-/-) and heterozygous Trappc9 knockout mice lacking the maternal-allele (m-/p+) show an increase in body weight in both sexes, whereas heterozygous knockout

mice lacking the paternal-allele (m+/p-) have a body weight similar to that of wild-type mice (+/+).Females (F, +/+, n = 26–30; m+/p-, n = 9–15; m-/p+, n = 9–13;

-/-, n = 9–13), males (G, +/+, n = 23–28; m+/p-, n = 10–13; m-/p+, n = 8–9; -/-, n = 11–14). One-way ANOVA with Dunnet’s post hoc test was used to test the body

weight difference between genotypes at each age, and two-way ANOVA with repeat measurement was used to test the difference between growth curves. �p<0.05,
��p<0.01, ���p<0.001, ����p<0.0001.

https://doi.org/10.1371/journal.pgen.1008916.g006
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Microcephaly and intellectual disability are amongst the most common features of patients

with TRAPPC9 mutations and similar decreases in brain size and behavioral changes are

observed in homozygous Trappc9 deficient mice. Size reductions are observed in multiple

regions including the cortex (10–25% reduction), thalamus (-16%), hippocampus (-18%) and

most noticeably the substantia nigra (-49%). It is currently difficult to ascribe specific

Trappc9-deficiency phenotypes to anomalies in discrete brain regions. Besides a function in

cellular membrane trafficking which might be important for neurosecretory cells, particularly

those in the hypothalamus, TRAPPC9 is suggested to play a role in NF-κB signaling [23], a

pathway critical to neuronal cell differentiation and myelin formation [47]. An impairment in

NF-κB–dependent neurite outgrowth might thus underlie defects in brain development and

reductions in brain size in general and volume of the cerebral regions and corpus callosum in

Trappc9/TRAPPC9-deficient mice and human.

One of our most striking observations is that reductions in brain size and exploratory activ-

ity in Trappc9 heterozygous knock-out mice correlate with its allelic biased expression in the

brain. Trappc9-deficiency phenotypes are thus inherited in the mice lacking the maternal-

(Trappc9 m-/p+, 30% remaining Trappc9 expression), but not the paternal Trappc9 allele

(Trappc9 m+/p-, 70% remaining expression). It is currently unclear whether Trappc9 is

imprinted throughout the entire brain or only in specific regions and/or cell types. Future

studies will aim to understand the importance of Trappc9 function and imprinting within indi-

vidual brain regions and cell types.

Besides microcephaly, obesity is a common feature in TRAPPC9 deficient patients (12/23

patients) [31] and this phenotype is recapitulated in the Trappc9 deficient mouse model. Like

the microcephaly phenotype, the obesity phenotype manifests in a parent-of-origin dependent

manner. Heterozygous knock-out mice lacking the maternal allele (Trappc9 m-/p+) show a phe-

notype similar to the homozygous null mice, whereas those lacking the paternal allele (Trappc9
m+/p-) are phenotypically normal. A dysfunctional imprinted gene network has been associated

with an epigenetically regulated bi-model distribution of obesity, triggered by Trim28 haploin-

sufficiency, in both mice and human [48]. Trappc9 was among a group of down-regulated

genes that specified the obese state, suggesting a link between Trappc9 expression and Trim28-

related epigenetic regulatory mechanisms. As Trappc9 imprinting occurs specifically in the

brain and not in other tissues [12, 13], we reason that this parent-of-origin dependent obesity

phenotype is most likely to be driven by disruption of the regulatory pathways in the brain. A

potential dysregulation in the neuronal feeding circuitry is reinforced by the clear hyperphagia

seen in the TRAPPC9 deficient child with cognitive defects and severe obesity, as it is well rec-

ognized that the major regulatory centers for appetitive behavior reside in central nervous sys-

tem such as the hypothalamus. Future studies including loss of Trappc9 within selected

neuronal circuits and cell types are required to examine the role of Trappc9 and its imprinting

upon the feeding circuits in the brain. With a putative cellular role of Trappc9 in anterograde

vesicular protein trafficking [22], pathways involving the processing and secretion of anorexi-

genic neuropeptides are likely to be of particular interest.

Sex- specific differences in body weight are common in phenotypic metabolic studies and

have been reported in many other model organisms with disruption of the central nervous sys-

tem based signaling systems; for example, studies based around TrkB [49], GABA [50] and

Tmem18 [51]. The mechanisms behind the sex-specific differences in body weight in our

study remain to be fully determined, although gonadal derived hormones are likely to be an

important factor [52].

Although the Peg13-Kcnk9 imprinting cluster is conserved in humans, imprinting of

human TRAPPC9 remains controversial [32]. All TRAPPC9-deficiency patients reported to

date carry composite homozygous TRAPPC9 mutations [27] or compound heterozygous
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mutations [31]. Even so, if conclusions from our mouse model can be extended, heterozygous

carriers of the maternal mutant allele may show subclinical TRAPPC9 related phenotypes,

including reduction in brain size, cognitive behavior and obesity, whereas carriers inheriting

the paternal mutant allele may not. These effects are easily diluted out in standard genetic anal-

yses in which carrier mutations of paternal/maternal origin are commonly pooled. Separated

phenotypic analysis of maternal and parental heterozygotes is recommended in future studies.

In summary, in this study we identified Trappc9 as a brain-specific imprinted gene, prefer-

entially expressed from the maternally-inherited chromosome. Similar to patients with

TRAPPC9-deficiency associated intellectual disability, homozygous Trappc9 deficient mice

show a reduction in brain size (microcephaly), increase in body weight and fat mass (obesity)

and behavioral abnormalities. Remarkably, these features are inherited in heterozygous knock-

out mice in a parent-of-origin dependent manner that correlates with Trappc9 allelic biased

expression in the brain. Our study yields valuable insight into the molecular pathology under-

lying human disease and suggests a physiological role for Trappc9 and its imprinting in brain

development, behavior and control of energy homeostasis.

Material and methods

Ethics statement

All animal research procedures were approved by the Wellcome Sanger Institute Animal Wel-

fare and Ethics Review Board, by the University of Cambridge Animal Welfare and Ethical

Review Body (AWERB), in accordance with UK Home Office regulations, the UK Animals

(Scientific Procedures) Act of 1986.

Clinical research studies were conducted as part of a research study protocol that was

approved by the Cambridge South Local Research Ethics Committee (reference number 03/

103). Clinical investigations were conducted in accordance with the principles expressed in the

Declaration of Helsinki. The parents of the child provided written informed consent to her

participation, in view of her learning difficulties.

Mice

Reciprocal crosses of CAST/EiJ and C57BL/6J mice were generated by Duncan Odom Group

at the Cancer Research UK Cambridge Institute and studied in the Research Support Facility

at Wellcome Sanger Institute. Trappc9<tm1a(EUCOMM)Wtsi> mutant mice were generated

by the European Conditional Mouse Mutagenesis Program (EUCOMM) and carried the

‘knockout-first’ allele (tm1a), a lacZ reporter-tagged insertion with conditional potential in

C57BL6/NTac embryonic stem cells, as described in White et al 2013 [53]. In these knockout

mice, lacZ expression was below the level of detection in the brain by beta-galactosidase stain-

ing and immunohistochemistry. Possible cause of this non-functional reporter may be exon

skipping or aberrant splicing over the lacZ cassette thus preventing its expression. Parental

allelic study cohort of Trappc9 knock-out mice were generated by heterozygous x heterozygous

mating of the Trappc9 knock-outs in order to track the parent-of-origin of the targeted allele

in the offspring. A second cohort of Trappc9 knock-out mice was used for primary phenotyp-

ing pipeline study and consisted of male and female Trappc9 null mice generated by crossing

homozygous with heterozygous knock-outs; they were compared to wild-type control groups

of the same sex.

Mice were typically group-housed with 3–5 mice per cage and were given water and diet ad
libitum, unless otherwise stated. Mice were maintained in a specific pathogen free unit on a

12hr light: 12hr dark cycle (7:30–19:30) and no twilight period, and provided with standard
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environmental enrichment of a nestlet and a cardboard tunnel. Extended information about

the study cohorts and sex of the mice used in experiments can be found in the S1 Text.

Allelic-specific transcriptomic analysis

To improve power to detect reads that are unique to each strain, Seqnature software [36] was

used to construct individualized transcriptomes for the F1 hybrids from the two reciprocal

crosses, which increased transcript abundance and read mapping accuracy. CAST SNPs and

insertions and deletions (indels) of less than 100 bp were obtained from the Sanger Mouse

Genomes Project SNP and indel Release Version 4 and mm10 genome (ftp://ftp-mouse.

sanger.ac.uk/REL-1410-SNPs_Indels/). Seqnature was used to construct the CAST-specific

genome and gene annotations using Ensembl release 75 (ftp://ftp.ensembl.org/pub/release-75/

gtf/mus_musculus) Mus.musculus.GRCm38.75.gtf [54] and to construct CAST transcriptome

including all annotated isoforms. B6 and CAST transcriptomes were merged into a single

FASTA file and appended labels to track the strain-specific origin of each isoform. A bowtie

index was built using bowtie index with B6xCAST diploid transcriptome. RNA-Seq reads were

aligned to this diploid transcriptome using bowtie version 1.1.2 with parameters ‘–best’, ‘–

strata’, ‘-a’, ‘-m 100’ and ‘-v 3’. These parameters allow us to keep all read alignments with the

best alignment score with up to 3 mismatches.

To acquire accurate allelic biased expression, the gene expression was scrutinized through

analytic steps summarized in a flowchart (S2 Fig). First, stringent criteria was applied to

exclude transcripts with very low expression based on a bimodal distribution of the read fre-

quencies (S3 Fig, at least 25% probability in high expression cohort, based on the methods in

[55]). Second, transcripts with low unique reads per gene and those with inconsistent allelic

biases across biological replicates were excluded, only transcripts with�5 unique reads per

gene in both crosses were included. Finally, all unique read counts were adjusted using Expec-

tation-Maximization algorithm for Allele Specific Expression (EMASE, https://github.com/

churchill-lab/emase, [37]) to estimate allele-level effective read counts (S4 Fig). To call a gene

allelic biased/imprinted, a stringent 0.6 to 0.4 ratio was adopted as a cut-off, which was based

on the recommended method in Wang X et.al [39]. In addition, STAR version 2.4 was used to

re-align the sequenced reads to mouse reference genome GRCm38 (Ensembl annotation

release 78, December 2014), and the parent-of-origin biased expression at single-nucleic poly-

morphism (SNP) sites were visualized for all the candidate genes using the Integrative Genome

Viewer (Broad-MIT, MA, USA).

Allelic discrimination assay based on RT-qPCR

Custom designed, multiplexed TaqMan MGB probes (Life Technologies, CA) were used to

validate the allelic expression bias. They selectively amplified DNA sequences with a single-

nucleic polymorphism (SNP) site difference, enabling the detection and quantification of the

abundance of cDNAs expressed from two strains within the targeted genes. Targeted SNPs

were selected based on the released sequences of CAST/EiJ genome compared to the C57BL/6J

genome in the GRCm38 version. Each candidate SNP/Indel location was checked using an in-

house MOE RNA-sequencing data and the SNPs were examined in the IGV software (Broad-

MIT) using mouse mm10 version of reference genome. Neighboring exons or UTRs were also

checked for similar expression level, because primer design may cross exon junctions.

A total of 1 ug purified RNA was reverse transcribed to cDNA using the High Capacity

RNA-to-cDNA Kit (Life Technologies, CA). Real-time qPCR reactions (1 uL cDNA in 12 uL

total volume) were performed using ABI PRISM 7900HT Fast Real-Time PCR System (Life

Technologies, CA) with optimal conditions for thermo-cycling as follows: Step 1, 95C for 10
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min; Step 2, 92C for 15 s, 60C for 60 s with Optics; repeated for 40 cycles. Real-time PCR data

were analyzed by ABI SDS 2.4.1 software. A standard curve method [56] was used to establish

linear relation between log2 ratio of expression level and ΔCt. cDNAs prepared from OB and

MOE of inbred CAST/EiJ (n = 4) and inbred C57BL/6J (n = 4), were mixed as the following

ratios: 8:1, 4:1, 2:1, 1:1, 1:2, 1:4 and 1:8 (C57 cDNA: CAST cDNA). Standard curves were quan-

tified together with the unknown samples in the same reaction on a 384-well PCR plate and

served as internal controls.

Brain weight assessment and neuroanatomical study

Brain weight of wild-type (+/+), paternal (m+/p-) and maternal (m-/p+) heterozygous and

homozygous (-/-) Trappc9 deficient mice were measured in adult females aged between 11 to

26 weeks. Neuroanatomical study and brain volume analysis were carried out using 4 homozy-

gous (-/-) Trappc9 deficient mice and 4 matched wild-type littermates (3 females and 1 male

per group) at 16-week of age. Mouse brain samples were fixed in 4% buffered formalin for 48

hours. Forty brain parameters in 22 distinct brain regions, made of area and length measure-

ments at Lateral 0.72mm, were taken blind to the genotype across one specific sagittal section.

Data were analyzed using two-tailed Student t-test to determine whether a brain region was

associated with neuroanatomical defect or not.

Primary phenotyping pipeline

The following tests have homozygous mutant mice and wildtype controls, as part of the Sanger

MGP phenotyping pipeline. We used the established phenotyping test methods described in

the White et al 2013 [53], with the exception that the diet used was Mouse Breeder Diet 5021

and that the pipeline presented here has 4 fewer screens (hair phenotyping, open field, hot

plate and stress induced hypothermia tests). Detailed phenotyping procedure can be found in

S1 Text.

Behavioral testing

Individual animals between 8 and 20 weeks of age were tested and monitored by EthoVision

XT 8.5 system (Noldus, Netherlands). Mice for behavioral tests had been habituated to the

handling of the experimenters for at least two sequential days. All the behavioral experiments

were carried out during the light half of the cycle.

Open field test: mice were released at the central point of an open field arena (72 cm × 72

cm × 33 cm) under bright light and were allowed to move freely for 20 minutes. A 36 cm by 36

cm square area in the center of the arena was assigned as “center” area and the rest of the arena

was assigned as “border” area. Total distance moved, time spent moving and mean velocity in

both center and border areas during the trials were recorded.

Elevated plus maze test: mice were released at the central point of a plus maze (arm size: 30

cm × 5cm × 20cm, height: 50cm above ground) under low light and allowed to freely explore

two open arms, two closed arms and the center for 10 minutes. Total distance moved, time

spent moving, latency to enter and time spent in three different areas were recorded.

Three-chamber sociability test: A L-shape three-chamber arena (36 cm x 36 cm x 33 cm for

each chamber, identical in size) was used in which a “central” chamber connects to “left” and

“right” chambers by two small openings at the 12 o’clock and 3 o’clock direction, respectively.

The tests were conducted under red light. In the habituation phase, a test mouse was habitu-

ated to the central chamber for 5 min and then allowed to freely explore all three empty cham-

bers for 5 min. In the test phase, a metal cylindrical cage (with holes equally distributed on the

surface) containing a novel mouse of the same sex and genetic background (C57BL6/NTac)
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was placed in one of the chambers, whereas an identical but empty cylindrical cage was placed

in the other chamber. The test mouse was then released to the central chamber with access to

the left and right chambers at will. The duration of stay in each chamber was used to infer the

investigating time of each test mouse toward a novel conspecific (mouse in a cage) versus a

novel object (empty cage). The chance of a left or a right chamber to contain a mouse was bal-

anced. A preference index (PI) was calculated to score any preference between the two cham-

bers: PI = (duration of stay in mouse chamber- duration of stay in non-mouse chamber)/

(duration of stay in mouse chamber + duration of stay in non-mouse chamber). PI ranges

from -1 to 1.

Social recognition test: this paradigm consists of two tests and was carried out in two conse-

cutive days under red light. On day-1, a “habituation-dishabituation” test was used to assess

the olfaction detection and memory of a conspecific [45]. After exploring an empty test arena

(same size of the home cage) for 10 minutes, the test mouse was presented with an anesthetized

mouse on an odorless dish for 1 minute. This stimulus mouse was novel, of a similar weight

and age and of same sex and genetic background (C57BL6/NTac from a distant colony). By a

10-mintue interval, the same stimulus mouse was repeatedly presented to the test mouse for

four times (trial 1 to 4). In the 5th trial, a different mouse of the same sex but different strain

(129S strain) was presented as stimulus. The investigation time, counted as total sniffing time

to any part of the body of the stimulus animal was manually scored using a built-in stopwatch

in the EthoVision XT. If the test mice showed a habituation to the familiar social stimulus and

a dishabituation to the novel social stimulus, then the day-2 test was carried out. On day-2, a

discrimination test was carried out to assess the long-term (24-hour) social memory. The test

mouse was presented with one familiar mouse (the same mice used on day-1) and one novel

mouse (from a third strain, CBA or BALB/c). The sniffing time to each stimulus mouse was

recorded as on day-1. A preference index (PI) was used to calculate any preference between

novel and familiar stimulus mice, where PI = (sniffing time to the novel stimulus—sniffing

time to the familiar stimulus) / (sniffing time to the novel stimulus + sniffing time to the famil-

iar stimulus). PI ranges from -1 to 1.

Clinical measurements

Weight and height were measured barefoot in light clothing. Whole body dual X-ray absorpti-

ometry (DEXA) (DPX software; Lunar Corp) was used to determine body composition. Ad

libitum energy intake was assessed using a 18MJ breakfast meal of known macronutrient con-

tent (50% carbohydrate, 30% fat, 20% protein) after an overnight fast; intake was expressed per

kilogram of lean body mass measured by DEXA. Basal metabolic rate was determined by indi-

rect calorimetry after a 10 hour overnight fast using an open circuit, ventilated, canopy mea-

surement system (Europa Gas Exchange Monitor; NutrEn Technology Ltd.). After adjustment

for body composition, basal metabolic rate was compared to predicted metabolic rate based on

age and sex specific equations.

Supporting information

S1 Text. Supplementary methods.

(DOCX)

S1 Fig. Reciprocal crosses for quantifying the allelic imbalance. Crosses between two distant

strains of inbred mice—CAST/EiJ and C57BL/6J - were used to generate F1 generation hybrids

with sufficient SNPs to enable accurate quantification of allelic-specific gene expression.
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CAST: CAST/EiJ (brown mice), B6: C57BL/6J (black mice).

(TIF)

S2 Fig. Flowchart view of the allelic-specific expression analysis procedure. MOE RNA

sequencing data were shown as an example.

(TIF)

S3 Fig. Bimodal distribution of high (green line) and low (red line) mean read counts in

each cross and each tissue type. Only transcripts having at least 25% probability to fall into

the high read count distribution were used to quantify the allelic-specific expression of each F1

reciprocal across in the olfactory bulb and main olfactory epithelium.

(TIF)

S4 Fig. Comparison of allelic expression ratios before (x-axis) and after (y-axis) using

EMASE adjustment for multiple mapping. Among a total 11418 genes that was quantified

with unique reads, 1369 genes (12%) would have been falsely quantified as allelic imbalance

and 212 genes (1.9%) would have been falsely omitted from further analysis without using

EMASE (shown only the olfactory bulb data in B6xCAST F1 hybrid).

(TIF)

S5 Fig. A breakdown of previous reported imprinting genes in our allelic-specific RNA

sequencing analysis. (A) Percentages of expressed, unexpressed and unannotated imprinting

genes (a total 151 genes based on ref. 41) in the olfactory bulb (OB) and main olfactory epithe-

lium (MOE). Only the high expressed genes with sufficient SNPs were quantifiable allelic-spe-

cific expression. Among the quantified allelic-specific expression, 53 genes in OB and 45 genes

in MOE were previous reported to be imprinted or as candidates for imprinting genes (light

blue). Known imprinted genes or candidate are based on ref. 41. (B) Further breakdown of

known and novel imprinted/ parental biased genes in the quantified allelic-specific expression

in two tissues. Brain-derived OB had more known imprinted genes; allelic expression in OB

were also paternally dominant.

(TIF)

S6 Fig. Gene expression levels of Trappc9 and Peg13 in four embryonic stages and eleven

adult tissues (wild-type). (A) Trappc9 and (B) Peg13, measured by quantitative RT-PCR

using a mouse C57 (B6) embryo and tissue cDNA panels (AMSBIO). Expression levels were

normalized to β-actin expression.

(TIF)

S7 Fig. RNA sequencing of key brain regions in Trappc9 deficient mice. (A) Trappc9 tran-

scripts abundance showed 18%, 53% and 74% reduction compared to the wild-type expression

level in hippocampus, (B) and decreased by 23%, 63% and 79% of the wild-type expression

level in hypothalamus (average expression across 5 females per genotype). (C) Volcano plot

shows the 13 differentially expressed genes (highlighted in red, FDR<0.05) in the hippocam-

pus between Trappc9 -/- and wild-types (+/+). (D) Volcano plot shows the 20 differentially

expressed genes (highlighted in red, FDR<0.05) in the hypothalamus between Trappc9 -/- and

wild-types (+/+).

(TIF)

S8 Fig. Western blots of Trappc9 protein expression. Trappc9 protein expression was

accessed in the wildtype (Wt), paternal knockout (Hetp), maternal knockout (Hetm) and

homozygous knockout (Ho). Male brains were used, n = 3 per genotype (A) hypothalamus,

(B) olfactory bulb, (C) main olfactory epithelium of Trappc9 mutant mice and wild-type
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controls. α-tubulin (A) or GAPDH (B-C) were used as loading controls.

(TIF)

S9 Fig. Gene expression levels of the nearby imprinted genes remained stable in the olfac-

tory bulb of Trappc9 deficient mice. (A) Knck9 and (B) Peg13 expression was unchanged by

the presence of the tm1a alleles (males, n = 5, p>0.05, one-way ANOVA with Dunnet’s post

hoc test against the wild- type group). (C) An upstream gene Chrac1 showed a ~20% upregula-

tion in the OB of maternal heterozygous knockouts but not in the OB of Trappc9 null mice.

(D) Another upstream gene Ago2 (Eif2c2) showed a ~30% upregulation in the OB of Trappc9
null mice but remained unchanged in the maternal or paternal heterozygous knockouts (�

p<0.05, �� p<0.01).

(TIF)

S10 Fig. Both male and female Trappc9 -/- mice showed a reduction of exploration in

Open Field Test (OF) and Elevated Plus Maze (EPM) Test. (A) Total distance moved (cm)

and time spent moving (s) in the open field. (B) Total distance moved (cm) and time spent

moving (s) in the elevated plus maze. Data were analysis by two-way ANOVA (genotype by

sex), followed by Sidek’s multiple comparison test between genotypes (+/+ vs. -/-). Male +/+:

n = 22, -/-: n = 13; Female +/+: n = 9, -/-: n = 11. “Genotype” factor is highlighted in blue.

(TIF)

S11 Fig. Behavioral analysis of Trappc9 deficient mice showed no sign of anxiety in either

Open Field Test or Elevated Plus Maze Test. (A) Ratio of time spent in the center zone (total

time = 1200s). (B) Ratio of distance moved in the center zone (compared to the total distance

moved). (C) Ratio of time spent in the open arms (total time = 600s). (D) Ratio of time spent

in the closed arms (total time = 600s). One-way ANOVA with Tukey’s post hoc test. Male

mice, n = 22,12,12,13 (+/+, m+/p-, m-/p+ and -/-).

(TIF)

S12 Fig. Trappc9 deficient mice showed normal sociability. (A) In a “L-shape” three-cham-

ber apparatus, mice were allowed to choose between two chambers: one with a caged live

mouse versus another with an empty cage. (B) Time spent in the chamber containing another

mouse (“mouse chamber”), chamber with an empty cage (“non-mouse chamber”) and the

empty chamber that the test mouse was original released into (“central chamber”) were

recorded. Trappc9 homozygous knockout mice (-/-), maternal (m-/p+)/ paternal (m+/p-) het-

erozygous knockouts and wild-type littermates were compared (males, n = 15,12,11,25 respec-

tively). A preference index (PI) was calculated to score any preference between the two

chambers: PI = (duration of stay in the mouse chamber—duration of stay in the non-mouse

chamber)/(duration of stay in the mouse chamber + duration of stay in the non-mouse cham-

ber). PI ranges from -1 to 1. One-way ANOVA test with Tukey’s post hoc test: n.s. p>0.05.

(TIF)

S13 Fig. Social learning in male wild-type and Trappc9 -/- mice. Wild-type male mice

showed a significant social learning (grey line, ��p<0.01, n (+/+) = 10) at Day 1 of the social

recognition test, whereas Trappc9 -/- males (purple line) failed to show such social learning

(p>0.05 between Trial 4 and Trial 5, two-tail t-test for 4 and 5 trials, n(-/-) = 9). Trappc9 -/-

males also spent significantly longer time to investigate the stimulus mice compared to the

wild-types (two-way ANOVA with repeat measurement: p<0.001 for trial and p<0.05 for

genotype), may be caused by minimal change of bedding in their home cage, which was

applied to reduce male-male aggression. Trappc9 -/- males could not be used for Day 2 test
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due to lack of social learning at Day 1.

(TIF)

S14 Fig. Physiological pipeline analysis on Trappc9 -/- male mice. Trappc9 null male mice

(Trappc9 -/-, n = 7) showed (A) an increased body weight (p<0.05, two-tailed unpaired t-test)

and (B) an elevated blood insulin level (p<0.05, two-tailed Mann-Whitney test) in the pheno-

typing pipeline analysis, compared to the wild-type controls. This cohort of seven male

Trappc9 -/- mice showed normal (C) lean and fat mass, (D) glucose tolerance and (E) levels of

triacylglycerol (TAG), cholesterol (Chol), lipoproteins (HDL and LDL), non-essential fatty

acid (Nefac) and glycerol in the blood (p>0.05, two-tailed t-test), except for a mild decrease in

the blood glucose level (p<0.05). Male wild-type controls: n (+/+) = 32–34, Trappc9 null mice:

n(-/-) = 7. n.s. not significant.

(TIF)

S1 Table. Strain bias-olfactory receptor genes. A total of 184 olfactory receptor genes

(ORGs) in MOE that showed differential expression by strain in the analysis of allelic-specific

expression using B6 and CAST reciprocal hybrids.

(XLSX)

S2 Table. Neuroanatomical analysis. A list of the 22 distinct brain regions (40 parameters)

measured in the study. Yellow highlights the parameters significantly changed in null mice

comparing to wild-types.

(XLSX)

S1 Data. Allelic bias ratios in the olfactory bulb (OB) and major olfactory epithelium

(MOE) of F1 individuals.

(XLSX)

S2 Data. Parental allelic bias ratios of the candidate genes.

(XLSX)

S3 Data. Allelic Discriminant Assay validates parental allelic biased gene expression.

(XLSX)

S4 Data. Trappc9 mRNA abundance in the mutant mice.

(XLSX)

S5 Data. Brain weight data.

(XLSX)

S6 Data. Behavioral experiments data.

(XLSX)

S7 Data. Phenotyping pipeline metabolism data.

(XLSX)

S8 Data. Parent-of-origin effect on body weight data.

(XLSX)
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