FANCD2 modulates the mitochondrial stress response to prevent common fragile site instability - Archive ouverte HAL Access content directly
Journal Articles Communications Biology Year : 2021

FANCD2 modulates the mitochondrial stress response to prevent common fragile site instability

(1, 2) , (3) , (3) , (1) , (1, 4) , (5) , (6) , (7) , (1, 2)
1
2
3
4
5
6
7

Abstract

Abstract Common fragile sites (CFSs) are genomic regions frequently involved in cancer-associated rearrangements. Most CFSs lie within large genes, and their instability involves transcription- and replication-dependent mechanisms. Here, we uncover a role for the mitochondrial stress response pathway in the regulation of CFS stability in human cells. We show that FANCD2, a master regulator of CFS stability, dampens the activation of the mitochondrial stress response and prevents mitochondrial dysfunction. Genetic or pharmacological activation of mitochondrial stress signaling induces CFS gene expression and concomitant relocalization to CFSs of FANCD2. FANCD2 attenuates CFS gene transcription and promotes CFS gene stability. Mechanistically, we demonstrate that the mitochondrial stress-dependent induction of CFS genes is mediated by ubiquitin-like protein 5 (UBL5), and that a UBL5-FANCD2 dependent axis regulates the mitochondrial UPR in human cells. We propose that FANCD2 coordinates nuclear and mitochondrial activities to prevent genome instability.
Fichier principal
Vignette du fichier
s42003-021-01647-8.pdf (1.84 Mo) Télécharger le fichier
Origin : Publication funded by an institution
Loading...

Dates and versions

inserm-03357197 , version 1 (28-09-2021)

Identifiers

Cite

Philippe Fernandes, Benoit Miotto, Claude Saint-Ruf, Maha Said, Viviana Barra, et al.. FANCD2 modulates the mitochondrial stress response to prevent common fragile site instability. Communications Biology, 2021, 4 (1), pp.127. ⟨10.1038/s42003-021-01647-8⟩. ⟨inserm-03357197⟩
17 View
28 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More