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Summary 

Proteins are known to undergo structural changes upon binding to partner proteins. But the 

prevalence, extent, location, and function of change in protein dynamics due to transient 

protein-protein interactions is not well-documented. Here, we have analysed a dataset of 58 

protein-protein complexes of known 3-D structure and structures of their corresponding 

unbound forms to evaluate dynamics changes induced by binding. 55% cases showed 

significant dynamics change away from the interfaces. This change is not always 

accompanied by an observed structural change. Binding of protein partner is found to alter 

inter-residue communication within the tertiary structure for about 90% cases. Also, residue 

motions accessible to proteins in unbound form were not always maintained in the bound 

form. Further analyses revealed functional roles for the distant site where dynamics change 

was observed. Overall, results presented here strongly suggest that alteration of protein 

dynamics due to binding of a partner protein commonly occurs. 
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Introduction 

Transient interactions among proteins govern vital cellular processes and maintain functional 

integrity of the cell. (Acuner Ozbabacan et al., 2011; Levy and Pereira-Leal, 2008; Schreiber 

and Keating, 2011). These interactions may activate signalling process, recruit components of 

bigger complex, and inhibit or trigger molecular function (Tsai et al., 2009). Generally, a 

conformational change is induced by partner protein and an allosteric communication 

between protein interface and non-interface regions seems responsible for these functions 

(Swapna et al., 2012a; Tsai and Nussinov, 2014). Allostery is defined as alteration of protein 

function due to binding of an effector molecule at a site away from its functional site 

(Nussinov and Tsai, 2013). The effector can either be a small-molecule, another protein or 

DNA/RNA, a mutation or post-translational modification (Tsai et al., 2009). This alteration 

can either be a change in local/global protein conformation or a change in fine dynamic 

equilibrium between different alternative conformations. Two conceptual models for allostery 

viz., induced fit and conformational selection, were proposed as early as in 1959 and 1965 

respectively (Koshland, 1959; Monod et al., 1965). The conformational selection term coined 

by Monod-Wyman-Changeux in 1965 relates to a two-state model. Further, Frauenfelder et al 

discussed the existence of static broad ensembles of states (Frauenfelder et al., 1991). Later, a 

dynamic landscape, which is the basis of modern view of conformational selection, was 

proposed (Kumar et al., 2000). 

Traditionally, allostery was associated with a change in protein structure upon effector 

binding. Earlier studies have analysed the extent of structural changes in a protein because of 

binding of another protein (Betts and Sternberg, 1999; Grant et al., 2010; Martin et al., 

2008a, 2008b; Swapna et al., 2012a). Further, Swapna et al showed that the structural 

changes occurring in a protein due to binding are not just limited to protein-protein interfaces 

but are also widespread in regions distant from the interfaces (Swapna et al., 2012a). The idea 

of allostery without a significant structural change was proposed in 1984 (Cooper and 

Dryden, 1984), but it is only until recently, it has been fully appreciated. In their seminal 

paper, Cooper and Dryden laid the theoretical groundwork for the possibility of dynamic 

allostery i.e., allosteric changes happening without a conformational change. It was argued 

that dynamic allostery operates through altered entropy mediated by changes in frequency 

and amplitude of thermal or vibrational fluctuations (Cooper and Dryden, 1984). This 

changing view of allostery has been appreciated in the last decade with popularisation of 

NMR methods to study protein motions. Proteins like catabolite activator protein (CAP) have 
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been shown to exhibit dynamic allostery, arising due to changes in intrinsic dynamics of the 

structure upon cAMP-binding (Louet et al., 2015; Popovych et al., 2006). Similar 

observations have been made for a few small molecule-protein and peptide-protein 

interactions (Kern and Zuiderweg, 2003; Mercier et al., 2001; Olejniczak et al., 1997; Wang 

et al., 2001; Zidek et al., 1999). For PPIs, an increase in backbone flexibility upon partner 

binding has been reported for certain complexes (Arumugam et al., 2003; Fayos et al., 2003). 

In the past, short molecular dynamics simulations on 17 protein-protein complexes (PPCs) in 

their bound and unbound form suggested that the flexibility associated with protein structures 

change upon binding, with a redistribution of dynamics within the complex (Grünberg et al., 

2006). This important study countered the idea of increased rigidity of proteins upon complex 

formation, but not much is known about the functional relevance of these observations. 

Developments in the field of dynamic allostery have led to a renewed interest in 

understanding the effect on intrinsic dynamics when two proteins interact. The above-

mentioned reports in support of dynamic allostery are based on the analysis of selected 

individual proteins and it is not clear how far these are prevalent in PPCs. Present study is a 

systematic attempt to explore the prevalence, extent, location and functional relevance of the 

dynamics change in proteins due to transient protein-protein interactions (PPIs). A detailed 

structural and dynamics analyses was performed on a non-redundant dataset of 120 and 58 

complexes respectively. The datasets consist of proteins in their bound and unbound states. 

We first demonstrate that it is common to observe alteration of dynamics at distant site upon 

binding of a partner protein. Second, we show that alteration in dynamics need not be 

accompanied by conformational change at the distant site. Third, we demonstrate that 

communication between the site of perturbation and allosteric site happens by alteration in 

inter-residue interactions within the structure. Fourth, we demonstrate that, for many cases, 

global motions accessible to a protein in its unbound form are not always maintained in the 

bound form. We also show that even if they are maintained, for most of them, the modes are 

re-ordered. We further highlight with examples how an alteration in dynamics is related to 

function. Taken together, results presented here strongly suggest that the alteration of 

dynamics, upon interaction of two proteins, occur more frequently than previously thought. 

 

Results 

 

Binding of proteins influences the conformations of associated proteins 
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In an earlier study, Swapna et al showed that proteins bound to other proteins undergo larger 

structural changes compared to proteins in the unbound form (Swapna et al., 2012a). With 

the availability of far more structures of proteins in bound and unbound forms in protein data 

bank (PDB), it is worthwhile exploring the extent of structural changes induced by PPIs. So, 

a comprehensive dataset of 120 protein complexes was prepared for this study as described in 

materials and methods section. The RMSD and GDT-TS scores for interacting partners in the 

PPC dataset showed that, for 91/120 complexes (75.8%), at least one of the interacting 

partners in the bound form show significant differences in structure (Figure 1A). RMSD 

values greater than the standard deviation from the mean of RMSDs for proteins in control 

dataset 1 were considered significant. For 52 out of these 91 complexes (57.1%), one binding 

partner showed significant structural change and other partner showed no change in its 

conformation (Figure S1). To account for the effect of crystal packing on the structure, 

RMSD distribution for 120 complexes was compared with that of control dataset 1 (details in 

methods) (Figure 1B). The two distributions (mean values 0.45Å and 1.47Å for control 

dataset 1 and PPC dataset respectively) were found to be significantly different (two sample 

KS-test, p-value < 2.2x10-16), suggesting that the observed differences in global protein 

conformation is mainly due to binding of another protein and not due to crystallisation 

artefacts. 

To identify the local regions of structural difference between complexed and free forms, 

residues were classified into interface, near-interface and far from interface residues as 

described in materials and methods section. RMSD was calculated for these stretch of 

residues separately. RMSD distribution for interface (mean value 1.3Å), near-interface (mean 

value 0.9Å) and far-from interface or non-interface (mean value 1.2Å) residues was found to 

be significantly different from the control dataset 1 (two sample KS test, p-value < 2.2x10-16) 

(Figure 1B). Careful analysis of the plots suggested that not only the regions at interface 

show significant deviations upon binding, but regions away from the interfaces also deviate 

significantly between the bound and unbound forms. RMSD values greater than the standard 

deviation from the mean of RMSDs for proteins in control dataset 1 was considered 

significant. At least one of the interaction partners for 53 complexes is reported to show 

deviation in the region away from interfaces (see Table S1). For 37 complexes, both partners 

showed deviations in the residues away from interfaces (see Table S2). Examples of cases 

that show structural changes away from the interface are shown in Figure 1C.  

Residue dynamics get altered upon protein-protein complex formation 
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To understand the extent of change in residue dynamics between the bound and unbound 

form of a protein, normalised square fluctuations obtained from normal mode analysis 

(NMA) were analysed for 58 complexes. These were obtained after filtering cases with 

missing residues in the structure in either bound or unbound form (see materials and methods 

section). Normal modes pertaining to 80% of the variance were considered for calculation of 

squared fluctuations. These fluctuations are equivalent to thermal motions or vibrational 

motions of the residues around a mean position and define the flexibility of a protein. The 

distributions of normalised square fluctuations for the proteins in bound and unbound forms 

were found to be significantly different (two-sample KS test, p-value < 2.2e-16) (Figure 2A). 

A higher variance in the fluctuation distribution of bound form was observed, suggesting that 

many residues in the bound form show change in flexibility (Figure 2A). To impose 

confidence on the results, two control studies were performed. First, the difference between 

normalised square fluctuations of the bound and unbound form of proteins from PPC dataset 

was compared with the difference between normalised square fluctuations of the pairs from 

control dataset 1 (Figure 2B). The differences between two distributions were found to be 

statistically significant (two-sample, KS test, p-value < 2.2x10-16). Second, the normalised 

square fluctuations of the unbound form were compared with those of the fictitious unbound 

dataset i.e. control dataset 2 (details in methods) (Figure 2C). The fluctuation profiles of both 

the datasets were not significantly different from each other (two-sample KS test, p-value = 

0.10). These results suggest that differences in fluctuations between bound and unbound form 

(Figure 2A) are indeed due to binding of a partner protein and not due to crystal packing 

effects. It was further observed that residues, in general, showed higher fluctuations in the 

bound form (Figure 2D). To identify the percentage of residues showing significant change, 

difference between residue fluctuations was calculated. This difference was considered 

significant only if it was more than twice the standard deviation from the mean of fluctuation 

difference of control dataset 1. We found that ~10% of the residues show significantly higher 

fluctuations in bound form than the unbound form. On the other hand, ~11% of the residues 

showed significantly higher fluctuations in unbound form when compared to the bound form. 

To ascertain that these differences are insensitive to distance cut-off of 15Å used for NMA 

calculations, normalised fluctuations of the bound and unbound proteins were calculated at 

12Å and 10Å cut-offs as well. It was observed that differences in distributions of normalised 

square fluctuations were significant irrespective of the cut-offs used (Figure S2A,B). For 

both cut-offs (i.e.12Å and 10Å), ~7% of the residues showed significantly higher fluctuations 
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in bound form than the unbound form and ~6% of the residues showed significantly higher 

fluctuations in unbound form than bound form. 

 

Long-range communication between the interface and other regions in protein-protein 

complexes 

The fluctuation profiles of the bound and unbound proteins for the interface, near-interface 

and far from interface residues were analysed separately (Figure 3). The distributions were 

found to be significantly different for the three regions (two-sample KS test, p-value < 2.2e-

16). Intuitively, interface residues showed higher fluctuations in unbound form with ~28% of 

the residues showing significantly higher fluctuations (Figure 3A). Rest 72% showed 

comparable fluctuations. The interface residues were further divided into “core” and “rim” 

(Figure 3A). It must be noticed that while only ~2% of “core” interface residues showed 

significantly higher fluctuations in the unbound form, ~30% of “rim” interface residues 

showed higher fluctuations in the unbound form. It underlines that many core interface 

residues remain rigid in their unbound forms.  

The non-interface regions (near-interface and far from interface), show both increase and 

decrease in fluctuations in bound forms. For near interface region, ~5% residues showed 

significantly higher fluctuations in the bound form and ~10% residues showed higher 

fluctuations in the unbound form (Figure 3B). Interestingly, for regions far from PPIs, at 

least 11% residues showed higher fluctuations in the bound form than in unbound form, 

whereas ~5% residues showed higher fluctuations in the unbound forms (Figure 3C). This 

result counters the general idea that flexibility of interacting partners should decrease, when 

in complex. Our findings suggest that a loss of conformational entropy at the interface is 

likely compensated by increase in flexibility at other regions of the complex. Such 

rearrangement is indicative of communication between the interface and regions away from 

it. Furthermore, the observed changes in fluctuations were found independent of the size of 

interacting proteins (Figure S2C) and interface area (Figure S2D and Table S3).  

 

Changes in dynamics are not always accompanied by observed structural changes 

To identify whether a change in dynamics is associated with a change in the local structure, 

RMSD and RMSDf values were compared for all proteins (Figure 4A). A Pearson correlation 

coefficient of 0.1 suggests that binding of proteins can cause change in residue dynamics 
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without undergoing a significant conformational change and vice-versa. To understand the 

trend for residues away from the interfaces, the dataset (58*2=116 proteins) was divided into 

4 categories: i) proteins that only show significant structural changes away from the 

interfaces, ii) proteins that only show significant change in dynamics, away from the 

interfaces, iii) proteins that show significant changes in structure and dynamics, away from 

the interfaces, and iv) proteins that show no significant changes either in structure or 

dynamics, away from the interfaces (Figure 4B and Table S4). 15/116 cases (12.9%) belong 

to first category, 17/116 (14.7%) to second, 35/116 (30.2%) to third and 49/116 (42.2%) to 

fourth category. It is interesting to note that though a structural change along with flexibility 

change was observed for bound forms in many cases, instances of significant change in 

residue dynamics away from the interfaces, without a structural change was also observed. 

 

Correlation between residue motions is altered upon protein binding 

It is known that the information within a protein can be relayed through correlated 

fluctuations (DuBay et al., 2011; Goodey and Benkovic, 2008; Kern and Zuiderweg, 2003; 

Zhang et al., 2014). Further, residues coupled in motion are helpful in constructing a pathway 

between allosteric site and functional site (Gerek and Ozkan, 2011). So, we addressed the 

point of alteration in residue-residue communication within a protein upon binding of a 

partner protein. Cross-correlation matrices were plotted to understand the extent to which the 

residue-residue coupling gets affected. Rv coefficient was calculated between matrices of 

bound and unbound forms (Figure 5A). Coupling between the fluctuations was found to be 

unaffected for only 12/116 proteins (10.3%) after binding of the partner protein (Rv 

coefficient ≥ 0.7). Remaining proteins showed change in synchronisation of residue motions, 

suggesting a high influence of protein-protein binding on the residue couplings. It was further 

observed that residues of a protein become tightly coupled in the bound form as compared to 

the unbound form. An example from the dataset where cross-correlation gets affected by 

binding of a partner protein is shown in Figure 5B and one example where it does not get 

affected by binding of a partner protein is shown in Figure 5C. Pearson correlation 

coefficient of 0.5 between the protein size and Rv coefficient suggests a slight dependence of 

protein size on the extent to which its residue communication gets affected by binding of a 

partner protein (Figure 5D).  
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Low frequency global modes of unbound form get perturbed by binding of interacting 

partner 

Low frequency global modes from NMA are known to be biologically relevant (Bahar et al., 

1998, 2010a). Previously, Marcos et al showed that new modes of motions are acquired by 

enzymes form the amino acid kinase family upon oligomerisation, which regulate the 

substrate binding and allostery (Marcos et al., 2011). Also, an attempt was made to model 

conformational changes upon binding by re-ranking of normal modes (Oliwa and Shen, 

2015). Hence, we asked the question, if this is a commonly observed phenomenon upon 

protein binding? In other words, how the low frequency modes of unbound protein get altered 

in the presence of an interacting partner? or, are the low frequency motions accessible to a 

protein unique or are they maintained in bound form too? To answer this question, we 

analysed the similarities/differences between the modes of motion accessible to a protein in 

its bound and unbound forms by calculating overlap between the top 10 low frequency global 

motions obtained from NMA (Figure 6). The overlap value is an indicator of similarity 

between the modes in terms of its frequency, shape and size. Smaller the overlap, different 

are the two modes of motion. ~58% cases showed high overlap (> |0.7|) between bound and 

unbound forms for at least one mode (from top 10) (Figure 6A). However, out of these, 

~60% of the cases showed change in mode order/preference (Figure S3). A change in mode 

preference means, if mode “m” exists as a low frequency mode in one form, the same or 

similar mode (defined by a high overlap value) exists with an altered frequency in another 

form. This suggests that though some modes of motion are preserved between the bound and 

unbound forms, their frequency, size and shape changes as suggested by re-ordering of 

normal modes. For the remaining ~42% cases, very few global modes in unbound form were 

found maintained in the bound form, that too with weaker correlation (<|0.7|) and re-ordering 

of modes (Figure 6A). This clearly suggests that dynamics of the unbound form gets affected 

by binding of partner protein. Example of a case where the mode order and shape were 

retained between the bound and unbound form is shown in Figure 6B, example of change in 

mode preference in a high overlap case is shown in Figure 6C, example of a case with low 

overlap value is shown in Figure 6D. To rule out the effect of crystal packing on the 

observed dissimilarity of intrinsic modes, overlap for all the pairs in control dataset 1 was 

calculated. Each pair showed an overlap value ≥ |0.9|, suggesting similarities in their modes 

(Figure 6E). Hence, the global motions of unbound form are superseded by low frequency 

global motions of the bound form. This becomes especially important when no visible 
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conformational changes are observed at the macro level, re-enforcing that the absence of 

conformational changes does not mean that there is no allostery.   

Analysis of cases with no observed structural changes reveals prevalence of dynamic 

allostery and its functional role 

As mentioned earlier, 17/116 proteins showed significant change in dynamics at sites away 

from interfaces without a significant structural change. Out of the 17 proteins, 3 are antigen-

antibody complexes, 4 are enzyme-inhibitor complexes and 10 are either enzyme-substrate or 

signalling complexes. This study proposes that these differences are likely involved in either 

the stability of the complexes or signalling a downstream protein or both. Role of differential 

dynamics is presented for two cases below and three other cases in supporting information 

(Data S1). 

 

Differential dynamics of Cyclophilin A (CypA) likely plays a role in stabilising HIV-1 

capsid assembly  

The first example we describe is the human Cyclophilin A (CypA), a peptidyl-prolyl enzyme 

that catalyses the isomerisation of peptide bonds from trans to cis form and participates in 

various biological process such as protein folding, apoptosis and signalling (Nigro et al., 

2013). Many studies have reported dynamic allostery associated with CypA, which couples 

the active-site and distal residues, regulating the enzymatic activity (Agarwal, 2005; 

Rodriguez-Bussey et al., 2018; Wapeesittipan et al., 2019). In addition to the native 

functions, CypA plays an important role in (de)stabilisation of HIV-1 capsid and hence is 

often recruited by HIV-1 during its life-cycle in host cells (Lu et al., 2015; Thali et al., 1994). 

Though the structure of CypA and HIV-1 capsid (CA) have been available for a long time 

(Gamble et al., 1996), it was not clear how CypA modulates the CA stability until recently, 

when the cryo-EM structure of CypA-CA assembly was solved at 8Å (Liu et al., 2016). It 

was reported that a single CypA molecule binds to two CA molecules at two different sites, 

one canonical and the other non-canonical site, thus stabilising the CA assembly. Moreover, 

the non-canonical binding site, by itself, has weaker affinity for CA, but binds second CA 

molecule with strong avidity in presence of CA at the canonical site (Liu et al., 2016).  

To understand the binding of CA at the non-canonical site of CypA, we analysed the 

fluctuation profiles, cross-correlation matrices and overlaps obtained from NMA of the free 

and bound-form of CypA. A comparison of the structure of free and CA-bound at canonical 
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binding site of CypA suggests no significant structural changes in CypA (RMSD=0.3Å) 

(Figure 7A). Nonetheless, differences in fluctuations and cross-correlations were observed 

between the bound and unbound form of CypA (Figures 7B and 7C). Interestingly, higher 

fluctuations were observed for the bound form of CypA. Regions away from the active site or 

non-canonical binding site specifically showed increased fluctuations (Figure 7B). A higher 

cross-correlation was observed between the active-site (residues Arg55, Gln63, Asn102, 

Trp121, and His126) and non-canonical binding region (residues 25-31) of CypA in the 

bound form (Figure 7C). The lowest frequency global modes for both bound and unbound 

form showed that the individual residues in canonical and non-canonical binding sites move 

in different directions in the free form but show better coordination in the bound form 

(Figure 7D). Since, the distance from the centroid of canonical binding site to non-canonical 

binding site is ~16Å, it suggests a long-range communication between the two sites (Figure 

7E). The residue Val29 (part of non-canonical binding site) has already been shown to be 

involved in allosteric communication within CypA (Holliday et al., 2017). Results from this 

study suggest that binding of HIV-1 CA at the canonical site strongly affects the dynamics of 

the distant non-canonical site and supersedes the local motions of unbound form with more 

global, collective motions in bound form. It presents a clear case for dynamic allostery 

between the two sites which promotes CA binding at non-canonical site after its binding at 

the canonical site. 

Interestingly, CypA has also been shown to bind other prehistoric endogenous lentiviruses, 

e.g., from rabbits (RELIK) and lemurs (PSIV). The crystal structure of CypA with RELIK-

capsid (rCA), shows that the active site of CypA binds rCA in a manner like CypA-HIV CA 

but the orientation of CAs differ in the two crystal structures (Goldstone et al., 2010).Since, 

CypA shows a conserved binding mode with lentiviral capsids, its interaction with CA and 

rCA was further compared to find the similarity/differences between the dynamics of CypA 

bound to two evolutionarily conserved partners and our results propose a possibility of 

similar binding mode like HIV CA (see also Data S1, Figure S4). 

DNA-binding site of DNAse-I gets affected upon binding of actin molecule 

DNAse-I is an endonuclease that cleaves dsDNA in a sequence-specific manner at 

phosphodiester linkages. Many studies have reported the residues important for binding and 

cleaving the DNA molecule (Lahm and Suck, 1991). It also interacts with actin monomer to 

form a 1:1 actin-DNAse-I complex (Hitchcock, 1980). Though the function of this interaction 

is not clear, it renders DNAse-I inactive. An inspection of the crystal structures of DNAse-I 
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bound to octamer DNA (PDB code: 2dnj) (Lahm and Suck, 1991) and bound to actin 

monomer (PDB code: 1atn) (Kabsch et al., 1990) shows that binding sites of DNA and actin 

are proximal but do not overlap (Figure 8A). However, it has been proposed that actin 

monomer provides stearic hinderance to binding of DNA (Kabsch et al., 1990).  

A comparison of the actin-bound and free forms of DNAse-I suggested high similarity 

between them (RMSD 0.35Å) (Figure 8B). But differences were observed in the flexibility 

of DNAse-I between the bound and unbound forms (Figure 8C). The presence of actin 

molecule was found to modulate the synchronised motions of DNA-binding sites of DNAse-

I. This is suggestive of existence of a communication pathway between actin-interface and 

DNA-interface (Figure 8D). From these results, we propose that apart from steric hinderance 

for DNA-binding, actin molecule can affect the vibrational motions intrinsic to DNAse-I., 

which in turn can affect the dynamics of DNA-binding residues, contributing towards 

inactivity of DNAse-I by actin. 

Apart from these two cases, we observed a redistribution of dynamics upon binding of 

partner protein in two anitgen-antibody complexes, viz. cytochrome-C (Cyt-C) & E8 antibody 

and sonic-hedgehog (Shh) protein & 5E1 antibody fragment complex. Such redistribution 

was found to contribute to the stability of the complex (See also Data S1, Figure S5). 

Another protein, beta-lactamase inhibitor protein-II (BLIP-II), showed subtle differences in 

residue-residue communication when bound to two homologous partners and these 

differences were found to be in concordance with gain in entropy (See also Data S1, Figure 

S6). The analysis was also performed for thioredoxin, a moonlighting protein. Since 

moonlighting proteins can bind diverse partners under different conditions, it is interesting to 

analyze if dynamics of a moonlighting protein gets altered upon binding of another protein 

without a significant change in structure. It was observed that a change in Thioredoxin (trx) 

flexibility likely helps in better packing of T7 bacteriophage replisome (See also Data S1, 

Figure S7). 

 

Discussion 

Proteins are dynamic systems that undergo post-translational modifications (PTMs), bind to 

small molecules or other proteins and elicit allosteric responses at sites which are implicated 

in function. Historically, allostery was suggested to be mediated by a change in the mean 

conformation of a protein, contributing to enthalpy gain. However, in the recent years, 
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definition of allostery has been broadened by including the alteration in nature and extent of 

dynamics at sites away from the site of perturbation and few proteins have been reported to 

show such dynamic allostery (Arumugam et al., 2003; Fayos et al., 2003; Grünberg et al., 

2006; Louet et al., 2015; Popovych et al., 2006). It is achieved through altered entropy of the 

protein side-chain or backbone (and/or other entropic effects) (Popovych et al., 2006; Tzeng 

and Kalodimos, 2015). Further, it has been proposed that large-scale motions associated with 

proteins are important carriers of allosteric signal without requiring a conformational change 

(Rodgers et al., 2013). Motivated by these observations on isolated examples of proteins, we 

performed systematic analyses on a dataset of proteins in their bound and free forms to 

understand dynamics change in them (especially at the sites away from interfaces) upon 

binding of partner protein. To achieve this, we used fundamental and widely used metrics 

such as squared fluctuations, residue couplings and overlap of intrinsic dynamics obtained 

from coarse-grained anisotropic network model based NMA (ANM-NMA). Before studying 

flexibility/dynamics we note that our observations from structural analysis, albeit on a bigger 

dataset, fall in line with the findings from previous studies on individual proteins or on 

smaller datasets (Agarwal et al., 2010; Martin et al., 2008b; Smith et al., 2005, Swapna et al., 

2012a) and suggest prevalence of allostery mediated by PPIs via change in conformation.  

The distributions of normalised square fluctuations were found to be significantly different 

for proteins in bound and unbound forms with ~10% of residues showing higher fluctuations 

in bound form and 11% in unbound form. This suggested a strong effect of partner binding 

on the vibrational entropy of protein residues. We show using various controls that the 

observed changes are not due to crystal packing defects. Intuitively, the flexibility of proteins 

should decrease upon forming a complex. While the proteins showed decreased atomic 

fluctuations at the interface in the bound form, interestingly, non-interface residues showed a 

general increase in fluctuations and ~11% of the residues showed significantly higher 

fluctuations in bound forms, suggesting redistribution of motions within a protein upon 

binding of partner protein. We believe that a loss of conformational entropy at the interface is 

compensated by reorganisation of motions within a protein, resulting in higher flexibility at 

other regions. This result reinforces similar findings by Grunberg et al where, for a very 

small dataset of 17 PPCs, authors reported an increase in flexibility of many proteins in the 

complexed form (Grünberg et al., 2006).  

Binding of two or more proteins was observed to strongly affect the residue-residue 

couplings (for ~90% of the cases) and proteins in the bound form show highly correlated 
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motions (either positive or negative). Such changes were commonly observed for the proteins 

in our dataset suggesting that the low-frequency local motions get superseded by low-

frequency global motions of the bound form. We believe that synchronised motions in bound 

form can create allosteric communication between the interface and non-interface regions, 

which can lead to increase/decrease in the flexibility of these regions. Such changes are likely 

to have implications on the stability or function of the complex. Indeed, allosteric regulation 

of few  proteins by change in flexibility and/or change in correlated motions has been 

reported earlier (DuBay et al., 2011; Kern and Zuiderweg, 2003; Zhang et al., 2014). Further, 

binding of a partner protein was observed to perturb the modes of motions in 42% of cases 

and new modes of motions were acquired. Interestingly, for 52% of the cases, though the 

modes overlapped well, they were maintained with a re-ordering of modes. This seems to 

suggest that global motions are affected by binding of a partner protein to control the 

functions of complex. To the best of our knowledge this was not known before as a common 

feature in many PPCs.  

It is difficult to appreciate the presence of allostery without a change in conformation, but 

absence of a structural change does not imply that allostery is not in play (Nussinov and Tsai, 

2015). It has been hypothesised that global and local modes obtained from NMA can carry 

signals from binding site to other regions of proteins without requiring structural changes 

(Hawkins and McLeish, 2004, 2006). From our analyses, we found that at least 17 cases from 

the dataset showed differences in fluctuations for non-interface regions without an observed 

structural change. We believe this should be carefully considered in future studies otherwise 

allostery due to PPIs may go unnoticed in several cases. A close inspection of these cases 

revealed that such changes contribute towards the stability of a complex by adding to the 

positive gain in entropy (in case of BLIP-II interactions with beta-lactamases and antigen-

antibody complexes) or regulating a downstream function such as binding of another protein 

(in case of CypA binding to HIV CA) or altering the functional capacity of an enzyme (in 

case of actin binding to DNAse I). Binding of partner protein was also proposed as one of the 

contributing factors to functional switching of bacterial thioredoxin and better packing of T7 

replisome. 

Taken together, this study provides a comprehensive analyses of the effect of binding of two 

or more proteins on the dynamics of individual proteins. Since the impact on dynamics is 

independent of sizes and interface area of two interacting proteins, changes mediated by PPI 

can be thought of as an intrinsic property of these interactions. Furthermore, allostery has 
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been proposed to be an intrinsic property of monomeric proteins (Gunasekaran et al., 2004). 

But Cui and Karplus raised a valid question in their classic review if these perturbation 

induced by binding should be considered a manifestation of allostery or the term dynamic 

allostery should be used where the allosteric effect has a biological function? (Cui and 

Karplus, 2008) Whether or not our results provide an answer to that question, the analyses of 

the cases in this study do reveal functional relevance of these changes. We further believe 

that results presented here will lead to better appreciation of allostery mediated by PPIs. We 

propose two direct applications of our work. First, the lessons learnt are expected to be 

applicable to the growing knowledge on 3-D structures of large multi-protein assemblies. An 

understanding of allostery, dynamics and their relationship to the biological function of the 

proteins studied here may aid in understanding the organisation of subunits within the multi-

protein assemblies determined often by cryo-EM. Second, the structural fluctuations have a 

critical impact on thermodynamics of PPIs and hence, are likely to be an essential contributor 

to binding affinities. Results from this analysis strongly suggest modulation of dynamics 

upon binding of two proteins and hence support inclusion of contributions from vibrational 

entropy towards affinity calculations. Two previous studies have shown the importance of 

vibrational entropy in calculation of binding affinities and thus, act as a proof-of-principle for 

the results we have discussed in our analyses (Moal et al., 2011; Skrbic et al., 2018). 

Furthermore, encouraged by our findings, we also performed a pilot study to understand if 

including the free energy contributions from vibrational entropy helps in improving the 

accuracy of affinity calculations. Our observations are presented in Data S1, Figures 2, S7, 

Table S7. We find that regardless of proper weight assignment to vibrational entropy 

contributions, the accuracy of binding affinity calculation improves for many cases. Our 

study envisions a tremendous scope of improvement in this area. 
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Main figure titles and legends 

 

Figure 1| Structural analyses of the PPCs. (A) Cα-RMSD for protein pairs is plotted as bar 

plot (top panel). Higher the RMSD, greater is the structural differences between bound and 

unbound form. GDT-TS score is plotted in bottom panel. Here, higher the score, higher is the 

similarity between two structures. (B) Box plots showing distribution of Cα-RMSD (Å) for 

control dataset 1, PPC dataset, interface, near-interface & non-interface regions. Residues are 

classified as either of the types based on distance between atoms of the two proteins. 

Distributions are significantly different from each other (two sample KS test, p-value < 

2.2x10-16). (C) 2 examples with significant structural changes away from the PPIs are shown. 

Proteins undergoing structural changes away from the interface are rendered as cartoon and 

partner protein as ribbon. Bound form is shown in orange and unbound form in blue. Top 

panel shows the HISF protein in its bound (PDB code: 1gpw) and unbound (PDB code: 1thf) 

form. Bottom panel shows SOS (Son of sevenless) protein in its bound (PDB code: 1bkd) and 

unbound form (PDB code: 2iio) (See also Figure S1, Table S1,S2). 
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Figure 2| Analyses of dynamics of PPCs. (A) Box plots showing distribution of Cα 
fluctuations for all residues in bound and unbound forms. The two distributions are 
significantly different from each other (two-sample KS-test, p-value < 2.2x10-16), showing 
variation in flexibility in bound and free proteins. Box plots with fluctuations only between 
the range of -2 & 2 are shown in the inset for clarity. (B) Comparison of absolute difference 
between normalised fluctuations of control dataset 1 and PPC dataset. The distributions are 
significantly different (two-sample KS-test, p-value < 2.2x10-16), suggesting no bias due to 
crystal packing. (C) Comparison of normalised fluctuations of control dataset 2 and actual 
unbound proteins from PPC dataset. The distributions are not different from each other (two-
sample KS-test, p-value=0.1), suggesting no effect of crystal packing. (D) Scatter plot of 
square fluctuations for all residues in PPC dataset. X-axis represents normalised square 
fluctuations for bound and Y-axis represents normalised square fluctuations for unbound 
proteins. Solid red line is the unity slope line. Vibrational entropy was estimated using the 
fluctuations to calculate binding affinity presented in Data S1. (See also Figures S2(A,B), S8, 
Data S1, Table S7).  
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Figure 3| Comparison of fluctuations for different types of residues in proteins. (A) Box plot showing 
distribution of Cα fluctuations for interface residues (atoms within a distance ≤ 4.5Å) in bound and unbound 
proteins in PPC dataset. The distributions are significantly different from each other (two sample KS-test, p-
value < 2.2x10-16). Scatter plot displays fluctuations for the corresponding residues in bound and unbound form 
and is useful in identifying residues that show increase/decrease in fluctuations. The interface is further divided 
into core and rim and their distributions are provided in right panel. (B) Box plot showing distribution of Cα 
fluctuations for near-interface residues (atoms within 4.5-10Å) in bound and unbound proteins in PPC dataset. 
The distributions are significantly different from each other (two sample KS-test, p-value < 2.2x10-16). Scatter 
plot shows fluctuations for corresponding residues in bound and unbound forms. (C) Box plot showing 
distribution of Cα fluctuations for residues far from interface (atoms at a distance > 10Å) in bound and unbound 
proteins in PPC dataset. The distributions are significantly different from each other (two sample KS-test, p-
value < 2.2x10-16). Scatter plot shows fluctuations for corresponding residues in bound and unbound forms. For 
all scatter plots, X-axis represents normalised square fluctuations in bound form and Y-axis represents 
normalised square fluctuations in unbound form (See also Figure S2(C,D), Table S3). 
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Figure 4| Change in dynamics need not always be accompanied by change in structure. 

(A) RMSD (in Å) of bound and free proteins in the PPC dataset is plotted on X-axis vis-à-vis 

the root mean square difference of fluctuations (RMSDf) of unbound and free proteins on Y-

axis. The dotted line is the line of best fit. The plot suggests no correlation between the 

observed structural change and dynamics change. (B) Doughnut chart shows the number of 

cases in each category as mentioned in text (See also Table S4).  
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Figure 5| Cross-correlation analysis of proteins in PPC dataset. (A) Similarity between cross-correlation 
matrices of proteins in the free and bound form is plotted as bar plot. The X-axis shows the proteins in the PPC 
dataset. Each entry code corresponds to the PDB code of the complex with “_l” and “_r” suffix representing two 
entries in the PPC dataset. The black horizontal line marks the cut-off for similarity. (B) An example case from 
PPC dataset (PDB code: 1a2k) where the binding of a partner protein changes the residue communication as 
shown by different cross-correlation matrices. (C) An example case from PPC dataset (PDB code: 1jiw) where 
the binding of a partner protein does not change the residue communication as shown by similar cross-
correlation matrices. (D) Radius of gyration (proxy for protein size) on X-axis is plotted vis-à-vis the Rv 
coefficient. The correlation coefficient of 0.5 suggests not a strong relation between the size of protein and its 
effect  on residue communication. 



21	
	

 

Figure 6| Overlap analysis of proteins in PPC dataset. (A) Absolute overlap score obtained for top 10 low-
frequency modes of bound and unbound proteins in the PPC dataset plotted as histogram. (B) Example case 
where the mode order and shape were retained between the bound and unbound form. (C) Example case 
showing change in mode preference. (D) Example case showing low overlap values between bound and free 
form. PDB id for the complex is mentioned in all three examples. (E) Absolute overlap score obtained for each 
pair in control dataset 1 is plotted as histogram. The overlap is high between pair of proteins in the control 
dataset 1 (See also Figure S3). 
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Figure 7| Understanding dynamic allostery in Cyclophilin A. (A) Free and HIV-CA 

bound CypA is superposed with an RMSD of 0.3Å. CypA in both the forms is rendered as 
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cartoon and the HIV-CA as ribbon. Bound CypA is shown in orange and unbound in blue 

colour. Normalised square fluctuations of CypA in CA-bound and unbound form are shown 

in right panel. X-axis represents residue number and Y-axis represents normalised square 

fluctuations. Pink horizontal lines signify regions away from interface. Inset shows the 

absolute difference between square fluctuations mapped ono the CypA structure. (B) Scatter 

plot of normalised square fluctuations for non-interface residues showing generally higher 

fluctuations in the bound form. (C) Matrices show weak cross-correlation between the 

canonical and non-canonical binding sites in the unbound (top) CypA and a tighter coupling 

in bound (bottom) CypA. (D) Backbone trace of CypA in the unbound and bound form with 

canonical binding site in blue spheres and non-canonical binding site in red spheres. The 

green arrows show the direction of motion and their length is proportional to the magnitude 

of fluctuation. (E) Cartoon representation of CypA showing the spatial distance between 

canonical (pink) and non-canonical (blue) binding site (See also Data S1, Figures S4-S7). 
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Figure 8| Analysis of DNAse-1 activity upon actin binding. (A) Superposition of structures of DNAse-1 in 
complex with DNA and in complex with actin shows non-overlapping DNA and actin binding sites. DNAse-1 is 
represented as cartoon and actin is shown as ribbon. DNA is shown in green colour. (B) Superposition of 
DNAse-1 in the actin bound (orange) and free form (blue) shows an RMSD of 0.35Å. (C) Scatter plot showing 
normalised square fluctuations of DNAse-1 in actin-bound form (X-axis) and free form (Y-axis). Solid line 
represents the unity line. (D) Difference between cross-correlation of DNA-binding residues in DNAse-1 in 
bound and unbound form shows effect of actin binding on DNA-binding site (See also Data S1, Figures S4-S7). 
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STAR METHODS 

 

RESOURCE AVAILABLITY: 

 

Lead contact:   

Further information and requests for information on method, dataset or computational 

resources should be directed to and will be fulfilled by the Lead Contact, Prof. N. Srinivasan 

(ns@iisc.ac.in). 

 

Materials availability: 

No new unique reagents or methods were produced in this study. 

 

Data and code availability: 

The PDB codes used for structural and dynamics analyses can be accessed from PDB. The 

codes are provided in the Supplemental information as Tables S1-S6. The program used to 

perform structural and dynamics analysis can be obtained from Maxcluster software and 

ProDy website (http://prody.csb.pitt.edu/) respectively. 

 

EXPERIMENTAL MODEL AND SUBJECT DETAILS: 

Not applicable 

 

METHOD DETAILS: 

Dataset preparation: 

 

PPC dataset for structural comparison 

A dataset of transient PPCs was prepared using ProPairs program (Krull et al., 2015) and 

Benchmark dataset 5.0 (Vreven et al., 2015). ProPairs program compiles a dataset of proteins 

in their bound and unbound forms from PDB in an automated manner. Benchmark dataset 5.0 

is a docking benchmark consisting of non-redundant structures of PPCs and unbound 

structures of their components. 2,943 redundant complexes were obtained using ProPairs and 

230 complexes were collected from benchmark dataset. The two datasets were pruned to 

obtain cases that pass through the following criteria: 
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1. 3-D structures of all proteins in a complex should be available in their unbound forms 

and there should be no missing residues in the interface region. 

2. Resolution of the structure of the complex and individual unbound forms should be 

better than 3.2Å. 

3. Bound and unbound forms should have the same uniport identifier. 

4. Unbound and bound forms should have same oligomeric state. PDB biological unit 

information, PISA as well as relevant literature were reviewed to enforce the 

condition of same oligomeric state of the proteins in complexed and non-complexed 

forms. This condition was imposed to ensure that differences obtained, if any, 

between the bound and unbound forms are not due to different oligomeric states.  

5. Both bound and unbound forms should either have similar or no ligands bound to it. 

This condition was employed to minimise the bias due to presence of a ligand. 

6. There should be no occurrence of disordered regions in the proteins. Benchmark 

dataset 5.0 already takes care of this condition. 

 

The filtered dataset was then made non-redundant at the SCOP (Fox et al., 2014) family 

level. For the ProPairs entries, SCOP domains were assigned to each entry and clustered 

according to SCOP families, wherever available. The Benchmark dataset 5.0 is already non-

redundant at SCOP family level. Individual cases were also inspected manually to check for 

any unexpected discrepancy that might have crept in during automated handling of the data. 

Finally, after applying these stringent filters, a dataset of high-quality, non-redundant, 120 

complexes (i.e. 120*3 = 360 protein structures) were curated for structural analyses (see 

Table S5). The dataset comprises of 18 antigen-antibody, 45 enzyme-inhibitor and 57 other 

complexes (Nomenclature based on Benchmark dataset 5.0), representing the four SCOP 

classes. This dataset has only 50% overlap with the dataset from (Swapna et al., 2012a)due to 

more strict conditions and stringent definition of oligomeric states and ligands.  

 

PPC dataset for dynamics analyses 

To understand the modulation of dynamics upon binding of two proteins, the above dataset 

was further filtered to remove cases with missing residues in the structure in either bound or 

unbound form. This condition was enforced to avoid introducing bias due to modelling of the 

missing regions in the structure. 58 complexes (i.e. 58 * 3 = 174 structures) matched the 
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criteria and were selected for the analyses (see Table S6). This dataset consists of 11 antigen-

antibody, 21 enzyme-inhibitor and 26 other complexes. 

 

Control datasets 

Two types of control datasets were used: 

1. Monomeric proteins solved under different crystal conditions (Control dataset 1): A 

collection of protein crystal structures with a single chain in both asymmetric unit 

(ASU) and biological unit (BU) were curated from PDB (Berman et al., 2005). Care 

was taken to assure that the structures do not have any other biological entity such as 

peptide, RNA or DNA in the ASU and BU. This set was further filtered using a 

resolution cut-off of 2.5 Å and was subjected to clustering at 100% sequence identity 

using CD-HIT (Fu et al., 2012). Additionally, structures with missing residues were 

removed and 883 pairs, in total, were chosen for analyses. This dataset was curated to 

understand the influence of crystal packing on protein conformation and was treated 

as a background noise while selecting cut-offs for significant difference between 

bound and unbound forms.  

2. Fictitious-unbound protein dataset (Control dataset 2): To analyse the effect of 

crystal packing on the dynamics of the proteins, this dataset was created by in-silico 

deletion of the partner protein from the PPC dataset for dynamics analyses. The 

deletion resulted into artificial unbound proteins which are equivalent to the sequence 

and length of actual unbound proteins.  

 

Structural analyses 

Proteins in the bound and their respective unbound forms were compared after identifying the 

residue equivalences using CLUSTALW (Larkin et al., 2007). TM-align (Zhang and 

Skolnick, 2005) was used to structurally align the bound and unbound forms. Two measures, 

namely, root mean square deviation (RMSD) and global distance test – total score (GDT-TS) 

(Zemla, 2003), were used to calculate the global similarities between the structures. While 

RMSD provides an estimate of distance between pairs of atoms, GDT is used to calculate 

similarities between structures of proteins with identical sequences. GDT is independent of 

protein length unlike RMSD and hence considered as a better similarity criterion to assess 

global similarity. RMSD is calculated as; 
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where d is the distance between N pairs of equivalent atoms and i ranges from residue 1 to N. 

Lower the RMSD value, higher is the similarity. RMSD values greater than the standard 

deviation from the mean of the RMSDs for proteins in the control dataset 1 were considered 

significant. GDT is calculated as: 

GDT-TS = 100 * (C1 + C2 + C3 + C4) / 4N 

Where,  C1   = Count of number of residues superposed below (threshold/4) 

C2   = Count of number of residues superposed below (threshold/2) 

C3   = Count of number of residues superposed below (threshold) 

C4   = Count of number of residues superposed below (2*threshold) 

N    = Total number of residues 

MAXCLUSTER (Siew et al., 2000) algorithm with a distance cut-off of 4 Å was used to 

calculate GDT-TS. Higher the GDT-TS value, higher is the similarity. Both RMSD and 

GDT-TS were calculated for all Cα positions.  

To calculate local structure variations, individual Cα deviations between equivalent residue 

positions were obtained. All the residues that showed a Cα deviation greater than the standard 

deviation from the mean of the Cα deviations for residues in the control dataset 1 were 

considered as showing significant structural change. 

 

Dynamics analyses using normal mode analysis (NMA) 

Normal mode analysis (NMA) is one of the methods of choice to study long-timescale 

motions associated with proteins (Bahar and Rader, 2005; Brooks and Karplus, 1983; Go et 

al., 1983). NMA requires a set of cartesian coordinates from protein structure and a force-

field that defines interactions between the atoms. A “Hessian” matrix is then generated from 

second derivate of the potential energy and is diagonalised to yield eigen vectors and eigen 

values. Low frequency collective motions, termed as, global motions of proteins have been 

shown to signify a biologically relevant function (Bahar et al., 1998, 2010b; General et al., 

2014). An all-atom NMA poses a significant computational problem due to massive 

calculations to solve complete spectra of motions. Hence, for the current study, coarse-
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grained (Cα-level) anisotropic network model (ANM)-based NMA was used (Tirion, 1996). 

The low-frequency modes from Cα-level NMA have been shown to corroborate well with the 

experimental as well as molecular dynamics data in the past (Delarue and Sanejouand, 2002; 

Valadié et al., 2003; Vishwanath et al., 2018). Hence, coarse-grained models can successfully 

provide idea of dynamics for longer time-scales. All the calculations pertaining to normal 

mode analyses were performed using Prody package (Bakan et al., 2011).  

Normal modes were calculated for the dataset of 58 PPCs both in bound and unbound states 

(i.e. 58*3=174 calculations), the control dataset 1 and control dataset 2. A distance cut-off of 

15 Å was employed and normal modes pertaining to 80% of the variance were analysed. 

Contributions from 5 N-terminal and 5 C-terminal residues were removed, unless they were 

part of the interface. Mean squared fluctuations were scaled using a z-score normalisation. A 

difference greater than 1, between the normalised square fluctuations of bound and unbound 

forms was considered significant. The cut-off was derived based on the difference between 

the normalised square fluctuations of control dataset 1. To obtain an equivalent of RMSD, 

root mean squared difference of fluctuations (RMSDf) was calculated for dynamics analyses. 

It was calculated like RMSD, but instead of deviations, difference between the normalised 

fluctuations of bound and unbound form was used. Correlation between the fluctuations, 

namely cross-correlation was also calculated for all the structures. Rv coefficient (Robert and 

Escoufier, 2006), which is a multivariate generalisation of Pearson’s coefficient was used to 

quantify the similarity between cross-correlation matrices. Similarity between the 

conformational space accessible to a subset of modes, called as overlap (Fuglebakk et al., 

2015; Tama and Sanejouand, 2002), was further calculated for 10 lowest frequency modes 

using Prody package. Overlap gives an estimate of the extent to which the intrinsic motions 

of the protein in bound form are accessible to the unbound form and is calculated as the inner 

product of the eigenvectors calculated using NMA.  

 

Classification of interface & non-interface residues 

Protein residues were classified in this study into three types, viz. interface, near-interface 

and far from interface as per the following distance cut-offs. Atoms of the residues from the 

two proteins which lie at a distance ≤ 4.5Å were classified as interface residues. Atoms from 

the two proteins which lie at a distance > 4.5Å but ≤10 Å, were called as near-interface 

residues and the rest were classified as far from interface. Interface residues were further 

categorised into “core” and “rim” residues depending upon their solvent accessibility. 
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Interface residues having solvent accessibility ≤7% in bound form were considered buried 

and hence termed “core” and the remaining interface residues were termed as “rim”. 

QUANTIFICATION AND STATISTICAL ANALYSIS: 

All statistical analyses were performed using R free software environment (version 3.3.0) (R 

Development Core Team, 2011). 

ADDITIONAL RESOURCES: 

Not applicable 

 

Supplemental item titles 

Table S5| Protein-protein complex dataset used for structural analyses (Related to 

STAR methods). PDB codes along with chain identifiers for 120 complexes and their 

interacting partners are provided. Resolution of crystal structure entries is mentioned in Å. 

Key for type of complex is as follows: EI: enzyme-inhibitor complex, ES: enzyme-substrate 

complex, ER: enzyme complex with a regulatory chain, OG: others, G-protein containing, 

OR: others, receptor-containing and OX: others, miscellaneous and A: antigen-antibody 

complex. 
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Supplementary material (tables, figures and text): 

 

Table	 S1|List	 of	 proteins	 that	 show	 structural	 changes	 away	 from	 interface,	 Related	 to	
Figure	 1.	 PDB	 codes	 for	 the	 complexed	 form	 is	mentioned.	 Individual	 PDB	 codes	 for	 the	
interacting	partners	can	be	mapped	from	Table	S5.	Throughout	the	study,	the	PDB	codes	of	
the	 complexed	 structures	 have	 been	 used	 for	 reference	 and	 their	 individual	 interacting	
partners	have	been	referred	to	as	either	receptor	(using	suffix,	“_r”),	 for	the	bigger	of	the	
two	protein	or	ligand	(using	suffix,	“_l”)	for	the	smaller	protein,	e.g.	if	the	protein	complex	
1A2K	has	been	referred,	then	its	interacting	partner	1	has	been	referred	as	1A2K_r	and	the	
interacting	partner	2	as	1A2K_l.	

 

1AK4_l 1GPW_r 1OC0_r 1ZHI_r 2IDO_r 3K75_r 

1ATN_r 1HE1_l 1RV6_r 2A5T_l 2O3B_l 3L89_r 

1BUH_r 1HE8_r 1SYX_r 2A78_l 2OT3_r 3S9D_r 

1DFJ_l 1I4D_r 1TMQ_l 2AYO_r 2UUY_l 3VLB_r 

1DQJ_r 1IB1_r 1WEJ_r 2B4J_r 2VDB_r 1FFG_l 

1E96_r 1J2J_r 1XD3_r 2BTF_r 2YVJ_r 1JTD_l 

1F51_r 1JIW_l 1XUI_r 2GAF_r 3EOA_r 1OPH_r 

1FCC_r 1M10_r 1YVB_L 2GTP_r 3FN1_r 3MXW_r 

1FQ1_l 1Ml0_r 1Z5Y_r 2HQS_r 3H2V_r  

	

	

	

Table	 S2|	 List	 of	 complexes	 where	 both	 partners	 show	 structural	 changes	 away	 from	
interface,	Related	to	Figure	1.	PDB	codes	for	the	complexes	is	mentioned.		

 

1A2K 1GXD 1XQS 3HI6 
1AKJ 1I2M 2FJU 3HMX 
1BKD 1JPS 2G77 3L5W 
1BVK 1JZD 2H7V 4FZA 
1E4K 1KXP 2NZ8 4G6J 
1EER 1MLC 2OOR 4G6M 
1EWY 1N2C 2W9E 4H03 
1EXB 1PVH 2Z0E 4L4W 
1GP2 1RLB 3DAW IJPS 
1GRN 1T6B 3G6D  

 



Table	 S3|	 Interface	 area	 and	 protein	 length	 for	 structures	 used	 for	 dynamics	 analyses,	
Related	 to	 Figure	 3.	 PDB	 codes	 for	 the	 complex	 is	 mentioned.	 Individual	 PDB	 codes	 for	
interacting	 proteins	 can	 be	 mapped	 from	 Table	 S5.	 Contribution	 to	 interface	 area	 for	
partners	proteins	was	calculated	by	finding	difference	between	the	accessible	surface	area	
of	the	protein	in	its	unbound	and	bound	form.		

Entry name 
Surface area for 

interface of 
protein 1 (Å2) 

Protein 
length (size 
of protein) 

Entry name 
Surface area 

for interface of 
protein 2 (Å2) 

Protein 
length (size 
of protein) 

1A2K_l 1424.1 196 1A2K_r 1334.2 244 
1AK4_l 532.1 145 1AK4_r 312.7 164 
1AKJ_l 483 228 1AKJ_r 491.2 373 
1ATN_l 1281.8 258 1ATN_r 885.6 363 
1CGI_l 1099.3 56 1CGI_r 1155.6 245 
1CLV_l 1231.2 32 1CLV_r 570.2 470 
1DFJ_l 1080.3 456 1DFJ_r 1189.1 124 
1DQJ_l 685.5 129 1DQJ_r 1130.2 424 
1E4K_l 811.9 172 1E4K_r 279.9 414 
1E96_l 1005.7 185 1E96_r 593.8 178 

1EAW_l 966.9 56 1EAW_r 930.6 241 
1EWY_l 560.8 98 1EWY_r 79.1 295 
1EXB_l 2612.9 360 1EXB_r 1234 1300 
1FCC_l 698.3 56 1FCC_r 642.8 412 
1FFG_l 682.3 68 1FFG_r 550.7 128 
1GCQ_l 466.7 66 1GCQ_r 9369.1 57 
1GP2_l 1375 388 1GP2_r 2567.9 310 
1GPW_l 1093.2 200 1GPW_r 807.6 246 
1GRN_l 839.6 185 1GRN_r 1073.3 190 
1GXD_l 837.2 181 1GXD_r 242.5 616 
1J2J_l 432.8 38 1J2J_r 858.4 165 
1JIW_l 1115.8 98 1JIW_r 1152.2 469 
1JTD_l 1827.1 262 1JTD_r 723.3 268 
1JZD_l 895.7 116 1JZD_r 786.3 428 
1M10_l 821 263 1M10_r 1595.9 199 
1M27_l 54.3 57 1M27_r 372.1 115 
1ML0_l 1825.6 63 1ML0_r 936.6 742 
1MLC_l 601 129 1MLC_r 563.6 432 
1OFU_l 776.7 306 1OFU_r 968.4 237 
1OPH_l 503.8 223 1OPH_r 1685.8 371 
1PXV_l 1294 111 1PXV_r 57.4 167 
1QA9_l 4582.8 95 1QA9_r 4682.5 102 
1RLB_l 937.2 174 1RLB_r 1238.5 453 
1RV6_l 509.2 92 1RV6_r 1877.5 189 
1TMQ_l 1181.3 115 1TMQ_r 946.6 470 
1UDI_l 1261 83 1UDI_r 1296.3 227 
1VFB_l 834.1 129 1VFB_r 657.9 223 



1WEJ_l 663.5 104 1WEJ_r 6.3 433 
1YVB_l 695 105 1YVB_r 235.6 241 
1Z0K_l 109.1 46 1Z0K_r 1880.5 169 
1Z5Y_l 106.7 117 1Z5Y_r 1035.1 136 
2A78_l 896.4 201 2A78_r 543.1 166 
2BTF_l 1080.3 139 2BTF_r 1004.2 365 
2HRK_l 592.4 103 2HRK_r 1269.4 177 
2I25_l 425.1 129 2I25_r 837.9 113 

2O3B_l 29.4 122 2O3B_r 291.5 239 
2PCC_l 807.1 108 2PCC_r 11.4 293 
2UUY_l 975.7 51 2UUY_r 489.3 223 
2W9E_l 2154.4 99 2W9E_r 1029.4 424 
2X9A_l 969.1 61 2X9A_r 1902.9 90 
2YVJ_l 914.5 106 2YVJ_r 652.6 401 
3D5S_l 607.1 61 3D5S_r 669.6 294 
3EOA_l 271.1 179 3EOA_r 951.8 410 
3F1P_l 1183.9 109 3F1P_r 922 111 
3G6D_l 1270.6 105 3G6D_r 1606.4 394 

3MXW_l 2349.2 150 3MXW_r 867.4 432 
4G6J_l 988.5 149 4G6J_r 1511.4 428 

4G6M_l 708 149 4G6M_r 741.8 432 
 

Table	S4|	List	of	proteins	that	show	changes	at	non-interface	residues,	Related	to	Figure	4.	
PDB	codes	for	complexed	form	is	mentioned.	Four	columns	are	as	follows:	 i)	proteins	that	
only	 show	 significant	 structural	 changes	 away	 from	 the	 interfaces,	 ii)	 proteins	 that	 only	
show	 significant	 change	 in	 dynamics,	 away	 from	 the	 interfaces,	 iii)	 proteins	 that	 show	
significant	 changes	 in	 structure	 as	 well	 as	 dynamics,	 away	 from	 the	 interfaces	 and	 iv)	
proteins	 that	 show	no	 significant	 changes	either	 in	 structure	or	dynamics,	 away	 from	 the	
interfaces.		

 

Only change in 
structure 

Only change in 
dynamics 

Change in both 
structure and 

dynamics 

No change in structure and 
dynamics 

1DFJ_l 1AK4_r 1AKJ_l 1CGI_l 2I25_r 
1E96_r 1ATN_l 1AKJ_r 1CGI_r 2O3B_r 

1EWY_l 1DFJ_r 1A2K_l 1CLV_r 2PCC_l 
1EWY_r 1E96_l 1A2K_r 1CLV_l 2PCC_r 
1FCC_r 1J2J_r 1AK4_l 1DQJ_l 2UUY_r 
1FFG_l 1JTD_r 1ATN_r 1EAW_l 2X9A_l 
1GRN_l 1M10_r 1DQJ_r 1EAW_r 2X9A_r 
1GXD_l 1OFU_r 1E4K_l 1FCC_l 2YVJ_r 
1RLB_r 1OPH_l 1E4K_r 1FFG_r 3D5S_l 
1JTD_l 1PXV_l 1EXB_l 1GCQ_r 3D5S_r 
1JZD_l 1QA9_l 1EXB_r 1GCQ_l 3F1P_l 



1RLB_l 1QA9_r 1GP2_l 1GPW_l 3F1P_r 
1Z5Y_r 1WEJ_l 1GP2_r 1JIW_r 4G6J_l 
2UUY_l 1Z5Y_l 1GPW_r 1J2J_l 4G6M_l 
4G6M_r 2YVJ_l 1GRN_r 1M10_l  

 3EOA_l 1GXD_r 1M27_l  
 3MXW_l 1JIW_l 1M27_r  
  1JZD_r 1ML0_l  
  1ML0_r 1OFU_l  
  1MLC_l 1PXV_r  
  1MLC_r 1RV6_l  
  1OPH_r 1TMQ_r  
  1RV6_r 1UDI_l  
  1TMQ_l 1UDI_r  
  1YVB_l 1VFB_l  
  2A78_l 1VFB_r  
  2BTF_r 1WEJ_r  
  2O3B_l 1YVB_r  
  2W9E_l 1Z0K_l  
  2W9E_r 1Z0K_r  
  3EOA_r 2A78_l  
  3G6D_l 2BTF_l  
  3G6D_r 2HRK_l  
  3MXW_r 2HRK_r  
  4G6J_r 2I25_l  

	

Table	S6|	Protein-protein	complex	dataset	used	 for	dynamics	analyses,	Related	 to	STAR	
methods.	 PDB	 codes	 along	 with	 chain	 identifiers	 for	 58	 complexes	 and	 their	 interacting	
partners	are	provided.	This	dataset	is	a	subset	of	dataset	in	Table	S5	and	has	been	manually	
curated	 to	 remove	 entries	 which	 have	 missing	 residues	 anywhere	 in	 the	 structures.	
Resolution	of	crystal	structure	entries	is	provided	in	Å.	Key	for	type	of	complex	is	as	follows:	
EI:	 enzyme-inhibitor	 complex,	 ES:	 enzyme-substrate	 complex,	 ER:	 enzyme	 complex	with	 a	
regulatory	chain,	OG:	others,	G-protein	containing,	OR:	others,	receptor-containing	and	OX:	
others,	miscellaneous	and	A:	antigen-antibody	complex.		

 

Bound 
(PDB  
code) 

Type  
of 

complex 

Resolu
tion 
(Å) 

Interacting 
partner 1 

(Receptor) 
(PDB code) 

Resolu
tion 
(Å) 

Interacting 
partner 2 
(Ligand) 

(PDB code) 

Resolu
tion 
(Å) 

1A2K_C:AB OG 2.5 1QG4_A 2.5 1OUN_AB 2.3 
1AK4_A:D OX 2.3 2CPL_ 1.63 4J93_A/2PXR_A 1.74 

1AKJ_AB:DE OX 2.6 2CLR_DE 2 1CD8_AB 2.6 
1ATN_A:D OX 2.8 1IJJ_B 2.85 3DNI_ 2 
1CGI_E:I EI 2.3 2CGA_B 1.8 1HPT_ 2.3 
1CLV_A:I EI 2.0 1JAE_A 1.65 1QFD_A NMR 
1DFJ_I:E EI 2.5 9RSA_B 1.8 2BNH_ 2.3 

1DQJ_AB:C A 2.0 1DQQ_CD 1.8 3LZT_ 0.93 



1E4K_AB:C OR 3.2 3AVE_AB 2 1FNL_A 1.8 
1E96_A:B OG 2.4 1MH1_ 1.38 1HH8_A 1.8 

1EAW_A:B EI 2.9 1EAX_A 1.3 9PTI_ 1.22 
1EWY_A:C ES 2.3 1GJR_A 2.1 1CZP_A 1.17 

1EXB_ABDC:E
GFH 

OX 2.1 1QRQ_AB
CD 

2.8 1QDV_ABCD 1.6 

1FCC_AB:C OX 3.2 1FC1_AB 2.9 2IGG_A NMR 
1FFG_A:B OX 2.7 3CHY_A 1.66 1FWP_A NMR 
1GCQ_B:C OX 1.6 1GRI_B 3.1 1GCP_B 2.1 
1GP2_A:BG OG 2.3 1GIA_ 2 1TBG_DH 2.1 
1GPW_A:B OX 2.4 1THF_D 1.45 1K9V_F 2.4 

1GRN_A:B    * OG 2.1 1A4R_A 2.5 1RGP_ 2 
1GXD_A:C EI 3.1 1CK7_A 2.8 1BR9_A 2.1 
1J2J_A:B OG 1.6 1O3Y_A 1.5 1OXZ_A 2.8 
1JIW_P:I EI 1.7 1AKL_A 2.0 2RN4_A NMR 
1JTD_B:A EI 2.3 3QI0_A 2.8 1BTL_A 1.8 

1JZD_AB:C ER 2.3 1JZO_AB 1.9 1JPE_A 1.9 
1M10_A:B ER 3.1 1AUQ_ 2.3 1M0Z_B 1.85 

1M27_AB:C OX 2.5 1D4T_AB 1.1 3UA6_A 1.85 
1ML0_AB:D OR 2.8 1MKF_AB 2.1 1DOL_ 2.4 
1MLC_AB:E A 2.5 1MLB_AB 2.1 3LZT_ 0.93 
1OFU_XY:A OX 2.1 1OFT_AB 2.9 2VAW_A 2.9 
1OPH_A:B EI 2.3 1QLP_A 2.0 1UTQ_A 1.15 
1PXV_A:C EI 1.8 1X9Y_A 2.5 1NYC_A 1.4 
1QA9_A:B OX 3.2 1HNF_ 2.5 1CCZ_A 1.8 

1RLB_ABCD:E OX 3.1 2PAB_AB
CD 

1.8 1HBP_ 1.9 

1RV6_VW:X OR 2.4 1FZV_AB 2.0 1QSZ_A NMR 
1TMQ_A:B EI 2.5 1JAE_ 1.6 1B1U_A 2.2 
1UDI_E:I EI 2.7 1UDH_ 1.7 2UGI_B 2.2 

1VFB_AB:C A 1.8 1VFA_AB 1.8 8LYZ_ 2.5 
1WEJ_HL:F A 1.8 1QBL_HL 2.2 1HRC_ 1.9 

1YVB_A:I EI 2.7 2GHU_A 3.1 1CEW_I 2 
1Z0K_A:B OG 1.9 2BME_A 1.5 1YZM_A 1.5 
1Z5Y_D:E ES 1.9 1L6P 1.6 2B1K_A 1.9 
2A78_A:B ES 1.8 1U90_A 2.0 2C8B_X 1.7 
2BTF_A:P OX 2.5 1IJJ_B 2.8 1PNE_ 2 
2HRK_A:B OX 2.0 2HRA_A 1.9 2HQT_A 1.9 
2I25_N:L A 1.8 2I24_N 1.3 3LZT 0.93 

2O3B_A:B EI 2.3 1ZM8_A 1.9 1J57_A NMR 
2PCC_A:B ES 2.3 1CCP_ 2.2 1YCC_ 1.23 
2UUY_A:B EI 1.1 1HJ9_A 0.9 2UUX_A 1.4 

2W9E_HL:A A 2.9 2W9D_HL 1.5 1QM1_A NMR 
2X9A_D:C OR 2.4 1S62_A NMR 2X9B_A 2.92 
2YVJ_A:B ER 1.9 2YVF_A 1.6 2E4P_A 2 
3D5S_A:C OX 2.3 1C3D_A 1.8 2GOM_A 1.25 

3EOA_LH:I A 2.8 3EO9_LH 1.8 3F74_A 1.7 



3F1P_A:B OX 1.1 1P97_A NMR 1X0O_A NMR 
3G6D_LH:A A 3.2 3G6A_LH 2.1 1IK0_A NMR 

3MXW_LH:A A 1.8 3MXV_LH 1.9 3M1N_A 1.85 
4G6J_HL:A A 2.0 4G5Z_HL 1.8 4I1B_A 2 
4G6M_HL:A A 1.8 4G6K_HL 1.9 4I1B_A 2 

 

Table	S7| Experimental	Δ𝑮,	predicted	Δ𝑮	from	PRODIGY	and	the	new	Δ𝑮	after	adding	the	
Δ𝑮𝒗𝒊𝒃	term	to	it,	Related	to	Figures	2	and	S8.	

 

PDB-
dataset 

Experimental 
ΔG 

(Kcal/mol) 

Prodigy 
ΔG 

(Kcal/mol) 

Prodigy 
ΔG_new 

(Kcal/mol) 

Experimental 
Kd (M) 

Kd-
PRODIGY 

(M) 

Kd-
PRODIGY-

new (M) 
1DQJ -11.7 -12.7 -12.07 2.80E-09 4.54E-10 1.32E-09 
1PXV -12.97 -14 -13.36 3.10E-10 5.02E-11 1.47E-10 
1DFJ -18.05 -13.6 -13.36 5.90E-14 9.88E-11 1.48E-10 
1GXD -11.7 -12.6 -12.05 5.20E-09 5.38E-10 1.37E-09 
1AKJ -5.3 -7.3 -6.76 0.000126 4.26E-06 1.07E-05 
1ATN -12.07 -10.9 -10.05 2E-09 9.58E-09 4.06E-08 
1Z0K -7 -11.7 -11.14 0.0000077 2.47E-09 6.41E-09 
1MLC -9.6 -10.3 -9.58 9.1E-08 2.65E-08 8.99E-08 
1A2K -9.3 -9 -8.22 0.00000015 2.39E-07 8.92E-07 
2I25 -12.3 -12 -11.23 1E-09 1.49E-09 5.51E-09 

2HRK -11 -8.7 -8.11 9E-09 3.98E-07 1.09E-06 
1WEJ -12.48 -9.4 -8.63 7.14E-10 1.22E-07 4.49E-07 
1E4K -7.9 -9.4 -9.03 0.0000017 1.22E-07 2.26E-07 
1GCQ -6.5 -9 -8.44 0.000017 2.39E-07 6.15E-07 
1OPH -11.32 -11.6 -11.79 5E-09 2.93E-09 2.13E-09 
1J2J -8.13 -7 -6.44 0.0000011 7.08E-06 1.84E-05 

1VFB -11.5 -11.4 -10.68 3.70E-09 4.11E-09 1.39E-08 
1E96 -7.42 -8 -7.32 0.0000027 1.30E-06 4.15E-06 

1EWY -7.4 -8.3 -7.78 0.00000357 7.83E-07 1.89E-06 
2PCC -7.9 -8.1 -7.38 0.0000016 1.10E-06 3.70E-06 
1AK4 -6.43 -7.2 -6.32 0.000016 5.05E-06 2.26E-05 
1QA9 -7.16 -9.6 -8.92 0.000009 8.66E-08 2.75E-07 
1JTD -14.41 -10.2 -9.5 2.72E-11 3.13E-08 1.03E-07 
3EOA -11.81 -9.2 -8.46 2.20E-09 1.71E-07 5.95E-07 

3MXW -11.31 -12.3 -11.54 7E-09 8.94E-10 3.22E-09 
1M10 -11.24 -10.5 -9.98 5.80E-09 1.89E-08 4.59E-08 



 

	
Figure	 S1|RMSD	 between	 the	 interacting	 partners,	 Related	 to	 Figure	 1.	 The	 RMSD	
between	 bound	 and	 unbound	 form	 of	 interacting	 partner	 1	 (X-axis)	 is	 compared	 to	 the	
RMSD	between	bound	and	free	 form	of	 interacting	partner	2	 (Y-axis).	The	red	solid	 line	 is	
the	unity	 line.	 For	53	complexes,	 significant	 change	 in	 structures	 is	observed	only	 for	one	
partner.	 

	 	



	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Figure	S2|Analyses	of	dynamics	of	PPCs	and	Influence	of	size	of	 interacting	proteins	and	
their	 interface	area	on	observed	 fluctuation	differences,	Related	to	Figures	2	and	3.	Box	



plots	showing	distribution	of	Cα	fluctuations	for	all	residues	in	bound	and	unbound	forms	at	
a	distance	 cut-off	of	 (A)	12Ǻ	and	 (B)	10Ǻ.	 The	 two	distributions	are	 significantly	different	
from	each	other	(two-sample	KS-test,	p-value	<	2.2x10-16),	showing	variation	in	flexibility	of	
bound	and	free	proteins.	(C)Length	of	protein	(proxy	for	protein	size)	on	X-axis	is	plotted	vis-
à-vis	 the	 root	mean	square	 fluctuations	 (RMSDf)	on	Y-axis	 for	near	 interface	 residues	 (left	
panel)	and	residues	far	from	interface	(right	panel).	The	dotted	line	shows	the	best	 line	of	
fit.	 (D)	 Interface	 area	 on	 X-axis	 is	 plotted	 vis-à-vis	 the	 root	 mean	 square	 difference	 of	
fluctuations	(RMSDf)	on	Y-axis	for	near	interface	residues	(left	panel)	and	residues	far	from	
interface	 (right	 panel).	 The	 dotted	 line	 shows	 the	 line	 of	 best	 fit.	 The	 results	 suggest	 no	
significant	effect	of	size	or	interface	area	of	the	protein	on	observed	fluctuation	differences	
as	the	Pearson’s	correlation	coefficient	of	-0.16	and	-0.39	was	obtained. 

	

 

 

 

 



 

  



Figure	S3|	Overlap	heatmaps	 for	 the	proteins	 that	 showed	at	 least	one	mode	with	high	
score	(>|0.7|),		Related	to	Figure	6.	The	X-axis	in	all	the	maps	show	the	10	lowest	frequency	
modes	and	Y-axis	shows	the	overlap	score.	The	color	scale	for	these	maps	is	shown	at	the	
bottom	and	is	scaled	between	-1	and	+1.	In	all	the	cases	–	and	+	signs	do	not	have	a	physical	
meaning	 and	 are	 considered	 equivalent.	 These	 maps	 were	 analysed	 to	 understand	 the	
conservation	of	modes	of	motion	for	high	overlap	cases.	It	is	evident	from	these	maps	that	
despite	high	correlation,	many	proteins	show	reordering	of	modes	in	the	bound	form	when	
compared	to	the	unbound	form.	

	

  

	

	

Figure	 S4|	 Role	 of	 dynamics	 in	 CypA	 and	 RELIK	 binding,	 Related	 to	 Figures	 7.	 (A)	
Superposition	 of	 CypA	 structure	 in	 free	 form	 (blue),	 bound	 to	 HIV-CA	 (CA)	 (orange)	 and	
RELIK-CA	(rCA)	(pink)	shows	no	significant	difference	in	structure.	The	common	binding	site	
of	 CA	 and	 rCA	 on	 CypA	 is	 encircled	 in	 black.	 (B)	Normalised	 square	 fluctuations	 for	 non-
interface	 residues	 of	 CypA	 in	 free,	 CA-bound	 and	 rCA-bound	 form.	 (C)	 Cross-correlation	
between	canonical	and	non-canonical	binding	sites	on	CypA	in	RELIK-bound	form.	

	

	



	

	

	

Figure	S5|	Role	of	dynamic	allostery	in	stability	of	antigen-antibody	complexes,	Related	to	
Figure	 7	 and	 8.	 (A)	 Superposed	 structures	 of	 E8-antibody	 (ribbon	 representation)	 and	
Cytochrome-C	 (Cyt-C)	 protein	 (cartoon	 representation)	 in	 left	 panel	 and	 5E1	 antibody	
(ribbon	representation)	and	Sonic	hedgehog	(Shh)	protein	(cartoon	representation)	in	right	
panel.	 Bound	protein	 is	 shown	 in	orange	 and	unbound	protein	 in	 blue	 colour.	 (B)	Scatter	
plots	of	non-interface	residues	in	bound	and	unbound	forms	for	Cyt-C	(left)	and	Shh	(right)	



show	 higher	 fluctuations	 in	 bound	 form.	 X-axis	 shows	 normalised	 square	 fluctuations	 in	
bound	 forms	 and	 Y-axis	 shows	 normalised	 square	 fluctuations	 in	 unbound	 forms.	 (C)	
Difference	 in	 cross-correlation	of	Ca2+	 binding	 residues	between	bound	and	unbound	Shh	
protein	suggests	an	allosteric	communication	between	interface	and	Ca2+	binding	residues.	

	

	

Figure	 S6|	Bla-1	 binding	 to	BLIP-II	 induces	 subtle	 differences	 in	 residue-communication,	
Related	 to	 Figure	 7	 and	 8.	 (A)	Superposed	 BLIP-II	 structures	 in	 free	 (blue),	 TEM-1	 bound	
(orange)	 and	 Bla-1	 bound	 (red)	 show	 no	 significant	 structural	 changes.	 BLIP-II	 protein	 is	
shown	 as	 cartoon	 and	 TEM-1	 and	 Bla-1	 proteins	 are	 shown	 as	 ribbons.	 (B)	 Normalised	
square	fluctuations	for	residues	in	BLIP-II	in	free	(pink),	TEM-1	bound	(red)	and	Bla-1	bound	
(green)	 form.	Profiles	show	significant	differences	 in	 fluctuations	between	free	and	bound	
forms.	(C)	Overlap	between	10	lowest	frequency	modes	of	TEM-1	and	Bla-1	bound	BLIP-II.	
(D)	Absolute	 differences	 between	 cross-correlation	 in	 BLIP-II	 residues	 in	 TEM-1	 and	 Bla-1	
bound	forms	show	alteration	in	residue	coupling	in	Bla-1	bound	form.		



	

	

	

	

	

	

	

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure	S7|	Putative	role	of	dynamics	in	packing	of	replisome	complex,	Related	to	Figure	7	
and	8.	(A)	Superposed	structures	of	thioredoxin	(trx)	protein	in	T7	gp5+DNA	bound	(orange)	
and	unbound	form	(blue).	Trx	is	represented	as	cartoon	and	gp5	as	ribbon.	DNA	is	shown	in	
green.	 (B)	Normalised	 square	 fluctuations	 of	 trx	 residues	 in	 gp5+DNA	bound	 form	 (black)	
and	 free	 form	 (green).	 (C)	 Scatter	 plot	 showing	 normalised	 square	 fluctuations	 for	 non-
interface	 residues	 of	 trx	 in	 gp5+DNA	 bound	 form	 on	 X-axis	 and	 free	 form	 on	 Y-axis.	 (D)	
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Figure	S8| Graphical	representation	of	predicted	and	experimental	ΔG	values,	Related	to	
Figure	2	and	Table	S7. 

  



Data	 S1|	 Includes	 the	 analysis	 of	 three	 more	 cases	 with	 change	 in	 dynamics	 but	 no	

observed	 structural	 changes	 and	 the	 pilot	 study	 to	 improve	 binding	 affinity	 prediction,	

Related	to	Figures	2,	7,	8	and	Discussion.		

Differential dynamics of Cyclophilin A (CypA) may promote RELIK capsid 

stabilisation 

Interestingly, CypA has also been shown to bind other prehistoric endogenous lentiviruses, 

e.g., from rabbits (RELIK) and lemurs (PSIV), etc. The crystal structure of CypA with 

RELIK-capsid (rCA), shows that the active site of CypA binds rCA in a manner like CypA-

HIV CA but the orientation of CAs differ in the two crystal structures (Goldstone et al., 

2010). Since, CypA shows a conserved binding mode with the lentiviral capsids, its 

interaction with CA and rCA was compared to find the similarity or differences between the 

dynamics of CypA bound to two evolutionarily conserved partners. Here again, CypA does 

not show differences in the structure between rCA bound and free form (Figure S4A), but the 

two CA molecules are positioned differently in crystal structures. These differences affect the 

dynamics in a slightly different way. Comparison of normalised fluctuations for CypA-rCA 

and CypA-CA revealed regions of similar and differential dynamics between the two. 

Interestingly, the regions away from the interface show change in dynamics in CypA-rCA 

structure also (Figure S4B). Despite only subtle differences between the normalised square 

fluctuations of non-canonical binding site in the free and rCA bound structures, residue 

communication within the site gets altered in CypA-rCA structure too (Figure S4C). Though 

it is unclear if CypA binds two rCA molecules, the current results propose a possibility of 

similar binding mode like HIV CA. 

Redistribution of dynamics upon binding of partner protein contributes to the stability 

of the complex 

Apart from participating in a downstream signalling process, recruiting a partner protein or 

modulating the activity of the enzymes, binding of two or more proteins can also lead to 

redistribution of dynamics (Grünberg et al., 2006). Reorganisation of motions within a 

protein contributes favourably to the entropy and hence stabilises the complex. For many 

cases in Table S4, increase in fluctuations was observed in the bound form. When the 

relevant literature was reviewed, it was found that many a times, an increase in flexibility in 

regions other than interface has been reported to positively contribute towards the stability of 

the complex. For example, the interactions between cytochrome-C (Cyt-C) and E8 antibody 



(PDB code: 1wej) (Mylvaganam et al., 1998) as well as sonic-hedgehog (Shh) protein and 

5E1 antibody fragment complex (PDB code: 3mxw) (Maun et al., 2010), does not induce any 

structural changes in Cyt-C and Shh protein respectively (Figure S5A). Antibodies generally 

induce long-range conformational changes in the antigen. These cases raise special interest 

since a change in dynamics was observed in the antigens, despite no change in structure. 

Many residues, away from the interfaces, showed higher fluctuations in the bound form of 

antigens than the unbound forms (Figure S5B).  

The Cyt-C : E8 interaction has been shown to be both enthalpically and entropically favoured 

(Mylvaganam et al., 1998). Hence, the increase in fluctuation of non-interface residues in 

both the antigens could imply a positive gain in entropy upon complex formation, thereby 

compensating for the loss of conformational freedom at the interface. Additionally, Shh-E51 

complex is shown to have better affinity in the presence of Ca2+. Cross-correlation analysis 

performed in this study suggested a better correlation between interface (Lys45, Lys87, 

Arg123, Arg153, Arg155, and Lys178) and Ca2+-binding residues (Glu89, Glu90, Asp95, 

Asp126, Asp129, and Asp131) of Shh in the E51 bound form than the unbound form (Figure 

S5C). This suggests the existence of communication between the two regions, which likely 

leads to a positive effect of Ca2+ binding. 

Beta-lactamase inhibitor protein-II shows subtle differences in residue-residue 

communication when bound to two homologous partners 

Beta-lactamase inhibitor protein-II (BLIP-II) binds beta-lactamases and inhibit their 

activities. It is a highly potent inhibitor and binds to the active site of beta-lactamases with 

femtomolar to picomolar affinity (Brown et al., 2013). Two such beta-lactamases that BLIP-

II binds to are TEM-1 and Bla-1. Previous studies have shown that though BLIP-II binds to 

beta-lactamases with varying strengths, its affinity for TEM-1 and Bla-1 is comparable (Kd of 

0.79 pM and 1.1 pM respectively) (Brown et al., 2011). But there exists a difference between 

the pre-steady state kinetics, where association rate for BLIP-II and TEM-1 is faster as 

compared to BLIP-II and Bla-1, but once bound, BLIP-II dissociates from Bla-1 with a slow 

dissociation rate (Brown et al., 2011). TEM-1 and Bla-1 are homologous proteins with 38% 

sequence identity. BLIP-II binds to both with similar interface with no backbone or side-

chain movement observed in free and the two bound forms of BLIP-II (Figure S6A). This 

raises a possibility that dynamics may play a role in regulating the pre-steady state kinetics.  



No differences between normalised square fluctuations of BLIP-II were observed (Figure 

S6B). Overlap score was also observed to be high between the low frequency normal modes 

of BLIP-II bound to TEM-1 and Bla-1 (Figure S6C). However, the cross-correlation 

matrices, interestingly, showed subtle differences between the two forms (Figure S6D).Inter-

residue communication gets marginally altered within BLIP-II bound to Bla-1 as compared to 

TEM-1 which can contribute to slow dissociation rates of BLIP-II from Bla-1 complex. 

Further, in previous studies, it was observed that BLIP-II : Bla-1 complex shows a more 

positive gain in entropy when compared to BLIP-II : TEM-1 complex (Brown et al., 2011). 

Results here are in concordance with gain in entropy, as the fluctuation profiles indicate the 

residues which have higher fluctuations in two bound forms of BLIP-II vis-à-vis the unbound 

form. This, in turn, seems to affect the synchronised motions within BLIP-II. It is to be noted 

that regions in BLIP-II, which show differences in cross-correlation are situated far away 

from the interface suggesting the possibility of a communication pathway between them. 

These residues can be further mutated to confirm their role in allosteric communication. 

Change in Thioredoxin (trx) flexibility likely helps in better packing of T7 

bacteriophage replisome 

Some proteins are known to perform multiple functions depending on their cellular location, 

cell-signal or binding partners and are known as moonlighting proteins (Jeffery, 2009). A 

large number of reviews are available on such proteins, listing their form and functions 

(Gancedo et al., 2016; Huberts and van der Klei, 2010; Jeffery, 2009). Since these proteins 

can bind diverse partners under different conditions, it is interesting to analyze if the 

dynamics of any moonlighting protein gets altered upon binding of another protein without a 

significant change in structure. Proteins from T7-bacteriophage replisome complex were 

selected as a case study. T7 replisome complex consists of four proteins viz. T7 DNA 

polymerase (gp5), host bacterial thioredoxin (trx), ssDNA-binding protein (gp2.5) and DNA 

primase-helicase (gp4) (Kulczyk and Richardson, 2016). T7 gp5 is a non-processive 

polymerase in the absence of bacterial trx (Akabayov et al., 2010). Trx, in its functional form 

in host bacteria, maintains the redox environment in cell whenever required (Zeller and Klug, 

2006). Proteins, gp2.5 and gp4, bind more strongly to gp5/trx (kd = 130 nM and 90 nM 

respectively) as compared to either gp5 (Kd = 1600nM and 370nM respectively) or trx alone 

(Kd = 500 µM and 130 µM respectively) (Ghosh et al., 2008). It was believed for a long time 

that trx itself doesn’t have any role in recruiting gp2.5 and gp4 and it only stabilizes the gp5 

loops for gp2.5 and gp4 binding. However, it was later shown that though in the absence of 



DNA, gp5/trx complex recruits gp2.5 and gp2.4 via two loops in gp5 but in the presence of 

DNA, gp4 binds to gp5 via trx residue Arg36 (Ghosh et al., 2008).  

Thioredoxin in its gp5-bound and free form does not show significant change in structure 

(Figure S7A). To understand the role of trx dynamics in recruiting gp4, normal modes were 

calculated for trx in free and gp5-DNA bound form. A general increase in flexibility was 

observed for trx in its bound form except for the residues at the interface (Figure S7B). 

Arg36 showed comparable flexibility in the bound and unbound form suggesting its role in 

gp4 binding. Further, it has been experimentally shown that residues 60-91 of E. coli trx are 

critical because replacement of this region with human trx leads to complete inactivity of T7-

polymerase (Lee et al., 2018). Many residues in region 60-91 are away from gp5 interface 

and were observed to show higher fluctuations (Figure S7C) and showed better 

synchronisation of motions (Figure S7D). Though there are no other trx residues currently 

known to bind directly to gp4, these results warrant for the role of increased flexibility in 

recruitment of gp4. Moreover, it has been earlier suggested that for many quaternary 

complexes, flexibility helps in better packing of distinct heteromeric subunits (Marsh and 

Teichmann, 2014).  

 

Pilot study to understand the vibrational entropy contributions towards binding 
affinities 

The current methods to predict binding affinity or the binding free energy fall into two 

categories: simulation-based numerical methods and statistics-based theoretical methods. 

Simulation-based methods like MM/GBSA or MM/PBSA are time-consuming and 

computationally expensive procedures (Gilson and Zhou, 2007; Kollman, 1993). The 

statistics-based methods employ heuristics and thus are fast but always have a scope of 

improvement. We started with an aim to include the contribution of vibrational entropy to the 

calculation of binding affinity. The frequency values to calculate vibrational entropy was 

obtained from the standard Cα-based normal mode analysis performed in this study and its 

contribution to free energy was calculated using the formula: 

                                           𝐺!"#!"# = −𝑅𝑇 𝑙𝑛(!!!
!�!

!

!!!
) 

Where, R is the universal gas constant, T is the temperature (here taken as 298.15K), N is the 

total number of modes corresponding to 80% variance in motion, h is the Planck’s constant, λ 



is the natural frequency of the kth mode, and Kb is the Boltzmann constant. All units 

converted from SI to Kcal/mol. 

Out of the 58 complexes in our dataset, binding affinity values have been experimentally 

reported for 27 complexes (Vreven et al., 2015). So, we calculated the 𝐺!"#!"! for the 27 

complexes in their bound and respective unbound forms. Δ𝐺!"# was calculated as: 

Δ𝐺!"# = 𝐺!"#
!"#$ - 𝐺!"#!"!- 𝐺!"#!"! 

Where, comp is the bound complex, ub1 is the unbound protein 1 and ub2 is the unbound 

protein 2. We added the calculated Δ𝐺!"# term to the predicted Δ𝐺 from an existing software, 

PRODIGY (Xue et al., 2016), to predict binding free energy/binding affinity. This algorithm 

is based on a simple linear regression of interfacial contacts (ICs) and some of the properties 

of the non-interacting surfaces (NIS), which have been shown to influence the binding 

affinity. It is to be noted that this method is currently one of the best performing statistical 

methods, but does not take into account any entropic term. So, it seems worthwhile adding 

the calculated Δ𝐺!"# to the predicted Δ𝐺 and analyse for any improvements.  

Table S7 consists of the experimental Δ𝐺, predicted Δ𝐺 from PRODIGY and the new Δ𝐺 

after adding the Δ𝐺!"# term to it. The corresponding Kd values were calculated using the 

formula: 

Δ𝐺 = 𝑅𝑇𝑙𝑛𝐾! 

Figure S8 shows the graphical representation of predicted and experimental ΔG values. The 

Pearson’s correlation coefficient between the experimental ΔG and the new PRODIGY ΔG 

was found to be ~0.7 and the RMSE was 2.15 Kcal/mol. The Pearson’s correlation 

coefficient between the experimental Kd and Kd Prodigy-new was found to be ~0.5 and 

RMSE was 2.3E-05 M.  

We reckon that at this stage of the analysis, it is not a drastic improvement (as compared to 

PRODIGY) in prediction efficacy but it is evident from this pilot study that the PRODIGY-

new values show marginal improvement and moved closer to the experimental values, 

especially in cases where PRODIGY over predicted the free energy of binding (entries 

highlighted in Bold). This, we believe, is moving one step closer to improving the accuracy 

of binding affinity predictions. Moreover, it is to be noted that Δ𝐺!"# values at this stage are 

“raw”, “uncalibrated” values added to the Δ𝐺 from PRODIGY. The vibrational entropy 



obtained from NMA may be an under-estimate and hence require calibration using weights 

from MD simulations or experiments available in literature. We strongly believe that 

calibrating these values by assigning weights will have a positive impact and is expected to 

improve the accuracy. In a previous study from 2018 by Skrbic et al. (Skrbic et al., 2018) 

authors have incorporated vibrational entropy term in a similar fashion while calculating 

binding energies/affinities and they report that it slightly improves the prediction. We believe 

that there are many instances within the current methodology to improve the efficiency. But it 

demands a full-fledged, dedicated attention and analysis of its own which will include 

understanding of different methods and if required, application of machine learning methods 

to train the model with high efficiency. 

 

 


