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Development and validation of
multivariable prediction models
of serological response to
SARS-CoV-2 vaccination in
kidney transplant recipients
Bilgin Osmanodja 1*, Johannes Stegbauer 2,
Marta Kantauskaite2, Lars Christian Rump2,
Andreas Heinzel 3, Roman Reindl-Schwaighofer 3,
Rainer Oberbauer 3, Ilies Benotmane 4, Sophie Caillard 4,
Christophe Masset 5, Clarisse Kerleau 5, Gilles Blancho 5,
Klemens Budde 1, Fritz Grunow1, Michael Mikhailov 1,
Eva Schrezenmeier 1,6 and Simon Ronicke 1

1Department of Nephrology and Medical Intensive Care, Charité–Universitätsmedizin Berlin,
corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of
Health, Berlin, Germany, 2Department of Nephrology, Medical Faculty, University Hospital
Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany, 3Division of Nephrology and Dialysis,
Department of Internal Medicine III, Medical University Vienna, Vienna, Austria, 4Department of
Nephrology and Transplantation, University Hospitals of Strasbourg, INSERM Unit 1109, Strasbourg,
France, 5Institut de Transplantation Urologie Néphrologie, Centre Hospitalier Universitaire de
Nantes, Centre de Recherche en Transplantation et Immunologie, UMR 1064, INSERM, Nantes
Université, Nantes, France, 6Berlin Institute of Health, Berlin, Germany
Repeated vaccination against SARS-CoV-2 increases serological response in
kidney transplant recipients (KTR) with high interindividual variability. No
decision support tool exists to predict SARS-CoV-2 vaccination response to
third or fourth vaccination in KTR. We developed, internally and externally
validated �ve different multivariable prediction models of serological response
after the third and fourth vaccine dose against SARS-CoV-2 in previously
seronegative, COVID-19-naïve KTR. Using 20 candidate predictor variables,
we applied statistical and machine learning approaches including logistic
regression (LR), least absolute shrinkage and selection operator (LASSO)-
regularized LR, random forest, and gradient boosted regression trees. For
development and internal validation, data from 590 vaccinations were used.
External validation was performed in four independent, international validation
cohorts comprising 191, 184, 254, and 323 vaccinations, respectively. LASSO-
regularized LR performed on the whole development dataset yielded a 20- and
10-variable model, respectively. External validation showed AUC-ROC of
0.840, 0.741, 0.816, and 0.783 for the sparser 10-variable model, yielding an
overall performance 0.812. A 10-variable LASSO-regularized LR model predicts
vaccination response in KTR with good overall accuracy. Implemented as an
online tool, it can guide decisions whether to modulate immunosuppressive
therapy before additional active vaccination, or to perform passive
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Abbreviations: AUC-ROC, area under the curve of

characteristic; CI, con� dence intervals; CNI, calcineur

19, coronavirus disease 2019; GBRT, gradient b

ECLIA, electrochemiluminescenceimmunoassay

glomerular � ltration rate; ELISA, enzyme-linked im

KTR, kidney transplant recipients; LASSO, least

selection operator; LoD, limit of detection; LR, log

mycophenolic acid; N, nucleocapsid protein; RBD, re

S, spike protein; SARS-CoV-2, severe acute respirato

2; SOT, solid organ transplantation; TCMR, T ce

TRIPOD, transparent reporting of a multivariable
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immunization to improve protection against COVID-19 in previously
seronegative, COVID-19-naïve KTR.
KEYWORDS

kidney transplantation, COVID-19, vaccination, clinical decision support,
immunosuppression therapy
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Introduction

SARS-CoV-2 vaccination offers protection from sev
coronavirus disease 2019 (COVID-19) regardless of
causative variant for most healthy individuals. (1) In contrast,
protection in immunocompromised solid organ transplan
(SOT) recipients is limited. The serological response rate
SARS CoV-2 vaccination in kidney transplant recipients (K
after three doses of vaccine is strongly impaired in compa
to the general population– resulting in insuf� cient protection
and an unacceptably high COVID-19 mortality within th
population (2, 3).

Different strategies to induce humoral protection for K
have been suggested, including repeated vaccination an
vaccination under adjusted immunosuppression– besides
SARS-CoV-2-speci� c monoclonal antibody therapy (4).
Existing data are helpful to identify factors associated
insuf� cient vaccination response, but are not ea
interpretable for the single patient or vaccination (5–7).
Speci� cally, no tool exists to predict individual response t
vaccination. Risk calculators can help assess the likeliho
vaccination success in an individual and help decide bet
different possible actions such as passive or active immuniz
or adjustment of immunosuppressive medication. To date
such decision support system is available.

For this reason, we aim to develop a classi� cation model to
predict serological response to third and fourth SARS-Co
vaccinations in previously seronegative, COVID-19-naïve K
The model’s implementation objective is to identify patients t
the receiver operator

in inhibitor; COVID-

oosted regression tree

; eGFR, estimated

munosorbent assays;

absolute shrinkage and

istic regression; MPA,

ceptor binding domain;

ry syndrome coronaviru

ll mediated rejection;

prediction model for

02
r

will likely not respond to an additional dose of vaccine, even
changes in immunosuppressive medication, and thus be� t
most from passive immunization strategies. Using ou
previously reported data of vaccination outcomes in KTR,
develop and compare a set of prediction models base
classical statistical methods as well as machine learning.
selecting the most promising models, we validate the resu
prediction models in four independent validation cohorts, a
make the result available as an online calculator.
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Methods

Development cohort

Data from KTR at Charite� – Universitätsmedizin Berlin
Germany, were used to form the development cohort. Deta
the underlying patient population, as well as the assays
cutoffs used have been previously reported (5). Brie� y, KTR
received up to� ve doses of SARS-CoV-2 vaccine in cas
sustained lack of suf� cient serological response to vaccination
our institution, combined with either maintenance, reduction
pausing mycophenolic acid (MPA) for fourth and� fth
vaccination. For the enzyme-linked immunosorbent assay
(ELISA) for the detection of IgG antibodies against the
domain of the SARS-CoV-2 spike (S) protein in serum (A
SARS-CoV-2-ELISA (IgG), EUROIMMUN Medizinisc
Labordiagnostika AG, Lübeck, Germany), samples with
cutoff index� 1.1 (in comparison to the previously obtain
cut-off value of the calibrator) were considered positive, sam
with a cutoff index� 0.8, and < 1.1 were considered low posit
and samples with a cutoff index <0.8 were considered neg
as suggested by the manufacturer.

Alternat ively, for the electrochemiluminescen
immunoassay (ECLIA) (Elecsys, Anti-SARS-CoV-2, Ro
Diagnostics GmbH, Mannheim, Germany) detecting hum
immunoglobulins, including IgG, IgA and IgM against t
spike protein receptor binding domain (RBD), samples wit�
264 U/ml were considered to be positive as recommende
Caillard et al. (8, 9) Any non-zero antibody level below th
cutoff was considered low positive, with limit of detection (Lo
being 0.4 U/mL.

s;

s
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For predictive modeling, we included data on third a
fourth vaccination, since basic immunization has most lik
been performed in most KTR patients already, and since
few patients received� fth vaccination so far.

After applying all exclusion criteria summarized inTable 1,
the development cohort comprised 590 vaccinations perfor
between December 2020 and January 2022 in 424 prev
seronegative, COVID-naïve adult KTR (Figure 1). The Charite�
institutional review board approved this retrospective ana
(EA1/030/22).
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Validation cohorts

We used four independent, international validation coho
from outpatient transplant centers at University Hospita
Düsseldorf, Germany (191 vaccinations in 137 KTR) (10, 11),
Medical University Vienna, Austria (184 vaccinations in 1
KTR) (12), Strasbourg University Hospital, France (2
vaccinations in 229 KTR) (13, 14), Hotel Dieu Nantes, Franc
(323 vaccinations in 269 KTR) (15). Detailed information abou
the validation cohorts are presented inItems S1-Item S4and
patient selection including outcome frequencies are summa
separately for each validation cohort inFigures S1-S4. No
sample size calculation was applicable for thispost-hocanalysis.
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Outcome and predictors

The single outcome variable was a positive serolo
response de� ned by the maximum anti-SARS-CoV-2 spike
Frontiers in Immunology 03
ly

l

IgG or antibody level, measured at least 14 days after vaccin
and before any further immunization event such as SARS-C
2 infection, passive or active immunization. Since diffe
assays were used at different sites, details on the tests a
respective cutoffs used are provided for each validation coho
Item S1-S4, which are summarized inTable 2. Generally, IgG o
antibody positivity was determined based on the lo
laboratory’s positivity cutoff, mostly the one provided by t
manufacturer. Especially for the ECLIA Elecsys assay diff
cutoffs were available and used. We chose to assess
performance for two cutoffs for this speci� c assay. First, w
used the 0.8 U/mL cutoff provided by the manufacturer, yield
highest sensitivity in detecting patients with previous COV
19. Second, a cutoff of 15 U/mL, which was initially suggeste
the manufacturer to exhibit a positive predictive value of m
than 99% for presence of neutralizing antibodies agains
wild-type virus, was used (12). Contrary to the manufacturer’s
designated use, our intention was to provide an alterna
positivity cutoff, below which no neutralization again
omicron variant occurs, but that is not as close to the L
(0.4 U/mL) as the positivity cutoff provided by the manufactu
(0.8 U/mL). This alternative positivity cutoff de� nition was
needed to test the hypothesis that the absence or low nu
of “low-positive” antibody levels before vaccination (below
positivity cutoff, but above the LoD) for this assay led to
performance in validation sets 2 and 4. While the cutoff of 15
mL is somewhat arbitrary, it meets both needs. First, it incre
the percentage of low positive patients in validation set 4,
second, patients with antibody levels <50 U/mL in this as
show no neutralization against omicron BA.1, which most lik
applies to omicron BA.2 as well (16, 17). Hence, adjusting th
TABLE 1 Inclusion and exclusion criteria regarding vaccinations.

Inclusion Criteria

- Functioning kidney transplant at the time of vaccination

- Patient 18 years or older at the time of vaccination

- Third or fourth SARS-CoV-2 vaccination

- anti-SARS-CoV-2-S-protein antibodies below positivity cutoff before respective vaccination

- Follow-up anti-SARS-CoV-2-S-protein antibody measurement at least 14 days after vaccination

Exclusion Criteria

- SARS-CoV-2 vaccinations, which were performed before transplantation or after graft loss

- SARS-CoV-2 infection before the vaccination or before the measurement of the respective serological response as de� ned by

- Positive SARS-CoV-2 RNA PCR

- Positive anti-SARS-CoV-2-N-protein antibodies

- anti-SARS-CoV-2-S-protein antibodies above positivity cutoff before respective SARS-CoV-2 vaccination

- Monoclonal anti-SARS-CoV-2-S-protein antibody therapy before the measurement of the respective serological response

- Missing data on serological response before respective SARS-CoV-2 vaccination

- Missing data on serological response after respective SARS-CoV-2 vaccination

- Missing data on the assay used to measure serological response

- Missing data on immunosuppressive medication at the time of vaccination

- Missing lymphocyte count, eGFR, hemoglobin level
frontiersin.or
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cutoff to 15 U/mL is compatible with the objective to ident
patients without serological response to an additional vac
dose corresponding best with a lack of neutralizing antibod

Predictor variables in the data sets comprised 20 varia
four vaccination-speci� c, three demographic, one comorbidi
three transplantation-speci� c, � ve encoding medication, an
four biomarkers (Table S1). From the initial 27 candidat
predictor variables, seven were excluded during revision
the following reasons: treatment with azathioprine, mT
inhibitor or rituximab in the last year were removed
predictor variable, since each variable was present in less
5 subjects in the development dataset. Donor-speci� c anti-HLA
antibodies were removed since they highly depend on mism
status and medication adherence in the past. Anti-H
Frontiers in Immunology 04
:

antibodies were removed since they depend on hepati
vaccination status, which was not available for most pati
in the development cohort. Treatment with mycophenolic a
(MPA) was removed as predictor variable, since MPA d
contained the same information and was already used. W
blood cell count was removed, since it is presumably less su
to predict vaccination response than lymphocyte count, wh
was already a predictor variable (Table S2).
nMissing data/imputation

For the development dataset, preliminary analysis sho
that neither using data from patients without lymphocyte cou
TABLE 2 Assays, as well as respective limit of detection and positivity cutoff used for each dataset.

Dataset +
Assay

Assay (manufacturer) Limit of
Detection

Positivity Cutoff

Development Anti-SARS-CoV-2 ELISA (IgG) assay (EUROIMMUN Medizinische Labordiagnostika AG, Lübeck,
Germany)

0.8 index �1.1 index

Development ECLIA Elecsys antibody assay (Roche Diagnostics GmbH, Mannheim, Germany) 0.4 U/mL�264 U/mL

Validation 1 Anti-SARS-CoV-2 QuantiVac ELISA (IgG) assay (EUROIMMUN Medizinische Labordiagnostika AG,
Lübeck, Germany)

1 BAU/mL �35.2 BAU/mL

Validation 2 ECLIA Elecsys antibody assay (Roche Diagnostics GmbH, Mannheim, Germany) 0.4 U/mL� 0.8 U/mL or�15 U/
mL

Validation 3 CMIA SARS-CoV-2 IgG II Quant (Abbott, Rungis, France) 1 BAU/mL
(7 AU/mL)

�7 BAU/mL (50 AU/
mL)

Validation 4 ECLIA Elecsys antibody assay (Roche Diagnostics GmbH, Mannheim, Germany) 0.4 U/mL�0.8 U/mL or�15 U/
mL

Validation 4 LIAISON® SARS-CoV-2 TrimericS IgG assay (Diasorin, Saluggia, Italy) 4.81 U/mL�33.8 BAU/mL

Validation 4 CMIA SARS-CoV-2 IgG II Quant (Abbott, Rungis, France) 7.8 AU/mL�50 AU/mL

Validation 4 NovaLisa SARS-CoV-2 IgG (Novatec Immundiagnostica GmbH, Dietzenbach, Germany) 1 U/mL�11 U/mL

Validation 4 Atellica® IM SARS-CoV-2 IgG (sCOVG) (Siemens Healthineers, Erlangen, Germany) 0.5 index�2.0 index
FIGURE 1

Patient �ow diagram of the development cohort.
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which was the most common missing laboratory value,
imputation of missing laboratory values by multiple imputat
(both of which yielded higher sample size) did add predic
accuracy for logistic regression and was therefore not follo
for the main analysis (Figure S5; Table S3). After applying all
exclusion criteria shown inTable 1, no missing values we
present in the development dataset and no imputation meth
were necessary.

For each validation set, we excluded vaccinations
missing data on serological response, missing informa
about the SARS-CoV-2 spike IgG or antibody assay u
missing immunosuppressive medication data, or mis
estimated glomerular� ltration rate (eGFR), lymphocyte coun
or hemoglobin. We imputed the remaining variables to red
the number of omitted cases due to missing values. Inste
multiple imputation, we used a more pragmatic approach
imputed either the most frequent value of the respective var
in the development dataset in case of binary or catego
variables, or the median (or mean) of the respective variab
the development dataset in case of numerical variable
summarized inTable 3. This is the way a clinician woul
handle a missing value when using the online risk calcul
since those values are used as presets in the online calcula
the validation cohorts, no data originating from a time after
respective vaccination was included to make predictions.

Alternatively, we performed multiple imputations by
chained equations employing the R packagemiceafter pooling
all validation datasets. Performing multiple imputati
separately for each dataset was unfeasible, since for vali
set 2, no data on BMI, time on dialysis and diabetes status
present. Pooling all validation sets and performing mult
imputation hereafter was one possibility to avoid this probl

To compare median/mean imputation to other possibili
to deal with missing data, we additionally performed comp
case analysis for validation sets 1, 3, and 4.
in
d b
and

time

nce

ll

lute
sing
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each
CI.

n of
ere
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-

-

risk
es
Development and internal validation

Using the development cohort, we evaluated� ve models
during internal validation. To perform model validation with
the development cohort, a resampling approach was use
assigning 590 vaccinations randomly 100 times into training
test sets of 413 and 177 each (70:30 split). Each
hyperparameter tuning, if applicable, and model� tting was
performed on the respective training set, and performa
metrics were assessed on the respective test set.

First, as baseline, we� t a logistic regression model with a
candidate variables using the R functionglm.

Second, we� t 2 logistic regression models with least abso
shrinkage and selection operator (LASSO) regularization u
the packagescaretandglmnetin R. The LASSO hyperparamet
l , which adjusts the tradeoff between model� t and model
Frontiers in Immunology 05
,

f

l

s

In

n
e

sparsity, was optimized for each training cohort with resp
to the area under the receiver operating curve (AUC-ROC) u
inner 5-fold cross-validation. We chose 2 differentl
optimization criteria yielding 2 different models for ea
training cohort: (1) maximizing AUC-ROC (termed LASS
Min model), and (2) penalty maximization while keeping t
AUC-ROC within one standard error of the maximum AUC
ROC (termed LASSO-1SE model).

Third, we � t a random forest regression model using
packagerandomForestin R. We optimized the hyperparamet
mtry by evaluating 15 random parameter combinations dur
two repeated 5-fold cross-validations within the training set.
value of mtry yielding the highest accuracy during cro
validation was used to� t the random forest on the respecti
training data.

Fourth, we� t a gradient boosted regression trees (GB
model using thegbmpackage. We used a tune grid with 4*8*3
hyperparameter combinations (n.trees: 300, 500, 700,
interaction.depth: 2, 4, 6, 8, 10, 12, 14, 16; shrinkage: 0
0.01, 0.1; n.minobsinnode: 10) to optimize hyperparame
during two repeated 5-fold cross-validations within t
training set. The combination yielding the highest normali
discounted cumulative gain during cross-validation was use
� t the GBRT on the respective training data.

We calculated median and mean performance dur
resampling for those� ve developed models. To evaluate
performance of the binary classi� cation, we used Area Under th
Curve of the Receiver Operator Characteristic (AUC-ROC),
con� dence intervals (CI) in the resampling approach w
determined from the empirical 2.5% and 97.5% quantile
the performance on the 100 different test sets. Based on
threshold determined by the optimization criterio
“closest.topleft” as provided in R package pROC (point w
the least distance to [0,1] on the ROC-curve) during RO
analysis, we calculated models’ sensitivity, speci� city, accuracy
positive predictive value, and negative predictive value for
resampling step, again yielding median and empirical 95%
y

,

External validation and implementation

We chose LASSO-Min and LASSO-1SE for estimatio
model coef� cients in the entire development cohort, which w
then used for external validation. The relationship between
hyperparameterl that controls model sparsity and the AUC
ROC during inner 5-fold cross-validation is shown inFigure S6.
We assessed the decisionthresholds for classi� cation by
determining the“closest.topleft” threshold on the entire
development cohort, each for the� nal 10-variable and the 20
variable model. These were used for classi� cation during
external validation, and are also provided in the online
calculator after transforming them into risk probabiliti
according to the formula:
frontiersin.org
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TABLE 3 Baseline characteristics of the development and validation cohorts.

Development Validation 1 Validation 2 Validation 3
(Strasbourg)

Validation 4
(Nantes)

Cutoff 0.8U/mL

Validation 4
(Nantes)

Cutoff 15U/mL

254/229 254/211 323/269

230/24 177/77 216/107

100% (254) 100% (254) 100% (323)

66 (49 - 65) 42 (31 - 93) 45 (31 - 92)

40.2% (102) 14.6% (0) 33.1% (70)

41%/59% 47%/53% 46%/54%

58 (50 - 68) 62 (52 - 69) 63 (52 - 70)

26.4 +/- 6.0 25.2 +/- 4.4 25.2 +/- 4.5

41.7% (106) 30.7% (78) 28.5% (92)

) 5.2 (2.2 - 10.8) 4.1 (1.9– 9.8) 4.6 (2.1 - 11.3)

2.2 (0.6 - 4.2) 1.3 (0 - 2.9) 1.3 (0 - 2.9)

20.1% (51) 22.8% (58) 22.3% (72)

) 93.7% (238) 85.8% (218) 85.7% (277)

3.2% (12) 9.5% (24) 8.7% (28)

91.7% (233) 71.7% (182) 70.0% (226)

) 1.0 (1.0 - 1.0) 1.0 (0.0 - 1.0) 1.0 (0.0 - 1.0)

72.1% (183) 45.7% (115) 43.3% (140)

69.7% (177) 27.0% (68) 25.7% (83)

47.4 +/- 19.3 42.8 +/- 17.7 44.1 +/- 18.8

1.34 +/- 0.67 1.53 +/- 1.06 1.53 +/- 0.97

12.5 +/- 1.84 12.6 +/- 1.81 12.7 +/- 1.77

0.075) 0.046 (0.019 -
0.159)

0.031 (0.013 - 0.119) 0.030 (0.011 - 0.108)

ulin G; BMI, body mass index; DSA, donor-speci� c anti human leukocyte antigen antibodies;
Ri,alian target of rapamycin inhibitor; eGFR, estimated glomerular� ltration rate; anti-HBs, anti
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(Berlin) (Düsseldorf) (Vienna)

Total vaccinations/patients 590/424 191/137 184/184

Vaccination

3rd/4th vaccinations 411/179 129/62 184/0

mRNA Vaccination 81.0% (478) 90.1% (173) 50.5% (93)

Median time since previous vaccination in days
(IQR)

65 (51-92) 86 (79 - 140) 78 (57 - 90)

Baseline SARS-CoV-2 IgG low positive 6.8% (40) 40.1% (78) 0% (0)

Demographics and Comorbidities

Female/male patients 38%/62% 32%/68% 41%/59%

Median age in years (IQR) 59 (47 - 69) 62 (54 - 68) 61 (54 - 70)

BMI in kg/m2 25.2 +/- 4.5 26.7 +/- 6.3 –

Diabetes 21.0% (124) 18.3% (35) –

Transplantation

Median transplant age in years (IQR) 7.8 (3.1 - 13.2) 4 (2.5 - 10) 4.4 (2.1 - 7.9

Median time on dialysis in years (IQR) 3.0 (0.5 - 6.7) 3.1 (1 - 6) –

Retransplantation 4.2% (25) 12.6% (24) 23.4% (43)

Medication

CNI-based immunosuppression 87.3% (515) 95.8% (183) 91.3% (168

Belatacept-based IS 11.2% (66) 4.2% (8) 7.6% (14)

MPA treatment 78.1% (461) 95.3% (182) 92.4% (171)

Median MPA-Dose in g MMF equivalent (IQR) 1.0 (0.5 - 1.5) 1.0 (1.0 - 1.5) 1.0 (1.0 - 2.0

Steroid treatment 63.4% (374) 97.9% (187) 94.4% (174)

Treatment with more than 2 immunosuppressive
drugs

45.4% (268) 95.3% (182) 91.3% (168)

Laboratory values

Baseline eGFR mL/min/1.73m2 47.9 +/- 19.8 44.0 +/- 18.7 49.3 +/- 21.4

Lymphocyte count (/nL) 1.44 +/- 0.72 2.58 +/- 5.18 1.24 +/- 0.56

Hemoglobin (g/dL) 12.5 +/- 1.60 13.1 +/- 1.86 12.6 +/- 1.79

Median urine albumin-creatinine ratio in g/g (IQR) 0.030 (0.009 - 0.098) 0.034 (0.009 - 0.125) 0.035 (0.021

All variables are reported as mean +/- standard deviation unless stated otherwise. IQR, interquartile range; mRNA, messenger ribonucleic acid; IgG, immunoglob
CNI, calcineurin inhibitor; IS, immunosuppression; MPA, mycophenolic acid; MPA dose, mycophenolic acid dose; MMF, mycophenolate mofetil; mTmamm
hepatitis B-surface-antigen immunoglobulin G antibodies.
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P� xtð Þ� = �1�=� �1� + �exp� �� �xtð Þ�ð Þ

wherext is the decision threshold.
For external validation, we calculated the aforementio

performance metrics on each validation cohort separa
Furthermore, 95% CIs in the external validation cohorts w
determined by performing 1000-fold ordinary nonparame
percentile bootstrap, as the empirical 2.5%, and 97.5% qua
of AUC, sensitivity, speci� city, accuracy, positive predicti
value, and negative predictive value based on the thres
determined within the development cohort.

Additionally, we � tted LR, RF and GBRT on th
development dataset and performed external validation
pooling all validation datasets. Decision thresholds for LR
GBRT were determined within the development cohort
described above, and decision threshold for RF was 0.5.

To make the prediction models publicly available, we cre
an online tool implementing the LASSO logistic regres
models used for external validation, which can be assess
https://www.tx-vaccine.com. For patients who meet one or mo
of the exclusion criteria, the risk calculator should not be u

Statistical analysis was performed using R studio v.1.2
and R version 4.1.2 (2021-11-01). The underlying code
made available athttps://github.com/BilginOsmanodja/tx
vaccine. The datasets can be made available on request
the corresponding author.

This article was prepared according to the transparen
reporting of a multivariable prediction model for individu
prognosis or diagnosis (TRIPOD) statement and we provid
checklist in the supplement (18).
179
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Results

In total, 590 vaccinations (411 third vaccinations, and
fourth vaccinations) were used for development and inte
validation, which is summarized together with outco
frequencies and reasons for exclusion inFigure 1.

Baseline characteristics of patients in the development
validation datasets including summary statistics of all varia
are shown inTable 3.
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Model development and
internal validation

Using the resampling approach outlined above, we� t � ve
different models on each training set and evaluated t
performance on the respective unseen test set during 1
resampling steps.

A logistic regression model employing all candidate varia
served as a baseline. Using the two differentl optimization
criteria outlined in“Methods”, the LASSO-Min and LASSO-1S
models were� tted. Additionally, two tree-based machin
Frontiers in Immunology 07
s

s

at

2

learning approaches were studied - random forest (RF)
gradient boosted regression trees (GBRT).

LASSO logistic regression selected in the majority
resampling runs 20, and 10 out of 20 potential predictors
yield the LASSO-Min and LASSO-1SE models, respectively
regression coef� cients, their variances, and the select
frequency of the predictors are shown inFigure 2andFigure S7.

Figure 3compares AUC-ROC of the 5 models on the uns
test sets during 100 resampling steps, andTable 4summarizes
mean, and median performance metrics as well as 95
con� dence intervals determined from empirical 2.5% an
97.5% quantiles during internal validation. Thresholds
binary classi� cation were determined on the respective test
during each resampling step by performing ROC-analysis.

With respect to AUC-ROC, the LASSO-Min model - 0.8
(0.784 - 0.879) and the baseline logistic regression model -
(0.786 - 0.879) showed best performance during inte
validation. Since the sparser LASSO-1SE model sho
comparable predictive performance of 0.817 (0.742 - 0.
with fewer variables, we chose to analyze both, LASSO
and LASSO-1SE regularized logistic regression models in
during external validation.
Model speci�cation

Final risk equations were obtained by� tting LASSO-Min,
and LASSO-1SE models on the complete development da
yielding a 20-variable and one 10-variable risk equa
respectively. The intercept and regression coef� cients of the
� nal LASSO logistic regression models are shown inTable 5.
Risk equations are provided inItems S5and S6, and are
implemented as an online tool available athttps://www.tx-
vaccine.com.
External validation

After applying all exclusion criteria and performing
imputation of missing variables, we evaluated both
equations in the four independent validation datasets. S
predictive performance during external validation w
comparable for both models, in the following we report on
sparser 10-variable model. Results of external validation o
20-variable model are summarized inTable S4andFigure S7.

AUC-ROC of the sparser 10-variable model during exte
validation was 0.840 (0.777 - 0.897) for validation set 1, 0
(0.641 - 0.790) for validation set 2, 0.816 (0.763 - 0.862
validation set 3, and 0.696 (0.629 - 0.758) for validation s
yielding an AUC-ROC of 0.754 (0.722 - 0.784) when mergin
validation sets(Figure 4). Sensitivity, speci� city, accuracy
positive predictive value, and negative predictive value u
the thresholds determined during ROC-analysis in
frontiersin.org
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development dataset are summarized inTable 6. The decision
thresholds used for external validation are also provided in
online risk calculator to guide physicians’ decision as well in
Items S5andS6.
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Implementation and cutoff de�nition

Performance in the validations sets 2 and 4 was poorer
in the development as well as in the other two validation sets
suspected the positivity cutoff of 0.8 U/mL provided by
manufacturer for the ECLIA Elecsys assay as one main re
Since it is close to the LoD (0.4 U/mL), no or small fraction
“low positive” antibody levels (values above the LoD and be
positivity cutoff) before vaccination are present in b
validations sets (Table 3), which is different to both othe
validation sets and the development dataset. Since a
positive antibody level before vaccination is an import
predictor of serological response (Table 5), we adjusted the
positivity cutoff to 15 U/mL arbitrarily for two reasons. Fir
to test the hypothesis that cutoff de� nition is a reason for lowe
performance. Second, to provide data that an implementatio
this model is feasible independent of the assay used.
proposed implementation strategy for the prediction mode
Frontiers in Immunology 08
.

to identify patients, who will not respond to an addition
vaccine dose, and to offer those patients passive immuniza
Hence, using any other cutoff below which no neutraliza
against omicron occurs, is compatible with this strategy un
the circumstances of omicron-dominance. We arbitrarily use
alternative positivity cutoff of 15 U/mL for this respective as
since it has already been proposed by the manufacturer be

When adjusting the cutoff to 15 U/mL for the ECLIA Elecs
assay, AUC-ROC increased to 0.741 (0.663 - 0.808
validation set 2, and 0.783 (0.730 - 0.828) for validation s
yielding an overall AUC-ROC of 0.812 (0.784 - 0.836) a
merging all validation sets. With the decision threshold asse
in the development dataset, the negative predictive value is
(0.713 - 0.784).

Neither complete case analysis nor multiple imputation
the pooled validation cohort led to relevant differences
predictive performance for the 20-variable and 10-varia
LASSO LR models(Table 6; Table S4).
r

Tree-based models

Next, we assessed model performance of all 5 models i
pooled validation set, using both the cutoff of 0.8 U/mL and 15
FIGURE 2

Estimated coef�cients of the LASSO-1SE models summarized across 100 subsampling runs for unstandardized variables. Numbers on the right
indicate the selection frequency (in percent) for the respective variable in 100 subsampling runs. Variables are ordered from top to bottom
according to the selection frequency.
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mL for the Elecsys assay, respectively(Figure 5). For the 15 U/mL
cutoff, GBRT showed AUC-ROC of 0.823 (0.795 - 0.849), w
was slightly better than LR 0.819 (0.791 - 0.847) and the LA
Min model 0.817 (0.790 - 0.845). The LASSO-1SE model
0.812 (0.784 - 0.836) was still better than the RF model - 0
(0.771 - 0.828). All results are summarized inTable 7. Analysis of
feature importance for the tree-based models revealed that fo
RF model, low positive antibody titer, MPA dose, belata
treatment, vaccination number, and transplant age were the� ve
Frontiers in Immunology 09
-

e

most important variables, while diabetes, time since vaccin
and sex were the least important variables. For the GBRT m
MPA dose, low positive antibody titer, eGFR, lymphocyte co
and transplant age were the most important variables, w
diabetes, CNI treatment, and mRNA-based vaccine were
least important variables. When comparing the 10 m
important variables from RF or GBRT to the LASSO-1
model, RF as well as GBRT had 8 out of 10 variable
common with the 10-variable LASSO-1SE model(Table 8).
0.75

0.80

0.85

0.90

LR (lympho) LASSO•Min LR (lympho) LASSO•1SE LR (lympho) GBRT (lympho) RF (lympho)
class

au
c

FIGURE 3

Predictive performance of the developed models (AUC) in internal validation. Each point represents the AUC-ROC during 1 out of 100
resampling steps. Horizontal lines within the box depict the median and the upper and lower horizontal lines depict upper and lower quartiles,
respectively. LR - logistic regression, LASSO-Min LR - least absolute shrinkage and selection operator regularized logistic regression with lambda
hyperparameter optimized to yield maximum AUC-ROC within an inner 5-fold cross validation in the training set. LASSO-1SE - least absolute
shrinkage and selection operator regularized logistic regression with lambda hyperparameter increased from lambda-min, so that AUC-ROC
stays within one standard error within an inner 5-fold cross validation in the training set. GBRT - gradient boosted regression trees. RF - random
forest. lympho – including lymphocyte count as predictor variable.
TABLE 4 Performance of � ve different models during internal validation.

Model
Type

Mean/Median
AUC (95%CI)

Mean/Median Sens
(95%CI)

Mean/Median
Spec

(95%CI)

Mean/Median Acc
(95%CI)

Mean/Median
PPV (95%CI)

Mean/Median
NPV (95%CI)

Logistic
Regression

0.831/
0.831 (0.786 - 0.879)

0.760/
0.765 (0.651 - 0.839)

0.787/
0.786 (0.700 - 0.870)

0.777/
0.777 (0.715 - 0.819)

0.671/
0.671 (0.566 - 0.785)

0.852/
0.852 (0.787 - 0.900)

LASSO-Min 0.829/
0.831 (0.784 - 0.879)

0.762/
0.762 (0.672 - 0.852)

0.782/
0.782 (0.693 - 0.880)

0.774/
0.774 (0.712 - 0.825)

0.671/
0.667 (0.562 - 0.778)

0.850/
0.850 (0.792 - 0.902)

LASSO-1SE 0.814/
0.817 (0.742 - 0.873)

0.734/
0.736 (0.619 - 0.837)

0.779/
0.780 (0.664 - 0.884)

0.762/
0.763 (0.692 - 0.831)

0.661/
0.659 (0.562 - 0.800)

0.836/
0.839 (0.780 - 0.901)

Random
Forest

0.789/
0.787 (0.717 - 0.848)

0.503
0.503 (0.394 - 0.615)

0.898/
0.897 (0.832 - 0.960)

0.753/
0.757 (0.695 - 0.808)

0.744/
0.737 (0.600 - 0.877)

0.758/
0.764 (0.682 - 0.820)

GBM 0.802/
0.800 (0.741 - 0.864)

0.730
0.729 (0.625 - 0.833)

0.767/
0.768 (0.666 - 0.862)

0.753/
0.751 (0.686 - 0.822)

0.646/
0.646 (0.538 - 0.760)

0.832/
0.831 (0.765 - 0.886)
hold during
AUC-ROC, as well as sensitivity (Sens), speci� city (Spec), accuracy (Acc.), positive predictive value (PPV), negative predictive value (NPV) in the test set based on the best thres
ROC-analysis. Mean, median and empirical 95% CI are derived from 100 resampling steps for each metric.
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To assess how variable selection based on feature impo
in� uences model performance, we selected the 10
important variables for both RF and GBRT, retrained
models and performed external validation in the poo
validation dataset. Both, the 10-variable RF and the 10-var
GBRT yielded the same AUC-ROC during external validatio
the respective 20-variable models - 0.823 (0.795 - 0.849
GBRT, and 0.801 (0.771 - 0.828) for RF.
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Discussion

In this article, we present the development, internal
external validation of a 10-variable LASSO regularized log
regression model for prediction of serological response to
third and fourth dose of SARS-CoV-2 vaccine in previou
seronegative, COVID-19-naïve KTR.
Frontiers in Immunology 10
e
t

r

It shows good discrimination of KTR exhibiting serologi
response both in a rigorous resampling approach in
development cohort and in four independent validati
cohorts with an overall AUC-ROC of 0.812, and a nega
predictive value of 0.75 based on a decision threshold estab
within the development dataset. Available online as a ris
calculator athttps://www.tx-vaccine.comand embedded into
the proposed implementation strategy, it can assist physic
in choosing between different immunization strategies, nam
additional vaccination with or without adaption o
immunosuppressive therapy, or pre-exposure prophylaxis
monoclonal anti-SARS-CoV-2-(S) antibodies.

While this is the� rst, online available risk calculator
predict seroconversion in response to third and fourth
vacc inat ion, there are al ready models predic t
seroconversion after two vaccine doses.

Frölke et al. describe a sparse 6-variable model, whe
increased age, lower lymphocyte count, lower estim
glomerular � ltration rate (eGFR), shorter time afte
transplantation, not using steroids and the use
mycophenolate mofetil/mycophenolic acid (MMF/MPA) a
predictors of non-seroconversion (with a cutoff of 10 BA
mL). This is completely in line with our own� ndings. The
performance in the development (n=215) and rather sm
validation cohort (n=73) are promising (AUC-ROC 0.83 a
0.84, respectively). In a larger, second validation cohort
which an adapted model without lymphocyte count was u
the performance drops to AUC-ROC 0.75, which emphas
that lymphocyte count is an important predictor (19). Still, this
model is easy to use, and shows apparently more s
performance than the other model available, which is prov
by Alejo et al. They use a gradient boosting algorithm,
identi� ed mycophenolate mofetil (MMF) use, shorter time si
transplant, and older age as strongest predictors of n
seroconversion, which is in line with our� ndings as well
Since the model shows good predictive performance on
development dataset (AUC-ROC 0.79), but poor performanc
an external validation cohort (AUC-ROC 0.67), it can
suspected that the model is over� tted (20). This is further
supported when using the online tool the authors provide
http://www.transplantmodels.com/covidvaccine/, where smal
changes, e.g. in patient age, show great changes in va
response probability. Another reason for worse performa
could be that not only kidney transplant recipients are includ
Therefore, not only is the cohort more heterogeneous,
important predictors such as eGFR are missing.

Our own data show that GBRT can achieve compar
performance in internal and external validation, wh
over� tting is limited by hyperparameter tuning within th
development cohort. Nevertheless, since the GBRT mode
not substantially outperform LASSO logistic regression mo
but is more complex and less transparent, we chose no
implement the GBRT model in the online calculator. Th
TABLE 5 Final intercept and coef� cients of the 20-variable (LASSO-
Min), and 10-variable (LASSO-1SE) logistic regression model � tted
on the entire development dataset, both of which are used for
external validation.

20-variable
(LASSO-Min)

model

10-variable
(LASSO-1SE)

model

Intercept -2.907032206 -1.358548

Baseline SARS-CoV-2
IgG low positive (0/1)

3.413655483 1.772485

Third vaccination (0/1) -0.671750504 -0.4788165

Female sex (0/1) -0.307158368 –

Age (years) -0.012892171 –

BMI in kg/m2 0.056292146 –

mRNA Vaccination (0/1) 0.296683923 –

Retransplantation (0/1) 1.320981616 –

Transplant age in years 0.074864392 0.02209966

Dialysis years -0.074359667 -0.00005349

Diabetes (0/1) 0.227499203 –

Steroid (0/1) -0.424257945 –

Belatacept (0/1) -3.041854350 -0.5589842

CNI (0/1) -0.938666068 –

MPA-Dose in g MMF
equivalent

-1.421484726 -0.6303523

More than 2
immunosuppressants (0/
1)

-0.184866365 -0.2549875

Days since previous
vaccination

-0.003676502 –

Baseline eGFR mL/min/
1.73m2

0.025117386 0.009467306

Lymphocyte count (/nL) 0.469212486 0.2598442

Hemoglobin (g/dL) 0.206815906 0.0554962

Albuminuria (g/g
creatinine)

-0.269263716 –
frontiersin.org
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� ndings are in line with the statistical literature showing
bene� t of machine learning methods over logistic regression
clinical prediction models (21).

From a biomedical point of view, serological response is
one half of immune response to vaccination and
complemented by T-cell response. However, neutralizing
SARS-CoV-2-(S) antibodies are pathophysiologically
epidemiologically established to offer protection from se
disease (9, 22), which is also supported by the protecti
offered by monoclonal antibodies against SARS-CoV-2 ap
for prophylaxis and treatment (23, 24).

Yet, after the emergence of the omicron variants, neutralizatio
antibody levels against omicron variant show 25.7-fold to 58.1
reduction in sera of healthy vaccinated subjects in comparison
wild-type (25). Consequently, antibody levels that ens
neutralization, increased from >264 U/mL for alpha variant (8, 9)
to >2000 U/mL for omicron (16), making the interpretation o
antibody levels more dif� cult than before.

Despite these uncertainties, it seems intolerable to
patients without any humoral protection whatsoever. He
in patients without serological response to basic immuniza
physicians and patients need to decide between additional a
vaccination with or withoutadapting immunosuppressiv
medication, and pre-exposure prophylaxis with monoclo
antibodies (26).
Frontiers in Immunology 11
Since negative predictive value was above 0.75,
merging all validation sets, we suggest the follow
implementation strategy: for patients, who are likely not
respond to additional SARS-CoV-2 vaccination according
the prediction model, pre-exposure prophylaxis w
monoclonal antibodies exhibiting neutralizing capacity aga
omicron BA.4/5 should be administered to ensure timel
protection (27–30). In patients, who are likely to respon
according to the prediction model, there is still a chance
these patients will not reach antibody levels, which en
neutralizing capacity against omicron variants. For th
patients, both, repeated vaccination and monoclonal antib
prophylaxis are feasible and should in our view be cho
depending on the risk for severe disease course.
e

Strengths and limitations

We provide a rigorously developed and validated predic
model, which is provided as an online risk calculator to sup
kidney transplant physicians when deciding upon
immunization strategy for their patients. Especially,
estimated effects of adaptions in immunosuppress
medication can be evaluated, e.g. reducing or pausing
dose, or switching from belatacept to calcineurin inhibitor.
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FIGURE 4

Predictive performance (AUC-ROC) of the 10-variable model in external validation. Each point represents the AUC-ROC in 1 out of 1000
bootstrap samples. Horizontal lines within the box depict the median and the upper and lower horizontal lines depict upper and lower quartiles,
respectively. To assess the impact of the mean/median imputation method chosen, we also provide model performance when performing
complete case analysis (cc) for validation sets 1, 3, and 4. For validation set 2, due to missing variable “Dialysis years” for all patients, no complete
case analysis could be performed. Additionally, we performed multiple imputation (MI) in the pooled validation datasets (all) and assessed model
performance here as well. Val – Validation cohort, 10-var – 10-variable model, all – all validation sets pooled, cc – complete case analysis, MI –
multiple imputation.
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While belatacept treatment and MPA dose have b
reported as negative predictors of serological vaccine res
throughout the literature (10), it is still unclear, whethe
modulation of immunosuppression, and especially pau
MPA can increase serological response to SARS-C
vaccination, since most data originate from observationa
small non-randomized controlled trials (5, 31–33).

Since the data from the development cohort indicate
pausing MPA increases serological response to fo
vaccination, this hypothetical bene� t is introduced into the
Frontiers in Immunology 12
e
mode l . Hence , i f used to gu ide modu la t i on
immunosuppression and speci� cally pausing MPA, the
calculator must be used with caution, since the hypothe
effect on serological response comes at a potential risk of
HLA antibody formation and rejection.

Additionally, predictions can be suspected to be less acc
in cohorts, where no modulation of immunosuppression
performed around fourth vaccination.

Regarding the general sparsity of data on vaccine respon
third and fourth dose in KTR, we analyze extensive datase
TABLE 6 Performance of the 10-variable model during external validation.

Model Type AUC point
estimate (95%

CI)

Sens point
estimate (95%

CI)

Spec point
estimate (95%

CI)

Acc point
estimate (95%

CI)

PPV point
estimate (95%

CI)

NPV point
estimate (95%

CI)

Validation 1
10-variable

0.840 (0.777 - 0.897) 0.769 (0.667 - 0.868) 0.675 (0.589 - 0.758) 0.707 (0.639 - 0.775) 0.551 (0.448 - 0.653) 0.852 (0

Validation 1
10-variable
(complete case)

0.848 (0.781 - 0.905) 0.754 (0.636 - 0.865) 0.696 (0.614 - 0.778) 0.715 (0.642 - 0.782) 0.535 (0.423 - 0.657) 0.857 (0

Validation 2
10-variable
(cutoff 0.8 U/mL)

0.719 (0.641 - 0.790) 0.127 (0.051- 0.214) 0.933 (0.881 - 0.972) 0.630 (0.560 - 0.696) 0.533 (0.286 - 0.750) 0.640 (0

Validation 2
10-variable
(cutoff 15 U/mL)

0.741 (0.663 - 0.808) 0.128 (0.029 - 0.243) 0.917 (0.869 - 0.959) 0.750 (0.685 - 0.804) 0.286 (0.091 - 0.522) 0.798 (0

Validation 3
10-variable

0.816 (0.763 - 0.862) 0.715 (0.639 - 0.791) 0.738 (0.655 - 0.814) 0.727 (0.672 - 0.783) 0.721 (0.638 - 0.802) 0.733 (0

Validation 3
10-variable
(complete case)

0.818 (0.763 - 0.870) 0.707 (0.624 - 0.781) 0.736 (0.662 - 0.815) 0.720 (0.665 - 0.776) 0.719 (0.645 - 0.794) 0.725 (0

Validation 4
10-variable
(cutoff 0.8 U/mL)

0.696 (0.629 - 0.758) 0.634 (0.556 - 0.707) 0.626 (0.538 - 0.716) 0.630 (0.575 - 0.693) 0.710 (0.630 - 0.780) 0.544 (0

Validation 4
10-variable (cutoff 0.8 U/mL
– cc)

0.692 (0.622 - 0.758) 0.633 (0.559 - 0.709) 0.625 (0.525 - 0.717) 0.630 (0.571 - 0.689) 0.708 (0.633 - 0.784) 0.539 (0

Validation 4
10-variable
(cutoff 15 U/mL)

0.783 (0.730 - 0.828) 0.775 (0.718 - 0.828) 0.603 (0.513 - 0.680) 0.709 (0.656 - 0.759) 0.761 (0.703 - 0.814) 0.622 (0

Validation 4
10-variable (cutoff 15 U/mL–
cc)

0.781 (0.725 - 0.825) 0.775 (0.714 - 0.833) 0.602 (0.520 - 0.695) 0.708 (0.658 - 0.755) 0.760 (0.701 - 0.815) 0.623 (0

Overall performance
10-variable

0.754 (0.722 -
0.784)

0.593 (0.545 -
0.641)

0.743 (0.705 -
0.777)

0.673 (0.641 -
0.706)

0.666 (0.617 -
0.711)

0.679 (0.637 -
0.720)

Overall performance
10-variable (MI)

0.754 (0.722 - 0.784) 0.593 (0.545 - 0.641) 0.743 (0.705 - 0.777) 0.673 (0.641 - 0.706) 0.666 (0.617 - 0.711)0.679 (0.637 -
0.720)

Overall performance
10-variable
(cutoff 15 U/mL)

0.812 (0.784 -
0.836)

0.698 (0.654 -
0.737)

0.741 (0.702 -
0.775)

0.722 (0.691 -
0.749)

0.687 (0.642 -
0.727)

0.750 (0.713 -
0.784)

Overall performance
10-variable
(cutoff 15 U/mL– MI)

0.812 (0.784 - 0.836) 0.698 (0.654 - 0.737) 0.741 (0.702 - 0.775) 0.722 (0.691 - 0.749) 0.687 (0.642 - 0.727) 0.750 (0
AUC-ROC, as well as sensitivity (Sens), speci� city (Spec), accuracy (Acc.), positive predictive value (PPV), negative predictive value (NPV) assessed on each validation set. T
impact of the mean/median imputation method chosen, we also provide model performance during complete case analysis for validation sets 1, 3, and 4. For validation set 2, due to missin
variable“Dialysis years” for all patients, no complete case analysis could be performed. Additionally, we performed multiple imputation in the pooled validation datasets and assessed mode
performance here as well. The threshold was derived during ROC-analysis on the development dataset. To provide 95% CI, empirical 2.5% and 97.5% quantiles of the respective metric a
provided after performing a 1000-fold nonparametric ordinary bootstrapping with each validation set. Overall performance in the pooled validation sets are bold-faced. cc - complete c
analysis. MI– multiple imputation.
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development and validation, and hereby provide represent
evaluation of real-life model performance. While performanc
the 20-variable model was slightly better, it is also m
impractical due to more variables, which is why we chos
report mainly on the sparser 10-variable model. The s
applies for the 20-variable GBRT model, which was
implemented in the online calculator. When compared
other models reported for this purpose, it is the� rst to predict
Frontiers in Immunology 13
serological response to third and fourth vaccination, and sh
the most promising performance during external validation

Several limitations have to be considered:� rst, this model only
predicts serological response and does not include inform
about T-cell response. However, we have shown before that
than 85% of KTR have SARS-CoV-2 speci� c CD4+ T-cell
response after three vaccinations, which was not increase
fourth vaccination, while serological response rates increase
0.68

0.72

0.76

0.80

0.84

all
LR

all
20•var

all
10•var

all
RF

all
GBRT

all
LR

15U/mL

all
20•var
15U/mL

all
10•var
15U/mL

all
RF

15U/mL

all
GBRT
15U/mL

class

au
c

FIGURE 5

Predictive performance of the 10-variable, 20-variable LASSO logistic regression, logistic regression (LR), random forest (RF) and gradient
boosted regression tree (GBRT) models on the pooled validation set comprised of all 4 validation sets with cutoff 0.8 U/mL and 15 U/mL for the
Elecsys assay. 10-var – 10-variable LASSO LR model, 20-var – 20-variable LASSO LR model, all – all validation sets pooled.
.680 - 0.762)

(0.672 - 0.

(0.637 - 0.

.662 - 0.758)

.669 - 0.749)

.750 - 0.827)

(0.748 - 0

(0.713 - 0

.703 - 0.773)

0.742 - 0.815)
TABLE 7 Performance of all � ve different models during external validation on the pooled validation datasets.

Model Type AUC Sens Spec Acc PPV NPV

Logistic Regression
0.8 U/mL

0.765 (0.734 - 0.797) 0.711 (0.668 - 0.753) 0.648 (0.605 - 0.690) 0.677 0.646 - 0.708) 0.634 0.594 - 0.677) 0.721 (0

20-variable LASSO LR 0.8 U/mL 0.763 (0.731 - 0.794) 0.691 (0.646 - 0.735) 0.666 (0.623 - 0.709) 0.677 0.647 - 0.710) 0.641 0.597 - 0.684) 0.714756)

10-variable LASSO LR 0.8 U/mL 0.754 (0.722 - 0.784) 0.593 (0.545 - 0.641) 0.743 (0.705 - 0.777) 0.673 0.641 - 0.706) 0.666 0.617 - 0.711) 0.679720)

Random Forest
0.8 U/mL

0.736 (0.704 - 0.769) 0.537 (0.489 - 0.585) 0.812 (0.778 - 0.846) 0.684 (0.653 - 0.716) 0.712 (0.662 - 0.758) 0.670 (0

GBRT
0.8 U/mL

0.774 (0.741 - 0.802) 0.650 (0.603 - 0.695) 0.737 (0.697 - 0.775) 0.695 (0.666 - 0.727) 0.681 (0.633 - 0.726) 0.710 (0

Logistic Regression
15 U/mL

0.819 (0.791 - 0.847) 0.790 (0.751 - 0.829) 0.638 (0.600 - 0.679) 0.707 (0.676 - 0.736) 0.642 (0.596 - 0.680) 0.788 (0

20-variable LASSO LR 15 U/mL 0.817 (0.790 - 0.845) 0.780 (0.740 - 0.821) 0.664 (0.624 - 0.704) 0.716 (0.687 - 0.746) 0.655 (0.610 - 0.695) 0.787.826)

10-variable LASSO LR 15 U/mL 0.812 (0.784 - 0.836) 0.698 (0.654 - 0.737) 0.741 (0.702 - 0.775) 0.722 (0.691 - 0.749) 0.687 (0.642 - 0.727) 0.750.784)

Random Forest
15 U/mL

0.801 (0.771 - 0.828) 0.651 (0.605 - 0.695) 0.809 (0.776 - 0.840) 0.737 (0.709 - 0.765) 0.735 (0.692 - 0.777) 0.739 (0

GBRT 15 U/mL 0.823 (0.795 - 0.849) 0.745 (0.705 - 0.788) 0.731 (0.695 - 0.767) 0.737 (0.708 - 0.765) 0.693 (0.649 - 0.732) 0.779 (
on set, once
o

t.
AUC-ROC, as well as sensitivity (Sens), speci� city (Spec), accuracy (Acc.), positive predictive value (PPV), negative predictive value (NPV) assessed on the pooled validati
employing the cutoff of 0.8 U/mL and once employing the cutoff of 15 U/mL for the Elecsys assay. The decision threshold was derived during ROC-analysison the development dataset. T
provide 95% CI, empirical 2.5% and 97.5% quantiles of the respective metric are provided after performing a 1000-fold nonparametric ordinary bootstrapping with each validation se
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Osmanodja et al. 10.3389/�mmu.2022.997343
additional vaccinations (4, 5). This is the rationale, why especia
serological response rate can and should be increased to im
protection from SARS-CoV-2 infection in KTR.

Since evidence of antibody level cutoffs that ens
neutralization of or protection from omicron is sparse,
chose not to make any predictions for this endpoint. Inste
we provide an implementation strategy that makes best u
the model’s prediction without making far-reachin
assumptions about protective antibody levels against omic

Still, one major limitation becomes evident for validat
sets 2 and 4, where predictive performance was only mod
when using the positivity cutoff of 0.8 U/mL for the ECL
Elecsys assay. As outlined above, increasing the positivity
to 15 U/mL is compatible with the proposed implementati
and leads to improved performance for two reasons.

First, since the cutoffs in the development dataset were b
on protective levels against alpha variant for the ECLIA Ele
assay (264 U/mL), predictive performance is expectably po
when predicting positivity with a 0.8 U/mL cutoff. Second, wi
cutoff of 0.8 U/mL for the ECLIA Elecsys assay, only few pat
have low positive antibody levels before vaccination (above
but below the positivity cutoff). Since this is an importa
predictor in both models and provides important informati
about the actual immunological status, loss of performa
Frontiers in Immunology 14
e

f

e

ff

d

r

,

can be expected when this information is missing. Thi
further supported by the fact that after adapting the cu
from 0.8 U/mL to 15 U/mL, in validation set 2, where
pre-vaccination antibody levels were below 0.4 U/mL,
performance only increased slightly (AUC-ROC 0.719
0.741), but in validation set 4, where the percentage of
positive patients increased from 14.6% (most of which w
due to the other assays used in this dataset) to 33.1%
performance increased markedly (AUC-ROC 0.696 to 0.78

On the contrary, since the percentage of low posi
antibody levels in the development dataset is 6.8%
performance in cohorts, where this rate is close to 100%, c
potentially worsen as well.

Other possible reasons for different performance are
study design of validation set 2, which was a randomized cli
trial, with outcome assessment between days 29 and 42, wh
in the development and other validation sets, the maxim
antibody level after the respective vaccination was cho
independent of the time passed. Additionally, validation s
was the one with the highest proportion of adenoviral vacc
which however, did not show any difference in serolog
response in the respective trial (12).

Worth discussing is the mean/median imputation meth
used, which ensures that performance assessed during ex
TABLE 8 Comparison of feature importance of random forest (RF), gradient boosted regression trees (GBRT), and variable selection in the LASSO-
1SE model.

Random Forest – Mean Decrease
Accuracy

GBRT – Relative In� u-
ence

LASSO-1SE model (10-vari-
ables)

Baseline SARS-CoV-2 IgG low positive
(0/1)

39.216473 10.94581396 1.772485

MPA-Dose in g MMF equivalent 30.188770 16.56390709 -0.6303523

Transplant age in years 10.848819 9.45975758 0.02209966

Third vaccination (0/1) 21.775882 5.43038673 -0.4788165

Baseline eGFR mL/min/1.73m2 9.018273 10.35407127 0.009467306

Lymphocyte count (/nL) 6.344629 9.46973950 0.2598442

Belatacept (0/1) 23.579373 5.16012305 -0.5589842

More than 2 immunosuppressants (0/1) 10.293539 1.76980409 -0.2549875

Hemoglobin (g/dL) 4.199420 7.10326964 0.0554962

Dialysis years 4.356144 5.42538246 -0.00005349

CNI (0/1) 8.862467 0.04204069 –

mRNA Vaccination (0/1) 5.530626 0.13629129 –

Days since previous vaccination -2.417074 5.73285303 –

BMI in kg/m2 1.249847 5.42081191 –

Albuminuria (g/g creatinine) 3.941902 2.16932962 –

Retransplantation (0/1) 1.992805 0.69025148 –

Steroid (0/1) 4.321701 0.18964166 –

Age (years) 1.641021 3.50130734 –

Female sex (0/1) -2.429416 0.40048841 –

Diabetes (0/1) -1.571995 0.03472919 –
The feature importance of the random forest (RF) model was assessed by calculating mean decrease in accuracy. For GBRT, relative in� uence is shown. Variables for RF and GBRT
highlighted according to their importance in green (1-5), light green (6-10), yellow (11-15), and red (16-20).
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validation is comparable to real-life performance of the
calculator provided. We show that neither performing comp
case analysis nor multiple imputation in the validation coh
substantially changes predictive performance.

Other limitations arise from the different immunizatio
strategies used, which lead to different seroconversion
and have in� uence on model performance as well.

Last, some immunosuppressive regimens have
frequency below 1% in the development cohort (such
rituximab, mTOR inhibitor, and azathioprine treatmen
which limits applicability for these patients.
ict
sly
ions
fore
ive

rite

lth.
d
for
Conclusion

We provide the� rst, online available calculator to pred
vaccine response to third or fourth vaccination in previou
seronegative, COVID-19-naïve KTR. It can guide decis
whether to modulate immunosuppressive therapy be
additional active vaccination, or to perform pass
immunization to improve protection against COVID-19.
will
on.

n the
d
Data availability statement

The raw data supporting the conclusions of this article
be made available by the authors, without undue reservati
and

ot
nal

the

the
, or

teed
Ethics statement

The studies involving human participants were reviewed
approved by Ethics Comittee of Charite� Universitätsmedizin
Berlin. Written informed consent for participation was n
required for this study in accordance with the natio
legislation and the institutional requirements.
rmed
SR

nd
/

Author contributions

BO and SR conceived of the presented idea. BO perfo
data analysis and implemented the risk calculator.
, et a

et al.
evere

Frontiers in Immunology 15
s

performed data visualization and project coordination.
and MM assisted in data preparation of the developm
dataset. JS, MK, LCR, AH, RR-S, RO, IB, SC, CM, CK,
GB provided validation datasets. BO and SR wrote
manuscript. KB, ES, JS, MK, AH, RR-S, IB, SC, and
provided signi� cant intellectual input during the conceptio
and development of the article. All authors commented
reviewed the� nal manuscript.
Acknowledgments

Eva Schrezenmeier is a participant in the BIH-Cha�
Clinician Scientist Program funded by the Charite� -
Universitätsmedizin Berlin and the Berlin Institute of Hea
We thank Jürgen Dönitz, Johannes Raf� er, Ulla Schultheiss, an
Helena U. Zacharias on behalf of the CKDapp team
providing their template for an online risk calculator.
Con�ict of interest

The authors declare that the research was conducted i
absence of any commercial or� nancial relationships that coul
be construed as a potential con� ict of interest.
Publisher’s note

All claims expressed in this article are solely those of
authors and do not necessarily represent those of their af� liated
organizations, or those of the publisher, the editors and
reviewers. Any product that may be evaluated in this article
claim that may be made by its manufacturer, is not guaran
or endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be fou
online at: https://www.frontiersin.org/articles/10.3389
� mmu.2022.997343/full#supplementary-material
References
dly,
ease

tt
osts
1. Andrews N, Tessier E, Stowe J, Gower C, Kirsebom F, Simmons R
Duration of protection against mild and severe disease by covid-19 vaccines.N Engl
J Med(2022) 12:340–50. doi:10.1056/NEJMoa2115481

2. Reischig T, Kacer M, Vlas T, Drenko P, Kielberger L, Machova J,
Insuf� cient response to mRNA SARS-CoV-2 vaccine and high incidence of s
COVID-19 in kidney transplant recipients during pandemic.Am J Transplant
(2021) 3:801–12. doi:10.1111/ajt.16902
l. 3. Osmanodja B, Mayrdorfer M, Halleck F, Choi M, Budde K. Undoubte
kidney transplant recipients have a higher mortality due to COVID-19 dis
compared to the general population.Transpl Int(2021) 34(5):769–71. doi:10.1111/
tri.13881

4. Schrezenmeier E, Rincon-Arevalo H, Jens A, Stefanski A-L, Hamme
C, Osmanodja B, et al. Temporary antimetabolite treatment hold bo
SARS-CoV-2 vaccination-speci� c humoral and cellular immunity in
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fimmu.2022.997343/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2022.997343/full#supplementary-material
https://doi.org/10.1056/NEJMoa2115481
https://doi.org/10.1111/ajt.16902
https://doi.org/10.1111/tri.13881
https://doi.org/10.1111/tri.13881
https://doi.org/10.3389/fimmu.2022.997343
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


et al
ey

/

K,
CoV-
,

et al
lant
using

ents.

tes o
.

et al.
aired
ients.

nd in

auer
eeks

nt

.
ine in

A
rum

nt M,
ey

et al.
again
y

, et a
nel of

g of a
: the

er M,
iable
n

t al.
es in

tion.

alster
r

et al.
rom

pital
orm

ody

dhyay
nt by
ybrid

et al.
.

ell LA,
tion by

ody

Walls
eptor

, et al.
shift.

ation
,

et al.
dney
ction.

t al.
nder
cid.

Osmanodja et al. 10.3389/�mmu.2022.997343
kidney transplant recipients.JCI Insight (2022) 29. doi:10.1172/
jci.insight.157836

5. Osmanodja B, Ronicke S, Budde K, Jens A, Hammett C, Koch N,
Serological response to three, four and� ve doses of SARS-CoV-2 vaccine in kidn
transplant recipients.J Clin Med(2022) 11(9):2565. doi:doi.org/10.3390
jcm11092565

6. Liefeldt L, Glander P, Klotsche J, Straub-Hohenbleicher H, Budde
Eberspächer B, et al. Predictors of serological response to SARS-
vaccination in kidney transplant patients: Baseline characteristics
immunosuppression, and the role of IMPDH monitoring.J Clin Med(2022) 11
(6):1697. doi:10.3390/jcm11061697

7. Stumpf J, Siepmann T, Lindner T, Karger C, Schwöbel J, Anders L,
Humoral and cellular immunity to SARS-CoV-2 vaccination in renal transp
versus dialysis patients: A prospective, multicenter observational study
mRNA-1273 or BNT162b2 mRNA vaccine.Lancet Reg Health Eur(2021)
9:100178. doi:10.1016/j.lanepe.2021.100178

8. Caillard S, Thaunat O. COVID-19 vaccination in kidney transplant recipi
Nat Rev Nephrol(2021) 17(12):785–7. doi:10.1038/s41581-021-00491-7

9. Feng S, Phillips DJ, White T, Sayal H, Aley PK, Bibi S, et al. Correla
protection against symptomatic and asymptomatic SARS-CoV-2 infectionNat
Med(2021) 27(11):2032–40. doi:10.1038/s41591-021-01540-1

10. Kantauskaite M, Muller L, Kolb T, Fischer S, Hillebrandt J, Ivens K,
Intensity of mycophenolate mofetil treatment is associated with an imp
immune response to SARS-CoV-2 vaccination in kidney transplant recip
Am J Transplant(2022) 22(2):634–9. doi:10.1111/ajt.16851

11. Kolb T, Fischer S, Muller L, Lübke N, Hillebrandt J, Andre�e M, et al.
Impaired immune response to SARS-CoV-2 vaccination in dialysis patients a
kidney transplant recipients.Kidney360(2021) 2(9):1491–8. doi: 10.34067/
KID.0003512021

12. Reindl-Schwaighofer R, Heinzel A, Mayrdorfer M, Jabbour R, Hofb
TM, Merrelaar A, et al. Comparison of SARS-CoV-2 antibody response 4 w
after homologous vs heterologous third vaccine dose in kidney transpla
recipients: A randomized clinical trial.JAMA Intern Med(2022) 182(2):165–71.
doi: 10.1001/jamainternmed.2021.7372

13. Benotmane I, Gautier G, Perrin P, Olagne J, Cognard N, Fa� -Kremer S, et al
Antibody response after a third dose of the mRNA-1273 SARS-CoV-2 vacc
kidney transplant recipients with minimal serologic response to 2 doses.JAMA
(2021) 23:1063–5. doi:10.1001/jama.2021.12339

14. Benotmane I, Bruel T, Planas D, Fa� -Kremer S, Schwartz O, Caillard S.
fourth dose of the mRNA-1273 SARS-CoV-2 vaccine improves se
neutralization against the delta variant in kidney transplant recipients.Kidney
Int (2022) 101(5):1073–6. doi:10.1016/j.kint.2022.02.011

15. Masset C, Kerleau C, Garandeau C, Ville S, Cantarovich D, Hourma
et al. A third injection of the BNT162b2 mRNA COVID-19 vaccine in kidn
transplant recipients improves the humoral immune response.Kidney Int(2021)
100(5):1132–5. doi:10.1016/j.kint.2021.08.017

16. Seidel A, Jahrsdörfer B, Körper S, Albers D, von Maltitz P, Müller R,
SARS-CoV-2 vaccination of convalescents boosts neutralization capacity
SARS-CoV-2 delta and omicron that can be predicted by anti-s antibod
concentrations in serological assays.medRxiv(2022):22269201. doi:10.1101/
2022.01.17.22269201

17. Bowen JE, Sprouse KR, Walls AC, Mazzitelli IG, Logue JK, Franko NM
Omicron BA.1 and BA.2 neutralizing activity elicited by a comprehensive pa
human vaccines.bioRxiv(2022):484542. doi:10.1101/2022.03.15.484542

18. Collins GS, Reitsma JB, Altman DG, Moons KG. Transparent reportin
multivariable prediction model for individual prognosis or diagnosis (TRIPOD)
TRIPOD statement.Ann Intern Med(2015) 162(1):55–63. doi:10.7326/M14-0697
Frontiers in Immunology 16
.

2

.

f

st

l.

19. Frölke S, Bouwmans P, Messchendorp L, Geerlings S, Hemmeld
Gansevoort R, et al. MO184: Development and validation of a multivar
prediction model for nonseroconversion after SARS-COV-2 vaccination i
kidney transplant recipients.Nephrol Dialysis Transplant(2022) 37
(Supplement_3). doi:10.1093/ndt/gfac066.086

20. Alejo JL, Mitchell J, Chiang TP-Y, Chang A, Abedon AT, Werbel WA, e
Predicting a positive antibody response after 2 SARS-CoV-2 mRNA vaccin
transplant recipients: A machine learning approach with external valida
Transplantation(2022). doi:10.1097/tp.0000000000004259

21. Christodoulou E, Ma J, Collins GS, Steyerberg EW, Verbakel JY, Van C
B. A systematic review shows no performance bene� t of machine learning ove
logistic regression for clinical prediction models.J Clin Epidemiol(2019) 110:12–
22. doi:10.1016/j.jclinepi.2019.02.004

22. Khoury DS, Cromer D, Reynaldi A, Schlub TE, Wheatley AK, Juno JA,
Neutralizing antibody levels are highly predictive of immune protection f
symptomatic SARS-CoV-2 infection.Nat Med(2021) 27(7):1205–11. doi:10.1038/
s41591-021-01377-8

23. Group RC. Casirivimab and imdevimab in patients admitted to hos
with COVID-19 (RECOVERY): a randomised, controlled, open-label, platf
trial. Lancet(2022) 399(10325):665–76. doi:10.1016/S0140-6736(22)00163-5

24. O'Brien MP, Hou P, Weinreich DM. Subcutaneous REGEN-COV antib
combination to prevent covid-19.N Engl J Med(2021) 385(20):e70. doi:10.1056/
NEJMc2113862

25. Medigeshi GR, Batra G, Murugesan DR, Thiruvengadam R, Chattopa
S, Das B, et al. Sub-Optimal neutralisation of omicron (B.1.1.529) varia
antibodies induced by vaccine alone or SARS-CoV-2 infection plus vaccine (h
immunity) post 6-months.EBioMedicine(2022) 78:103938. doi:10.1016/
j.ebiom.2022.103938

26. Weinreich DM, Sivapalasingam S, Norton T, Ali S, Gao H, Bhore R,
REGN-COV2, a neutralizing antibody cocktail, in outpatients with covid-19N
Engl J Med(2021) 384(3):238–51. doi:10.1056/NEJMoa2035002

27. VanBlargan LA, Errico JM, Halfmann PJ, Zost SJ, Crowe JE Jr, Purc
et al. An infectious SARS-CoV-2 B.1.1.529 omicron virus escapes neutraliza
therapeutic monoclonal antibodies.Nat Med (2022) 28(3):490–5. doi: 10.1038/
s41591-021-01678-y

28. Liu L, Iketani S, Guo Y, Chan JF-W, Wang M, Liu L, et al. Striking antib
evasion manifested by the omicron variant of SARS-CoV-2.Nature (2022) 602
(7898):676–81. doi:10.1038/s41586-021-04388-0

29. McCallum M, Czudnochowski N, Rosen LE, Zepeda SK, Bowen JE,
AC, et al. Structural basis of SARS-CoV-2 omicron immune evasion and rec
engagement.Science(2022) 375(6583):864–8. doi:10.1126/science.abn8652

30. Cameroni E, Bowen JE, Rosen LE, Saliba C, Zepeda SK, Culap K
Broadly neutralizing antibodies overcome SARS-CoV-2 omicron antigenic
Nature(2022) 602(7898):664–70. doi:10.1038/s41586-021-04386-2

31. Regele F, Heinzel A, Hu K, Raab L, Eskandary F, Fae� I, et al. Stopping of
mycophenolic acid in kidney transplant recipients for 2 weeks peri-vaccin
does not increase response to SARS-CoV-2 vaccination-a non-randomized
controlled pilot study.Front Med (Lausanne)(2022) 9:914424. doi:10.3389/
fmed.2022.914424

32. Kantauskaite M, Müller L, Hillebrandt J, Lamberti J, Fischer S, Kolb T,
Immune response to third SARS-CoV-2 vaccination in seronegative ki
transplant recipients: possible improvement by mycophenolate mofetil redu
Clin Transplant(2022). doi:10.1111/ctr.14790

33. Benning L, Morath C, Kühn T, Bartenschlager M, Kim H, Beimler J, e
Humoral response to SARS-CoV-2 mRNA vaccination in previous non-respo
kidney transplant recipients after short-term withdrawal of mycophenolic a
Front Med(2022) 9:958293. doi:10.3389/fmed.2022.958293
frontiersin.org

https://doi.org/10.1172/jci.insight.157836
https://doi.org/10.1172/jci.insight.157836
https://doi.org/doi.org/10.3390/jcm11092565
https://doi.org/doi.org/10.3390/jcm11092565
https://doi.org/10.3390/jcm11061697
https://doi.org/10.1016/j.lanepe.2021.100178
https://doi.org/10.1038/s41581-021-00491-7
https://doi.org/10.1038/s41591-021-01540-1
https://doi.org/10.1111/ajt.16851
https://doi.org/10.34067/KID.0003512021
https://doi.org/10.34067/KID.0003512021
https://doi.org/10.1001/jamainternmed.2021.7372
https://doi.org/10.1001/jama.2021.12339
https://doi.org/10.1016/j.kint.2022.02.011
https://doi.org/10.1016/j.kint.2021.08.017
https://doi.org/10.1101/2022.01.17.22269201
https://doi.org/10.1101/2022.01.17.22269201
https://doi.org/10.1101/2022.03.15.484542
https://doi.org/10.7326/M14-0697
https://doi.org/10.1093/ndt/gfac066.086
https://doi.org/10.1097/tp.0000000000004259
https://doi.org/10.1016/j.jclinepi.2019.02.004
https://doi.org/10.1038/s41591-021-01377-8
https://doi.org/10.1038/s41591-021-01377-8
https://doi.org/10.1016/S0140-6736(22)00163-5
https://doi.org/10.1056/NEJMc2113862
https://doi.org/10.1056/NEJMc2113862
https://doi.org/10.1016/j.ebiom.2022.103938
https://doi.org/10.1016/j.ebiom.2022.103938
https://doi.org/10.1056/NEJMoa2035002
https://doi.org/10.1038/s41591-021-01678-y
https://doi.org/10.1038/s41591-021-01678-y
https://doi.org/10.1038/s41586-021-04388-0
https://doi.org/10.1126/science.abn8652
https://doi.org/10.1038/s41586-021-04386-2
https://doi.org/10.3389/fmed.2022.914424
https://doi.org/10.3389/fmed.2022.914424
https://doi.org/10.1111/ctr.14790
https://doi.org/10.3389/fmed.2022.958293
https://doi.org/10.3389/fimmu.2022.997343
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

	Development and validation of multivariable prediction models of serological response to SARS-CoV-2 vaccination in kidney transplant recipients
	Introduction
	Methods


