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Abstract: Glioblastoma (GBM) is the most aggressive brain tumor, and despite initial response to 

chemo- and radio-therapy, the persistence of glioblastoma stem cells (GSCs) unfortunately always 

results in tumor recurrence. It is now largely admitted that tumor cells recruit normal cells, includ-

ing mesenchymal stem cells (MSCs), and components of their environment, to participate in tumor 

progression, building up what is called the tumor microenvironment (TME). While growth factors 

and cytokines constitute essential messengers to pass on signals between tumor and TME, recent 

uncovering of extracellular vesicles (EVs), composed of microvesicles (MVs) and exosomes, opened 

new perspectives to define the modalities of this communication. In the GBM context particularly, 

we investigated what could be the nature of the EV exchange between GSCs and MSCs. We show 

that GSCs MVs can activate MSCs into cancer-associated fibroblasts (CAFs)-like cells, that subse-

quently increase their secretion of exosomes. Moreover, a significant decrease in anti-tumoral miR-

100-5p, miR-9-5p and let-7d-5p was observed in these exosomes. This clearly suggests a miRNA-

mediated GBM tumor promotion by MSCs exosomes, after their activation by GBM MVs. 

Keywords: tumor microenvironment; extracellular vesicles; glioblastoma; MSC activation;  

exosomal miRNAs; CAFs 

 

1. Introduction 

Glioblastoma (GBM) is classified as grade IV brain tumor by the World Health Or-

ganization (WHO), with only a 14-month median survival rate for patients [1]. Treatment 

includes maximal surgical resection, radiotherapy and Temozolomide chemotherapy [2], 

but unfortunately, the initial therapy response is systematically followed by tumor recur-

rence. This resistance to treatment is driven by a specific subpopulation, the Glioblastoma 

stem cells (GSCs), that can self-renew or differentiate and therefore generate tumor heter-

ogeneity, while being responsible of tumor growth initiation and post-therapy recurrence 

[3]. 

GBM tumor fate is also under the influence of normal cells surrounding the tumor, 

the tumor microenvironment (TME), composed of stromal cells such as mesenchymal 

stem cells (MSCs), endothelial cells, immune cells in addition of extracellular matrix. 

MSCs are multipotent cells, defined by their capacity to either self-renew or differentiate 

into adipocytes, osteoblasts or chondrocytes [4]. Added to this, MSCs are characterized 

by the expression of CD73, CD90 and CD105, and the absence of hematopoietic markers 

(CD45, CD34, CD14, CD11b, CD79a, CD19 or class II histocompatibility complex antigens) 

Citation: Garnier, D.; Ratcliffe, E.; 

Briand, J.; Cartron, P.-F.; Oliver, L.; 

Vallette FM. The Activation of Mes-

enchymal Stem Cells by Glioblas-

toma Microvesicles Alters Their Exo-

somal Secretion of miR-100-5p, miR-

9-5p and let-7d-5p. Biomedicines 2022, 

9, x. https://doi.org/10.3390/xxxxx 

Academic Editors: Igea D'Agnano 

and Ingrid Cifola 

Received: 30 November 2021 

Accepted: 31 December 2021 

Published: date 

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional 

claims in published maps and institu-

tional affiliations. 

 

Copyright: ©  2022 by the authors. 

Submitted for possible open access 

publication under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://cre-

ativecommons.org/licenses/by/4.0/). 



Biomedicines 2021, 9, x FOR PEER REVIEW 2 of 13 
 

[5]. In a cancer progression context, MSCs naturally display a tropism towards tumor cells, 

where their number inversely correlates to GBM patients overall survival, suggesting a 

tumor promoting role [6]. However their contribution is not completely clear yet [7]. 

Communication between GSCs tumor cells and MSCs from the TME has been largely 

studied, however the recent discovery of extracellular vesicles (EVs) brought to light a 

new way to convey signals between the tumor and TME to insure a bidirectional commu-

nication [8]. EVs are particles released by cells and delimited by a lipid bilayer [9] that can 

be divided into 2 main populations: exosomes, which are very small (50–150 nm) mem-

brane-derived vesicles generated through the endocytic pathway and microvesicles 

(MVs)(100–1000 nm) that are generated by blebbing of the plasma membrane [10–12]. 

They carry proteins, DNA, RNA as well as metabolites that constitute critical messengers 

contributing to tumor growth, dissemination and drug resistance [13,14]. 

The participation of EVs in molecular exchanges between tumor cells and MSCs has 

been studied; however, some uncertainty remains regarding the nature and content of 

these EVs, as well as their effect on GBM progression. In this work we analyzed the effect 

of GBM EVs on the MSCs vesiculation profile. Surprisingly, we found out that GSCs MVs 

but not exosomes were taken up by MSCs, the consequence of which was an increased 

release of exosomes from these tumor-activated MSCs (TA-MSCs). The content of TA-

MSC exosomes was also modified: we showed a significant decrease in EXO-miR-100-5p, 

EXO-miR-9-5p and EXO-let-7d-5p. 

2. Materials and Methods 

2.1. Materials 

Unless stated otherwise, cell culture material was obtained from Thermo Fisher Sci-

entific (Courtaboeuf, France) and chemicals from Sigma Aldrich (Lyon, France). 

2.2. Patient Samples and Culture 

Tumors were obtained from patients diagnosed with high-grade GBM from the “Tu-

morothéque IRCNA (Institut Régional du Cancer Nantes Atlantique)”. GBM primary cul-

tures of GSCs and MSCs were obtained as described earlier [15–17]. GSCs were grown in 

defined medium (DMEM/HAM-F12, 2 mM L-glutamine, N2 and B27 supplement, 2 

μg/mL heparin, 20 ng/mL EGF and 25 ng/mL bFGF, 100 U/mL penicillin and 100 μg/mL 

streptomycin). Bone marrow MSCs were cultured in MEMα containing ribonucleosides 

and deoxyribonucleosides supplemented with 10% fetal calf serum, 2 mM L-glutamine, 

100 U/ml penicillin, and 100 μg/mL streptomycin. Cells were cultured in an incubator at 

37 °C, 5% CO2 and 95% humidity. 

2.3. Purification of Extracellular Vesicles 

EVs were obtained as described earlier [18,19]. Briefly, after 48 h cell culture, super-

natant was cleared of cells and cell debris by centrifuging for 10 min at 400× g. The result-

ing supernatant was then centrifuged 10 min at 2000× g to remove smaller cell debris, 

producing the conditioned media (CM). MV pellet was then purified from CM after cen-

trifugation for 30 min at 10,000× g at 4 °C. The supernatant was saved for exosomes isola-

tion, while the pellet was washed with phosphate buffered saline (PBS) and centrifuged 

again for 30 min at 10,000× g at 4 °C. The resulting MV pellet was then stored at −80 °C. 

The MV supernatant was ultracentrifuged in an Optima XE ultracentrifuge (Beckman 

Coulter) for 1 h at 100,000× g at 4 °C to pellet exosomes. Exosomes were washed with PBS 

and ultracentrifuged again for 1 h at 100,000× g at 4 °C, and finally stored at −80 °C. 

2.4. Quantification of Cell Number and Protein Content 

Cell viability was assessed by cell counting on Malassez chamber after Trypan blue 

staining. Protein concentration was determined using BCA protein assay (Thermo Fisher 

Scientific). 
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2.5. Nanosight Measurement of Particles Size and Concentration 

Nanoparticle tracking analysis (NTA) was performed using the NS300 system (Na-

nosight, Malvern Panalytical, Palaiseau, France). Briefly, MV and exosome pellets were 

resuspended and diluted in filtered PBS to reach a concentration between 107 and 109 par-

ticles/mL. Particle suspensions were then injected into the system. The acquisition settings 

were chosen at the beginning of the measurement (Temperature 25 °C, Exposure 15, Gain 

1) and maintained throughout the experiment. The algorithm analyzed the size distribu-

tion and concentration of EVs, based on 5 individual videos of 1 min per sample. Data 

were then processed in two different ways: either the size distribution of EVs was reported 

on a line graph, displaying particle concentration according to particle size (nm), or par-

ticles size/concentration were averaged for each sample to compare data between differ-

ent conditions, and plotted as bar graphs. When indicated, particle concentration was nor-

malized to the number of cells in the sample, taking into account the proliferation occur-

ring during incubation. 

2.6. Electron Microscopy 

Negative staining electron microscopy was performed at the Microscopy Rennes im-

aging center platform (MRic TEM) (University of Rennes 1, Rennes, France). The EVs were 

deposited on glow-discharged electron microscope grids for 1 min and then negatively 

stained with 2% uranyl acetate for 10 seconds. The samples were observed using a 120 kV 

electron microscope (JEM 1400, Jeol) equipped with a CCD camera (model Orius, Gatan). 

Micrographs were acquired using the camera in binning mode 1. 

2.7. PKH67 Staining and Analysis of Fluorescence by Flow Cytometry and Fluorescent 

Microscopy 

GSCs EVs were labeled with PKH67 (green fluorescent cell membrane dye; Sigma 

Aldrich) as per manufacturer’s instructions. After incubation with stained EVs, MSC cells 

were analyzed using a BD Accuri C6 cytometer (BD Bioscience, Le Pont de Claix, France). 

Some cells were also fixed in 4% paraformaldehyde for 10 min, washed with PBS, 

mounted with Prolong antifade mounting media (Thermo Fisher Scientific), and observed 

under a Zeiss Axiovert 200-M inverted microscope. 

2.8. miRNA Expression 

RNA was reverse transcribed using a miScript II RT kit (Qiagen, Courtaboeuf, 

France) and analyzed by qPCR with the miScript miRNA PCR Arrays Human Cancer 

PathwayFinder (Qiagen) on the Rotor-Gene Q (Qiagen), according to the manufacturer’s 

instructions. 

2.9. Statistical Analysis 

Results were analyzed on Prism 9.0 software (GraphPad Software) and expressed as 

mean ± SD for indicated number of separate experiments. Paired Student’s t test was used 

for statistical analysis. A p value of <0.05 was considered significant. * p < 0.05; ** p < 0.01; 

*** p < 0.001; **** p < 0.0001. 

3. Results 

3.1. Characterization of GBM Extracellular Vesicles 

To analyze the effect of GSC EVs on MSCs biology, we first purified two different 

populations of EVs by differential centrifugation: microvesicles (MV) and exosomes 

(EXO). To consider the variability between the different GBM subtypes, we chose to ana-

lyze EVs from 2 GSC primary cultures, where the size and concentration of GSC EVs were 

analyzed by NTA. Size measurements confirmed a difference in size between MVs and 

exosomes, with MVs having an average size superior to 200 nm and exosomes being 
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smaller, with an average size of 150 nm (Figure 1A,B). The concentrations were also dif-

ferent between the two populations of EVs: after normalization to cell number, EV quan-

tification showed that GSCs secreted more exosomes than MVs, especially in the GBM1 

culture (Figure 1C). Observations of EVs by electron microscopy confirmed the difference 

in size between MVs and exosomes, and the presence of cup-shaped EVs (Figure 1D).  

  

Figure 1. Characterization of GBM Extracellular vesicles. (A) Analysis of EV size distribution (mi-

crovesicles—MVs and exosomes—EXO) by NTA technology in GBM1 and GBM2 cell cultures. 

The mean size (B) and the concentration of particles per cell (C) were measured in both EV frac-

tions. (D) Observation of GBM MVs and EXO by electron microscopy (bar scale = 200 nm). **: p 

value ≤ 0.01, **** : p value ≤ 0.0001. 

3.2. Incorporation of GBM MVs by MSCs 

The following step consisted of incubating conditioned media (CM) from GSC cul-

tures with MSCs, to determine if some molecules or vesicles secreted by GSCs could in-

fluence MSCs. After 24 h incubation with GBM1 and GBM2 GSC CM, no change in MSC 

number was noticed (Figure 2A). However, quantification of protein content per cell in-

dicated an increased protein concentration in these MSCs (Figure 2B), suggesting the in-

corporation by MSCs of molecules secreted into the CM of GSCs. In order to determine if 

GSC EVs participated in this process, similar experiments were performed using purified 

MVs and exosomes from CM of GSCs. As previously, no significant difference in MSC 

number was detected. However, the increase in protein quantity per cell observed after 

incubation of MSCs with GSC CM was similar to that observed after incubation with MVs 

alone (Figure 2C). Moreover, the addition of GSC exosomes did not modify MSC protein 

content. Overall, these results show that MVs secreted by GSCs influence protein content 

of MSCs, probably through their direct incorporation by these cells. 
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Figure 2. Exposure of MSCs to GSC Microvesicles (MVs) results in protein content increase. Incu-

bation for 24 h of MSCs with the conditioned media (CM) from GBM1 or GBM2 primary cultures 

did not alter cell number (A) but increased their protein content (B). The differential transfer of MV 

or EXO fractions showed that the effect is mediated by MVs, suggesting their uptake by MSCs (C) 

(n = 3 independent experiments). *: p value ≤ 0.05, **: p value ≤ 0.01, ***: p value ≤ 0.001, ****: p value 

≤ 0.0001. 

To confirm GSCs MVs uptake by MSCs, purified GBM1 and GBM2 MVs were stained 

with a cell membrane label, PKH67, before incubated for 24 h with MSCs where fluores-

cence gain was measured by flow cytometry. MSCs exposed to GBM1 and GBM2 MVs 

revealed a significant fluorescence increase compared to the control (Figure 3A), reaching 

close to 80% of MSCs positive for PKH67 staining (Figure 3B), validating the uptake of 

GSC MVs by MSCs. Fluorescence acquisition was also confirmed by fluorescent micros-

copy, showing the presence of fluorescent intracellular particles in MSCs incubated with 

GBM1 and GBM2 MVs (Figure 3C), and attesting the actual incorporation of MVs into 

MSC cells. No significant fluorescence intensity difference was detected in MSCs with 

GBM1 and GBM2 MVs. 
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Figure 3. Uptake of GSC microvesicles by MSCs. (A,B) Flow cytometry analysis of MSCs incubated 

with PKH67-labelled MVs from either GBM1 or GBM2. FITC histograms are shown (A) as well as 

bar graph percentage of FITC positive cells (B). Corresponding pictures of fluorescent microscopy 

show fluorescence inside MSCs, suggesting the presence of PKH67-labelled MVs (C) (bar scale = 20 

µm). *: p value ≤ 0.05, **: p value ≤ 0.01. 

3.3. MSCs Uptake of GBM MVs Alters Their Exosome Release 

We then investigated whether activation of MSCs by GBM MVs (leading to Tumor-

activated MSCs, TA-MSCs) could modify their vesiculation profile. NTA analysis of the 

exosome fraction, purified from the supernatant of MSCs exposed to GBM EVs, showed 

a significant increase in exosomes release (Figure 4A,B). Moreover, the miRNA content of 

the exosomes was also altered (Figure 4C and Supplementary Figure S1). In particular, we 

observed a significant decrease in exosomal let-7d-5p in MSCs activated by both GBM 

primary cultures; a similar profile was observed for miR-100-5p and miR-9-5p except the 

decrease was significant with only one of the 2 GSC primary cultures (Figure 4C–upper 

panel). In parallel we observed an increase in miR-335-5p and miR-148a-3p in exosomes 

purified from MSCs activated by both GSC MVs, albeit the difference was not significant 

(Figure 4C–lower panel).  
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Figure 4. Exposure of MSCs to GBM microvesicles (MVs) leads to an increase in their exosome re-

lease and a modification of their exosome-miRNA profile. (A,B) NTA quantification of exosomes 

released by MSCs previously exposed to GBM1 and GBM2 MVs was performed and expressed as 

concentration of exosomes/cell depending on size (A), or the concentration of exosomes/cell nor-

malized to control MSCs (B). (C) Expression of miRNAs present in exosomes of MSCs activated by 

GBM MVs, expressed as fold expression compared to control MSCs. (n = 3 independent experi-

ments). *: p value ≤ 0.05, **: p value ≤ 0.01, ***: p value ≤ 0.001. 

4. Discussion 

The activation of stromal cells into cancer-associated fibroblasts (CAFs) by tumor 

cells is now a well-described process explaining how tumor can recruit and change the 

phenotype of stromal cells, including MSCs, to contribute to tumor growth and metastatic 

formation [20]. Signals triggering conversion of stromal cells into CAFs include amongst 

others transforming growth factor-β (TGFβ) family ligands, pro-inflammatory cytokines 

or direct cell-cell contact [21]. Consequently, those signals activate different pathways, in-

cluding Janus kinase (JAK)–STAT signaling, SMAD and STAT transcription factors, or the 
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contractile cytoskeleton. This results in a CAF phenotype, that can be defined by its elon-

gated spindle morphology, absence of epithelial or endothelial markers, expression of 

mesenchymal markers (vimentin, α-smooth muscle actin (α-SMA), fibroblast activation 

protein (FAP), or platelet-derived growth factor alpha (PDGF-α)), and absence of muta-

tions associated with cancer. Several studies showed that tumor EVs can also ensure this 

activation function [22–24]. For example, exosomes can generate CAFs through the trans-

mission of growth factors involved in fibroblast activation, such as TGF-β from bladder 

cancer cells that activates SMAD pathway in fibroblasts [25], or the transfer of BMP from 

gastric cancer cells that activates PI3K/AKT and MEK/ERK pathways in pericytes [26,27]. 

Exosomes can also mediate CAF activation through the induction of endothelial-mesen-

chymal transition from melanoma cells [28], the transfer of miRNAs promoting β1-integ-

rin-NF-κB signaling (from metastatic liver cancer cells) [29], cell motility and extracellular 

matrix remodeling pathways (breast cancer cells) [30] or SOCS1/JAK2/STAT3 signaling 

(melanoma cells) [31]. The exosomal transfer of cervical cancer Wnt2B activates Wnt/β-

catenin signaling to activate fibroblasts into CAFs [32] while survivin from breast cancer 

induces CAFs through SOD1 upregulation [33]. The transfer of exosomes derived from 

colorectal cancer cells to fibroblasts also induces a dramatic change in their proteomic 

profile, correlating to phenotypes promoting proliferation, angiogenesis, invasion as well 

as metabolic reprogramming [34]. 

While several studies have already described the secretion of exosomes by tumor 

cells to generate CAFs, here we show that in GBM bigger EVs, such as MVs, can also be 

essential for the activation of stromal MSCs. GSCs MVs are bigger than exosomes but are 

secreted in lower quantity (Figure 1). Unexpectedly, when quantifying proteins in MSCs 

cells exposed to GSCs EVs, only MVs seemed to induce a change in protein content in 

recipient cells (Figure 2), showing MVs are actually internalized by MSCs and not exo-

somes (Figure 3).  

Few articles pointed out an involvement of MVs in CAF activation. However, this 

must be reinterpreted in the light of the progress made regarding the definition of EVs 

since the distinction between exosomes and MVs was not clearly made then. Two studies 

claimed the activation of stromal cells into CAFs by MVs [35,36], but EVs were actually 

prepared from a 100,000g ultracentrifugation fraction, which corresponds to a mix of MVs 

and exosomes. This confusion highlights the need for an universal EV classification and 

procedure definition, that the International Society for Extracellular Vesicles (ISEV) is ac-

tively working on for several years, with the edition of Minimal Information for Studies 

of Extracellular Vesicles (“MISEV”) guidelines [9].  

Similarly, Antonyak et al. first described the activation of fibroblasts by breast cancer 

MVs [37], while the EV fraction was in fact purified after 100,000g ultracentrifugation 

(containing exosomes too). Interestingly though, more recently the same research team 

renewed the experiment with a filtration protocol excluding exosomes, showing that 

breast cancer MVs can indeed activate fibroblasts into CAFs, but only on stiff matrices 

[38]. MVs from prostate cancer cells were also shown to activate fibroblasts through 

ERK1/2 phosphorylation, and the resulting CAFs increased their secretion of MVs boost-

ing cancer cell migration and invasion [39]. The extracellular matrix (ECM) was also de-

scribed as an important factor, as matrix metalloproteinases (MMP) expression was in-

creased inside tumor MVs as well as in CAFs.  

Overall, there are only two studies showing generation of CAFs after the uptake of 

MVs by stromal cells. Added to our work, it shows that the role of MVs in stromal cell 

activation into CAFs may have been underestimated, outshined by the success of exo-

somes. Further research would be needed to detail the modalities of this MV-mediated 

CAF activation, keeping in mind that the ECM plays a critical part in the TME and the 

establishment of the CSC niche [40,41] in GBM and many other tumor types. The devel-

opment of new bioengineered 3D tumor models would become essential for further an-

swers. We could actually wonder whether the differences between GSCs neurosphere cul-

ture compared to GBM adherent monolayer culture could explain the difference in CAF 
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activation by MVs versus exosomes, in line with the involvement of ECM in the intake of 

MVs by stromal cells as suggested previously [38]. Astonishingly, culture of GBM cells in 

3D ECM microenvironment correlates to metabolic changes [42], reflecting TME influence 

on GBM bioenergetics [43]. Likewise, we noted in one of our previous works a metabolic 

reprogramming in GSC/TA-MSC organoids, linked to the transfer of mitochondria 

through tunneling nanotubes and extracellular vesicles [16]. 

We also show that the activation of MSCs into TA-MSCs increases their production 

of exosomes (but not MVs) and modifies the miRNA profile of these exosomes (Figure 4), 

as observed in CAFs. It has now been described many times that modifications associated 

with the activation of stromal cells into CAFs include alterations in the vesiculation pro-

cess, impacting the proliferation, migration or drug resistance in tumor cells [24,44]. In 

particular, a change in exosomal miRNAs seems to be a recurrent observation after CAF 

activation [24,45,46].  

In particular, under our conditions we show that 3 miRNAs are significantly de-

creased in TA-MSCs, while 2 miRNAs are increased. MiR-100-5p downregulation in pan-

creatic ductal adenocarcinoma (PDAC)[47], oral squamous cell carcinoma [48], prostate 

cancer [49,50], lung cancer [51], bladder cancer [52], endometrial carcinoma [53] and breast 

cancer [54–56] contributes to tumor progression by regulating cell tumor proliferation, the 

response to therapy, migration, invasion or stemness. MiR-9 is also described as a negative 

regulator of tumor cell proliferation, invasion or drug resistance in pancreatic cancer cells 

[57], PDAC [47], hepatocellular carcinoma [58], gastric cancer [59], prostate cancer [60] or 

GBM [61–63]. The non-coding RNA let-7d can have different targets and effect in tumors 

[64]. Interestingly, let-7d blocks neural stem cell proliferation and promotes their neuronal 

differentiation and migration and its expression correlated to miR-9 expression [65]. In-

terestingly, the three miRNAs that are downregulated, miR-100-5p, miR-9-5p and let-7d-

5p, were all shown to be involved in tumor suppression. They were also involved in IGFR-

1 signaling [47], which promoted GBM survival [66]. A deeper analysis of regulators of 

this pathway would therefore be interesting. 

In parallel, while the difference did not appear significant, we found interesting that 

miR-148a-3p and miR-335-5p were upregulated in TA-MSCs. MiR-148a-3p is a crucial reg-

ulator of GBM progression, by promoting tumor stem cell proliferation, migration, inva-

sion and angiogenesis [67–72], while miR-335-5p has been shown to be upregulated in 

GBM [73,74].  

While complement experiments will be needed to precise the effect of TA-MSCs ex-

osomes on GBM cells, the change in miRNA we identified clearly suggest that they pro-

mote GBM progression. 

5. Conclusions 

Overall, our work emphasizes once again the critical role played by EVs in tumor 

progression, more specifically in the communication between GBM cells and the stromal 

cells present in the TME. Unexpectedly, we uncover the participation of MVs, and not 

exosomes, in the activation of MSCs into CAFs-like cells. On the contrary, resulting TA-

MSCs increase their secretion of exosomes, in which we observed a decrease in anti-tumor 

miRNAs (miR-100-5p, miR-9-5p and let-7d-5p). 

Supplementary Materials: The following supporting information can be downloaded at: 

www.mdpi.com/xxx/s1, Figure S1: Expression of miRNAs present in exosomes of MSCs activated 

by GBM MVs, expressed as fold expression compared to control MSCs. 
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