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ABSTRACT
Background  We hypothesized that treatment delays 
might be an effect modifier regarding risks and benefits 
of intravenous thrombolysis (IVT) before mechanical 
thrombectomy (MT).
Methods  We used the dataset of the SWIFT-DIRECT 
trial, which randomized 408 patients to IVT+MT or MT 
alone. Potential interactions between assignment to 
IVT+MT and expected time from onset-to-needle (OTN) 
as well as expected time from door-to-needle (DTN) were 
included in regression models. The primary outcome was 
functional independence (modified Rankin Scale (mRS) 
0–2) at 3 months. Secondary outcomes included mRS 
shift, mortality, recanalization rates, and (symptomatic) 
intracranial hemorrhage at 24 hours.
Results  We included 408 patients (IVT+MT 207, MT 
201, median age 72 years (IQR 64–81), 209 (51.2%) 
female). The expected median OTN and DTN were 
142 min and 54 min in the IVT+MT group and 129 min 
and 51 min in the MT alone group. Overall, there was no 
significant interaction between OTN and bridging IVT 
assignment regarding either the functional (adjusted OR 
(aOR) 0.76, 95% CI 0.45 to 1.30) and safety outcomes 
or the recanalization rates. Analysis of in-hospital delays 
showed no significant interaction between DTN and 
bridging IVT assignment regarding the dichotomized 
functional outcome (aOR 0.48, 95% CI 0.14 to 1.62), 

WHAT IS ALREADY KNOWN ON THIS TOPIC
	⇒ Overall, the randomized controlled trials on 
bridging thrombolysis before mechanical 
thrombectomy did not report any clear 
subgroup effects related to the time from 
symptom onset to randomization.

WHAT THIS STUDY ADDS
	⇒ This study found no clear evidence that patients 
with short onset-to-needle times benefited 
more from bridging thrombolysis. Exploratory 
analysis of secondary clinical outcomes 
indicated a potentially favorable effect of IVT 
associated with shorter in-hospital delays.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

	⇒ This study sets methodological benchmarks 
for analyzing the heterogeneity of bridging 
thrombolysis effect size before mechanical 
thrombectomy in a meta-analysis of all 
randomized controlled trials on this topic. 
Neither onset-to-needle times nor door-to-
needle times should influence treatment 
decisions regarding bridging thrombolysis until 
this meta-analysis is available.
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but the shift and mortality analyses suggested a greater benefit of IVT 
when in-hospital delays were short.
Conclusions  We found no evidence that the effect of bridging 
IVT on functional independence is modified by overall or in-hospital 
treatment delays. Considering its low power, this subgroup analysis 
could have missed a clinically important effect, and exploratory analysis 
of secondary clinical outcomes indicated a potentially favorable effect 
of IVT with shorter in-hospital delays. Heterogeneity of the IVT effect 
size before MT should be further analyzed in individual patient meta-
analysis of comparable trials.
Trial registration number  URL: https://www.clinicaltrials.gov ; 
Unique identifier: NCT03192332

INTRODUCTION
Whether mechanical thrombectomy (MT) alone can be regarded 
as equally effective as MT combined with bridging intravenous 
thrombolysis (IVT+MT) for patients admitted directly to centers 
with endovascular treatment capability remains controversial.1 2 
Two trials in Chinese patients demonstrated non-inferiority of 
MT alone,3 4 whereas three other trials failed to show non-
inferiority.5–7 All these trials used generous non-inferiority 
margins, which are considerably less conservative than the 
proposed minimal clinically important difference or the margin 
considered to constitute reasonable comparability8 . The expe-
dited recommendation of the European Stroke Organisation 
currently advises that patients admitted to MT-capable centers 
should undergo IVT+MT if eligible for both treatments.9

None of the individual subgroup analyses of these trials 
showed a significant difference regarding time from onset of 
symptoms to randomization (OTR). However, the point esti-
mates indicated a potential time-dependent relationship between 
bridging IVT and functional outcome (table  1). In unselected 
stroke patients, the efficacy of IVT is known to be highly time-
dependent.10 Therefore, we hypothesized that treatment delays 
might be an effect modifier regarding risks and benefits of IVT 
in patients enrolled in the SWIFT-DIRECT trial7 and that a more 
beneficial effect of IVT would be seen in patients with shorter 
treatment delays.

This analysis aimed to assess a potential treatment effect 
heterogeneity of IVT+MT versus MT alone according to the 
overall delay (onset-to-needle, OTN) and in-hospital delays 
(door-to-needle, DTN) in terms of functional outcome, technical 
efficacy and safety outcomes. Additionally, if a heterogeneity of 
treatment effect was found, we intended to characterize the 
extent to which modification occurs and the time period during 
which adding IVT might confer significant benefits.

METHODS
Reporting, data sharing, ethics
For this post-hoc sub-analysis of the randomized 
controlled SWIFT-DIRECT study (https://clinicaltrials.gov/ 
NCT03192332), we followed the CONSORT (Consolidated 
Standards of Reporting Trials) guidelines. The SWIFT-DIRECT 
dataset is not publicly available. However, de-identified data, 
together with a data dictionary, will be made accessible after 
ethics clearance and on submission of a reasonable request 
with a research plan to the corresponding author. Written 
informed consent was obtained from patients or their next of 
kin, with selected countries allowing delayed informed consent 
due to emergency circumstances. Approval was obtained from 
all relevant local ethics committees (central ethics Bern, ID 
2017–00974).

Study design and patients
SWIFT-DIRECT was an international, multicenter, random-
ized, open label, blinded endpoint (PROBE) trial assessing 
the non-inferiority of MT alone versus IVT+MT in patients 
presenting directly to one of 48 participating MT-capable stroke 
centers in Europe and Canada. The trial protocol11 and main 
results, including details of the methodology, have already 
been published.7 Patients were eligible if they had imaging-
confirmed occlusion of the intracranial carotid artery and/or the 
first segment (M1) of the middle cerebral artery; were eligible 
to receive alteplase within 4.5 hours after they were last seen 
well; could undergo MT within 75 min of randomization; and 
had severe neurological deficits, defined as a National Insti-
tutes of Health Stroke Scale (NIHSS) score of ≥5. Patients with 
advanced dementia, significant pre-existing disabilities, and early 
severe tissue damage (Alberta Stroke Programme Early CT Score 
(ASPECTS) <5) were excluded. A total of 408 patients fulfilling 
those criteria were randomized (1:1 ratio) to undergo MT alone 
or IVT+MT (intravenous alteplase, 0.9 mg/kg of body weight). 
We included all patients in this post-hoc analysis.

Time definitions
The goal of our study was to assess whether time to treatment 
was an effect modifier—that is, it would have an impact on the 
effect of IVT plus MT versus MT alone—with the idea that, 
depending on the time to treatment, additional IVT might show 
a benefit compared with MT alone. The time interval analyzed 
for the overall time delay was hence the expected OTN. This 
was defined as time from symptom onset or last known well 
to expected IVT bolus. It was calculated by adding the mean 
randomization-to-bolus-time to the onset-to-randomization 

Table 1  Subgroup analysis of published randomized controlled trials

Study Source Outcome Subgroup acOR/aOR point estimate (95% CI)

MRCLEAN-NoIV5 online supplemental figure S3 Ordinal mRS score OTR 13–77 min
OTR 77–124 min
OTR 124–734

0.75 (0.43 to 1.31)
0.67 (0.39 to 1.15)
1.00 (0.58 to 1.73)

DIRECT-MT18 online supplemental figure S4 Ordinal mRS score OTR ≤125 min
OTR 126–171 min
OTR 172–210 min
OTR >210 min

0.93 (0.54 to 1.61)
0.94 (0.54 to 1.64)
1.28 (0.74 to 2.22)
1.38 (0.79 to 2.40)

DEVT19 online supplemental eFigure 6 mRS 0–2 OTR <169 min
OTR ≥169 min

0.97 (0.41 to 2.3)
2.25 (0.88 to 6.05)

SKIP6 Main paper figure 3 mRS 0–2 OTR <120 min
OTR ≥120 min

0.77 (0.33 to 1.78)
1.33 (0.61 to 2.87)

In all trials a higher aOR/acOR favors withholding bridging IVT, while a lower aOR/acOR favors administering IVT before MT.
acOR, adjusted common OR; aOR, adjusted OR; IVT, intravenous thrombolysis; mRS, modified Rankin Scale; OTR, onset-to-randomization time.
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value, for each patient in both the MT alone and the IVT+MT 
treatment groups.

For the in-hospital delay, the expected DTN was analyzed. 
This was defined as the time from arrival at the emergency 
department of the study hospital to the expected IVT bolus. It 
was calculated by adding to the door-to-randomization value, 
for each patient in both the MT alone and IVT+MT groups, 
the study mean for the randomization to bolus time. Those 

Table 2  Selected baseline characteristics according to time from 
symptom onset to needle

Time from symptom onset to needle

P value

0–3 hours (n=316) >3 hours (n=92)

N* N*

Age at inclusion (years), 
median (IQR)

316 72 (64–81) 92 74 (67–81) 0.27

Female sex, no. (%) 316 159 (50.3%) 92 50 (54.3%) 0.55

NIHSS, median (IQR) 316 17 (13–20) 92 17 (12–20) 0.8

Pre-stroke mRS, no. (%) 316 92 0.8

 � 0 269 (85.1%) 77 (83.7%)

 � 1 46 (14.6%) 15 (16.3%)

 � 4 1 (0.3%) 0 (0.0%)

Weight (kg), median 
(IQR)

293 75 (65–85) 89 75 (68–85) 0.81

Systolic blood pressure 
(mmHg), median (IQR)

312 147 (130–160) 91 149 (135–163) 0.58

Diastolic blood pressure 
(mmHg), median (IQR)

310 80 (70–90) 90 80 (71–90) 0.99

Heart rate (beats/min), 
median (IQR)

309 75 (64–88) 88 74 (63–86) 0.86

Previous ischemic stroke, 
no. (%)

304 30 (9.5%) 90 11 (12.0%) 0.55

Previous transient 
ischemic attack, no. (%)

300 14 (4.4%) 89 7 (7.6%) 0.28

History of hypertension, 
no. (%)

306 185 (58.5%) 92 54 (58.7%) 1

History of atrial 
fibrillation, no. (%)

299 28 (8.9%) 88 11 (12.0%) 0.42

History of 
hypercholesterolemia, 
no. (%)

298 98 (31.0%) 89 33 (35.9%) 0.38

Previous intracerebral 
hemorrhage, no. (%)

307 2 (0.6%) 90 0 (0.0%) 1

Prior myocardial 
infarction, no. (%)

301 37 (11.7%) 89 4 (4.3%) 0.047

Warfarin or other 
anticoagulant, no. (%)

316 11 (3.5%) 92 5 (5.4%) 0.37

Aspirin, no. (%) 316 84 (26.6%) 92 21 (22.8%) 0.5

Statin or other lipid 
lowering agent, no. (%)

316 91 (28.8%) 92 28 (30.4%) 0.79

Blood glucose level 
(mmol/L), median (IQR)

303 6.5 (5.7–7.5) 82 6.6 (5.9–7.6) 0.46

INR, median (IQR) 253 1.0 (1.0–1.1) 67 1.0 (1.0–1.1) 0.62

Platelet count (×109/L), 
median (IQR)

314 225 (187–268) 91 228 (192–280) 0.28

Hemoglobin (g/L), 
median (IQR)

316 137 (125–146) 92 137 (123–147) 0.84

Glomerular filtration 
rate (mL/min), median 
(IQR)

316 76 (62–90) 92 74 (60–90) 0.89

Baseline imaging, no. 
(%)

316 92 <0.001

 � CT 177 (56.0%) 28 (30.4%)

 � MRI 137 (43.4%) 63 (68.5%)

 � Both 2 (0.6%) 1 (1.1%)

ASPECTS (core lab), 
median (IQR)

315 8.0 (7.0–9.0) 92 8.0 (6.0–8.5) 0.004

Baseline intracranial 
occlusion site, no. (%)

316 92 0.99

Continued

Time from symptom onset to needle

P value

0–3 hours (n=316) >3 hours (n=92)

N* N*

 � Distal ICA - I 12 (3.8%) 4 (4.3%)

 � Distal ICA - I and M1 2 (0.6%) 0 (0.0%)

 � Distal ICA - L 41 (13.0%) 13 (14.1%)

 � Distal ICA - T 37 (11.7%) 8 (8.7%)

 � Distal M1 96 (30.4%) 29 (31.5%)

 � Distal M2 3 (0.9%) 1 (1.1%)

 � Proximal M1 110 (34.8%) 34 (37.0%)

 � Proximal M2 15 (4.7%) 3 (3.3%)

Tandem lesion, no. (%) 316 45 (14.2%) 92 18 (19.6%) 0.25

ASPECTS, Alberta Stroke Programme Early CT Score; ICA, internal carotid artery; INR, 
International normalized ratio; mRS, modified Rankin Scale; N*, number of patients with 
non-missing data; NIHSS, National Institutes of Health Stroke Scale.

Table 2  Continued

Figure 1  Distribution of time to treatment variables by randomization 
group. The median expected onset-to-needle time was 135 min (IQR 
107–176) and the median expected door-to-needle time 53 min 
(IQR 40–69), without significant differences between both arms. The 
expected times were calculated as specified in the methods. For one 
patient the randomization date was interpolated. ED, emergency 
department.
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somewhat artificial time intervals were chosen since they repre-
sent the clinical scenario outside randomized controlled trials 
better than onset-to-randomization and door-to-randomization 
times. They are therefore easier to interpret and applicable to 
stroke centers. The study mean of DTN time was used due to the 
small sample sizes at individual centers and because there was 
little variation across sites. As a post-hoc sensitivity analysis, we 
used the individual time to IVT bolus administration for patients 
who received this treatment.

Outcomes
Detailed definitions are available in the statistical analysis plan 
that was finalized and deposited12 before the analysis. The 
primary endpoint was functional independence, defined as modi-
fied Rankin Scale (mRS)  ≤2 at 90 days. Secondary outcomes 
included mRS shift analysis, all-cause mortality, and time-to-
reperfusion defined as expanded Thrombolysis In Cerebral 
Infarction (eTICI ≥2b). We also analyzed pharmacological effi-
cacy (pre-interventional cross-sectional eTICI  ≥2a (cs-eTICI), 
technical efficacy (eTICI ≥2b following device use) and safety 

outcomes (any and symptomatic intracranial hemorrhage, with 
the latter defined as ≥4 points worsening on the NIHSS within 
24 hours).13

Statistical analysis
An independent statistician (LB) organized, cleaned and analyzed 
the data according to the prespecified statistical analysis plan 
(see the online supplemental material). The intention-to-treat 
population was analyzed for a potential time- and IVT-arm-
assignment interaction by comparing the outcomes in the IVT 
arm to the outcomes in the no IVT arm. Participant character-
istics at randomization by time intervals from onset/last-seen-
well to randomization were described using medians with IQR 
for continuous variables and proportions for discrete variables 
including all variables employed in any subsequent model.

The interaction was analyzed using logistic, linear or flexible 
parametric survival models for binary, continuous or time-to-
event outcomes, respectively. For rare binary outcome, penal-
ized maximum likelihood logistic regression (Firth method) 
was used. For the primary analysis, we analyzed the interaction 
term of the time interval (continuous variable)*IVT assignment. 
A linear relationship was used as default, but more flexible 
approaches (ie, fractional polynomials and linear splines) were 
also considered. For a secondary analysis, predefined time cut-
offs were used with the rationale of the ‘golden hour’ for IVT 
(OTN 0–60 min vs 61–270 min),14 the Food and Drug Admin-
istration label for alteplase (0–180 min vs 181–270 min), and 
according to quartiles of OTN.15 Models were compared using 
Akaike and Bayesian information criteria. Interaction terms are 
reported with 95% confidence intervals (95% CI) and p values. 
Interpretation of p values of the interaction was based on the 
recommendations of the Instrument for assessing the Credibility 
of Effect Modification Analyses (ICEMAN) tool.16

Models were adjusted by the binary stratification variables 
and sex. Further covariate adjustments for baseline differences 
between early and late presenting patients were considered.

RESULTS
Cohort characteristics
Between November 2017 and May 2021, 423 patients at 42 
centers were randomized and 15 patients were excluded after 
randomization. Altogether, 201 patients were assigned to MT 
alone and 207 to IVT+MT. The allocated intervention was 
received by 402/408 patients with three crossovers in each treat-
ment arm. Data completeness was almost perfect for mRS (one 
missing) and >95% for all other outcomes (see online supple-
mental figure S1 for the CONSORT flow-chart). The median age 
was 72 years (IQR 64–81), 209 (51.2%) were female, and the 
median NIHSS was 17 (13–20). The median OTN was 135 min 
(IQR 107–176) and the median DTN was 53 min (IQR 40–69). 
The expected median OTN and DTN were 142 (112–177) min 
and 54 (40–69) min in the IVT+MT group, and 129 (106–170) 
min and 51 (41–67) min in the MT alone group.

Table 2 reports the baseline characteristics according to time 
delays of OTN; see online supplemental data table 1 for compar-
ison according to DTN. Figure 1 depicts the distribution of time 
to treatment variables by randomization group.

Delay from onset (OTN)
We found no evidence that the effect of bridging IVT on func-
tional independence was modified by the delay of OTN. The odds 
for functional independence in patients treated with alteplase 
plus thrombectomy versus thrombectomy alone numerically 

Figure 2  Benefit according to quartiles of expected time from 
symptom onset to last known well to IVT bolus. (Top panel) Event rates 
of functional independence (%, (N)). (Middle panel) Odds ratios of 
IVT+MT versus MT alone with the dashed line indicating the marginal 
effect over all categories and the gray line the zero effect. (Bottom 
panel) Absolute risk reduction for IVT+MT versus MT alone. Benefit and 
harm refer to combination of IVT+MT versus MT alone. IVT, intravenous 
thrombolysis; MT, mechanical thrombectomy.
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decreased by 0.76 (95% CI 0.45 to 1.30, p=0.32) per hour 
of OTN delay. Similar results were obtained when assuming a 
dichotomous effect (adjusted odds ratio (aOR) of >3 hours vs 
0–3 hours 0.64, 95% CI 0.24 to 1.72, p=0.37), across quartiles 
(see figure 2) or when using linear splines. Models fitted best 
when OTN was included as a linear effect and consistent with 
the sensitivity analysis using the individual times to IVT bolus 
administration (see online supplemental table S2).

There was no significant interaction of OTN and bridging IVT 
assignment in terms of the safety outcomes or the pharmacolog-
ical and technical efficacy (see table 3).

In-hospital delay (DTN)
We also found no evidence that the effect of bridging IVT on 
functional independence is modified by the in-hospital delay. No 
heterogeneity was observed, including when assuming a dichoto-
mous effect of DTN (aOR of >1 hour vs 0–1 hour 1.37, 95% CI 
0.74 to 2.53). Similarly, across quartiles, there was no interaction 
of DTN and IVT assignment in terms of the primary outcome.

The adjusted odds for a favorable mRS shift numerically 
increased by 1.88 (95% CI 0.91 to 3.88) per 1 hour decrease 
of DTN resulting in a significant interaction with IVT assign-
ment (aOR 0.36, 95% CI 0.13 to 0.99, p=0.047). In parallel, 
the mortality analysis (aOR 17.8, 95% CI 1.8 to 174.9, p for 
interaction 0.011) provided some evidence for a more beneficial 
effect of IVT when in-hospital delays were short (table 3).

DISCUSSION
This post-hoc analysis of the SWIFT-DIRECT trial found no 
clear evidence that patients with short OTN benefited more 
from bridging IVT. Exploratory analysis of secondary clinical 
outcomes indicated a potentially favorable effect of IVT associ-
ated with shorter in-hospital delays.

For patients qualifying for IVT without MT, earlier treatment 
is associated with increased proportional benefits, with potential 
harms only evident beyond the established 4.5 hour limit.17 For 
patients who received bridging IVT before MT, the randomized 
controlled trials on this topic have reported no clear subgroup 
effects related to the time from symptom onset to randomiza-
tion. Also, our nuanced sub-analysis of the randomized SWIFT-
DIRECT trial detected no heterogeneity of treatment effect. Our 
model fit was best when OTN was handled as a continuous vari-
able (ie, assumption of a linear effect). The point estimate (aOR 
0.76, 95% CI 0.45 to 1.30) crossed the zero effect line indicating 
potential harm at around 4 hours after symptom onset for the 
dichotomized functional independence and beyond 4 hours for 
the mRS shift analysis (aOR 0.90, 95% CI 0.58 to 1.39). Never-
theless, given the point estimates of all trials on this topic,5 6 18 19 
the pathophysiology of ischemic stroke and IVT, as well as the 
low power of the subgroup analysis,15 it is possible that we 
missed a clinically important effect. Hence, this analysis should 
be repeated in an individual patient meta-analysis of comparable 
trials on bridging IVT.

Table 3  Interaction analysis regarding primary and secondary outcomes according to overall and in-hospital delays

Time Outcome category Outcome
aOR for MT alone per 1 hour delay 
with 95% CI

aOR of interaction 
per 1 hour delay 
with 95% CI*

Onset-to-needle* time:
Expected time from symptom onset 
or last known well to IVT bolus

Efficacy mRS 0–2 (primary), day 90 0.86, 0.60 to 1.23 0.76, 0.45 to 1.30

mRS decrease (better outcome), 
day 90

0.82, 0.60 to 1.12 0.90, 0.58 to 1.39

Mortality, day 90 1.57, 0.91 to 2.70 0.98, 0.42 to 2.32

Safety Any ICH on 24 hours imaging 1.35, 0.93 to 1.97 1.33, 0.78 to 2.27

Symptomatic ICH on 24 hours imaging 1.15, 0.42 to 3.17 0.66, 0.17 to 2.65

Pharmacological efficacy Pre-interventional reperfusion success
(cs-eTICI ≥2a)

0.99, 0.40 to 2.42 1.56, 0.54 to 4.49

Time-to-reperfusion 0.73, 0.60 to 0.89 1.24, 0.94 to 1.62,

Final reperfusion success (cs-
eTICI ≥2b)

0.78, 0.44 to 1.37 1.04, 0.36 to 3.02

Door-to-needle* time:
Expected time from arrival at the 
emergency department door to IVT 
bolus

Efficacy mRS 0–2 (primary), day 90 1.47, 0.60 to 3.56 0.48, 0.14 to 1.62

mRS decrease (better outcome), 
day 90

1.88, 0.91 to 3.88 0.36, 0.13 to 0.99

Mortality, day 90 0.11, 0.02 to 0.66 17.8, 1.8 to 174.9

Safety Any ICH on 24 hours imaging 0.99, 0.40 to 2.43 0.95, 0.28 to 3.24

Symptomatic ICH on 24 hours imaging 0.73, 0.05 to 10.74 4.60, 0.19 to 114.10

Pharmacological efficacy Pre-interventional reperfusion success
(cs-eTICI ≥2a)

2.26, 0.36 to 14.38 0.63, 0.07 to 6.06

Time-to-reperfusion 0.40, 0.26 to 0.63 0.88, 0.47 to 1.64

Final reperfusion success (cs-
eTICI ≥2b)

1.69, 0.37 to 7.81 0.56, 0.05 to 6.83

*The aOR indicates the interaction term of assignment to IVT+MT (as compared with MT alone) and 1 hour delay and group assignment assuming a linear effect. The OR for 
MT alone gives the change in the odds for functional independence per additional hour delay. The interaction refers to change in the treatment effect (odds for functional 
independence of IVT plus MT vs MT alone) per additional hour delay.
aOR, adjusted OR; cs-eTICI, cross-sectional expanded Thrombolysis In Cerebral Infarction; ICH, intracranial hemorrhage; IVT, intravenous thrombolysis; mRS, modified Rankin 
Scale; MT, mechanical thrombectomy.
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No interaction could be detected with the secondary safety 
outcomes, and pharmacological and technical efficacy. However, 
a sub-analysis of the DEVT trial recently reported an association 
of bridging IVT with increased early reperfusion when MT was 
delayed more than approximately half an hour.20

Analysis of in-hospital delays revealed a potential heteroge-
neity of treatment effect of IVT regarding mortality and mRS 
shift analysis, with a larger proportional benefit seen when DTN 
was shorter. However, the credibility of those subgroup effects 
is unclear because of multiple testing and hence, this finding 
might be due to chance.16 Nevertheless, since the anticipated 
direction of the effect and the pathophysiology support such 
heterogeneity, we suggest a re-analysis in an individual patient 
meta-analysis of the trials mentioned above. In a bigger dataset, 
potentially relevant subgroups such as tandem lesions should be 
specifically addressed.2

The meta-analysis of the trials on MT21 also found a time-to-
treatment interaction for in-hospital delays, but not for overall 
delays from symptom onset. Possible reasons include a stronger 
association of in-hospital delays with outcome, the time-reset 
effect of imaging-based inclusion,22 uncertain trustworthiness 
of pre- versus in-hospital time workflow information, and non-
linear ischemic core growth over time.23 24

Strengths and limitations
Strengths include good overall data quality within the setting 
of the randomized prospective international multicenter SWIFT-
DIRECT trial and a prespecified, deposited statistical analysis 
plan with defensive interpretation according to recommenda-
tions for subgroup analysis of randomized trials. Limitations are 
mainly related to the fact that the study was neither designed 
nor powered to detect an interaction effect—that is, assuming 
the observed correlations from the main study, odds ratios lower 
than 0.6 would be necessary to reach a power of 80%. Since 
imaging selection (ASPECTS) was used in the enrolled patients, 
the time effects observed are likely to be less pronounced than 
those that would occur in the overall population of patients with 
large-vessel occlusion in the absence of imaging selection.

CONCLUSIONS
This subgroup analysis found no evidence that the effect of 
bridging IVT on functional independence is modified by overall 
or in-hospital treatment delays. Considering the low statistical 
power of this subgroup analysis, a clinically important effect 
could have been missed. Nevertheless, exploratory analysis 
regarding secondary clinical outcomes indicated a potentially 
favorable effect of IVT associated with shorter in-hospital delays. 
Until further evidence regarding potential heterogeneity of the 
IVT effect size before MT becomes available from individual 
patient meta-analysis of comparable trials, IVT should be given 
to eligible patients and neither OTN nor DTN should influence 
treatment decisions regarding bridging IVT.
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