Dissecting indirect genetic effects from peers in laboratory mice - Inserm - Institut national de la santé et de la recherche médicale Accéder directement au contenu
Article Dans Une Revue Genome Biology Année : 2021

Dissecting indirect genetic effects from peers in laboratory mice

Résumé

Background: The phenotype of an individual can be affected not only by the individual's own genotypes, known as direct genetic effects (DGE), but also by genotypes of interacting partners, indirect genetic effects (IGE). IGE have been detected using polygenic models in multiple species, including laboratory mice and humans. However, the underlying mechanisms remain largely unknown. Genomewide association studies of IGE (igeGWAS) can point to IGE genes, but have not yet been applied to non-familial IGE arising from "peers" and affecting biomedical phenotypes. In addition, the extent to which igeGWAS will identify loci not identified by dgeGWAS remains an open question. Finally, findings from igeGWAS have not been confirmed by experimental manipulation. Results: We leverage a dataset of 170 behavioral, physiological, and morphological phenotypes measured in 1812 genetically heterogeneous laboratory mice to study IGE arising between same-sex, adult, unrelated mice housed in the same cage. We develop and apply methods for igeGWAS in this context and identify 24 significant IGE loci for 17 phenotypes (FDR < 10%). We observe no overlap between IGE loci and DGE loci for the same phenotype, which is consistent with the moderate genetic correlations between DGE and IGE for the same phenotype estimated using polygenic models. Finally, we fine-map seven significant IGE loci to individual genes and find supportive evidence in an experiment with a knockout model that Epha4 gives rise to IGE on stress-coping strategy and wound healing. Conclusions: Our results demonstrate the potential for igeGWAS to identify IGE genes and shed light into the mechanisms of peer influence.
Fichier principal
Vignette du fichier
s13059-021-02415-x.pdf (1.55 Mo) Télécharger le fichier
Origine : Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

inserm-03944775 , version 1 (18-01-2023)

Identifiants

Citer

Amelie Baud, Francesco Paolo Casale, Amanda M Barkley-Levenson, Nilgoun Farhadi, Charlotte Montillot, et al.. Dissecting indirect genetic effects from peers in laboratory mice. Genome Biology, 2021, 22 (1), pp.216. ⟨10.1186/s13059-021-02415-x⟩. ⟨inserm-03944775⟩
10 Consultations
14 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More