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Decisions made by mammals and birds are often temporally extended. They 
require planning and sampling of decision-relevant information. Our 
understanding of such decision making remains in its infancy compared to 
simpler, forced choice paradigms. However, recent advances in algorithms 
supporting planning and information search provide a lens through which 
we can explain neural and behavioural data in these tasks. We review these 
advances to obtain a clearer understanding for why planning and curiosity 
originated in certain species but not others; how activity in the medial 
temporal lobe, prefrontal and cingulate cortices may support these 
behaviours; and how planning and information search may complement 
each other as means to improve future action selection.
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Decisions in natural environments are temporally extended and 
sequential. In many species, they involve planning, information search, and choice 
between many alternatives. They may require action selection to unfold over long 
timescales. They can be characterised by periods of deliberation and information 
sampling, where the agent simulates the future consequences of its actions before 
committing to a final choice.  

This contrasts with much decision-making research in neuroscience to 
date. Many decision-making paradigms focus around repeated choices between a 
limited number of options simultaneously presented to the agent. Adopting this 
reductive viewpoint has been highly fruitful – it has meant that formal algorithms 
borrowed from other fields can be applied when interpreting behavioural and 
neural data. For example, algorithms borrowed from signal detection theory are 
applied to interpret sensory detection tasks, such as 2-alternative forced choice 
paradigms1. Algorithms from model-free reinforcement learning2, or economics3, 
are applied to interpret reward-guided decision tasks. Algorithms from foraging 
theory4 are used to interpret decisions about whether to stay or depart from a 
currently favoured patch location. 

In this Perspective, we argue that the recent development of novel 
algorithms and frameworks allows us to move beyond reductive paradigms, and 
progress towards studying decision making in naturalistic, temporally extended 
environments. This progress creates challenges for the field. Which model 
organisms can be used to study naturalistic choices, and how might their cognitive 
abilities be compared to humans? How do we design paradigms that are more 
naturalistic but remain experimentally tractable? What is the behavioural and 
neurophysiological evidence that animals are planning or making use of sampled 
information? 

We seek to emphasise an important relationship between planning and 
information search during naturalistic decision making. Both are about not 
pursuing immediate reward, but instead improving selection of future actions. 
While physically searching or sampling information is an overt action, planning 
relies upon mental simulation and is typically covert. Planning is thus a form of 
internal information search, over past experiences. Cognitive processes leading to 
overt actions are easier to measure experimentally. We argue that by 
understanding the neural basis of tasks requiring overt information search, we 
may gain insight into neural mechanisms supporting covert planning. 
 
Why do (certain) animals plan? 
 We first need to ask: why plan at all? Current understanding of plan-based 
control regards such action choices as depending upon the explicit consideration 
of possible prospective future courses of actions and consequent outcomes. 
Conversely, there is no explicit consideration of action outcome under habit-based 
control5-7. Planning, therefore, can create new information because it is 
compositional. It concatenates bits of knowledge about actions’ short-term 
consequences to work out their long-term values. By contrast, habit-based action 
choices are sculpted by prior experience alone without such inference. Whereas 
habit-based action selection is automatic, fast, and inflexible, plan-based action 
selection requires deliberation, which allows actions to adapt to changing 
environmental contingencies. 
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Evolutionary conditions selecting for planning. Habit-based action selection 
appears to be universal amongst vertebrates, both terrestrial and aquatic. In 
contrast, behavioural and neural evidence for plan-based action selection seems 
to only exist for mammals and birds8-10 and appears either absent or ambiguous 
for reptiles, amphibians11,12, and fish13.  

 

 
Figure 1. Aquatic versus aerial visual scenes, and how the corresponding habitats affect the utility of 
habit- and plan-based action selection during dynamic visually-guided behaviour. (a) Example of an 
aquatic visual scene150, from Current Biology, Vol. 27 Issue 14, Dan E. Nilsson, Evolution: An Irresistibly Clear 
View of Land, R716, Copyright (2017), with permission from Elsevier.. In such situations, typical of aquatic 
environments, visual range is limited and so predator-prey interactions occur at close quarters, requiring rapid 
and simple responses facilitated by a habit-based system. (b) Example of a terrestrial visual scene ("Zebra and 
giraffe" by Caty T, used under CC BY 2.0 / Cropped from original). Computational work16 suggests that these 
scenarios confer a selective benefit (not present in aquatic habitats) to planning long action sequences, by 
imagining multiple possible futures (solid/dashed black arrows) and selection of the option with higher expected 
return (solid black arrow). (c) The computational work idealized predator-prey interactions as occurring within 
a ‘grid world’ environment (column on right; prey blue, predator yellow) where the density of occlusions was 
varied. Prey had to either use habit- or plan-based action selection to get to the safety (red square) while being 
pursued by the predator. The plot shows survival rate versus clutter density across random predator locations, 
under plan-based (blue solid) and habit-based action selection (red dashed). Line indicates mean  s.e.m. across 
randomly generated environments (n.s. = not significant, p > 0.05, *** p < 0.001. Data from 16. (d) To relate clutter 
densities in the artificial worlds to those found in the real world, Mugan and MacIver16 used lacunarity, a 
measure commonly used by ecologists to quantify spatial heterogeneity of gaps that arise from (for example) 
spatially discontinuous biogenic structure. The line plot shows the mean natural log of average lacunarity and 
the interquartile range of environments with a predetermined clutter level. Coastal, terrestrial, and structured 
aquatic environments can be partitioned based on previously published lacunarity value (for a full range of 
lacunarities across different environments, see 16). The green circle highlights a zone of lacunarity where 
planning outstrips habit (based on (c)). Insert shows an example image from the Okavongo Delta in Botswana 
(800 m x 800 m, from Google Earth), considered a modern analogue of the habitats that early hominins lived 
within after branching from chimpanzees24. Its average lacunarity (ln(avg )) is 0.72. Images in (a)/(b) from ref. 
150; all other panels adapted from ref. 16 

file:///C:/Users/cheetah/Downloads/flickr.com/photos/misschatter/14779367536/
file:///C:/Users/cheetah/Downloads/flickr.com/photos/misschatter/14779367536/
https://creativecommons.org/licenses/by/2.0/
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Recent computational work suggests that the increase in visual range14 and 

environmental complexity15 that accompanied the shift from life in water to life 
on land may have been a critical step in the evolution of planning16 (Fig. 1). In 
particular, plan-based action selection may be advantaged in complex dynamic 
tasks when the animal has enough time and sufficiently precise updates—such as 
through long range vision—to forward simulate. Therefore, long-range imaging 
systems (i.e. terrestrial vision, but also mammalian aquatic echolocation) may be 
crucial in advantaging plan-based control in complex environments, due to their 
ability to detect the structure of a complex, cluttered environment with high 
temporal and spatial resolution. In such cases, the simultaneous apprehension of 
distal landmark information and other dynamic agents, be they prey or predator, 
allows planning to take place over the changing sensorium. When visual range is 
reduced, such as in nocturnal vision, plan-based control may only exist for stable 
environments over a previously established cognitive map. Thus, near-field 
detection of landmarks may be used to calibrate an allocentric map and planning 
used only initially to devise new paths through this stable environment.  

The scenarios of short- and long-range dynamic environments shown in 
Fig. 1a/b drive the following hypothesis: plan-based action selection is 
evolutionarily selected for when the number of action selection possibilities with 
differing outcome values is so large, dynamic, and uncertain that habit-based 
action selection fails to be adaptive (Fig. 1c). Evolutionarily this scenario greeted 
the first vertebrates to live on land over 300 million years ago. The increase in 
both visual range14 and environmental complexity15 due to the change in viewing 
medium and habitat facilitated the observance of the large variety of uncertain 
action-outcome values over an extended period of time in predator-prey 
encounters, thus advantaging planning. 

 

 Variation in planning across terrestrial species. Within terrestrial species, 
there is also marked variation in planning complexity. Many mammalian species 
learn the latent structure of their environment and deploy this flexibly to select 
new behaviours. Original support for the idea that rodents learn a cognitive map 
of their environment came from studies by Tolman17, in which rats immediately 
deployed the previously learnt structure of the environment in order to travel to 
reward-baited locations. Modern-day tests of similar behaviours show that such 
cognitive maps underlie hippocampal-dependent single-trial learning of new 
associations18. There is also evidence for planning in certain birds, exemplified by 
food caching behaviours in scrubjays19 and tool use in New Caledonian Crows20.  

However, these tests of planning remain simplified compared to the 
flexible higher-order sequential planned behaviours observable in humans and 
other primates21. Between-species variation in primate brain size may partly be 
explained by the complexity of foraging environments over which different 
behaviours must be planned16,22. It remains unclear whether there are good 
analogues even in non-human primates of the hierarchically organised plan-based 
action selection23 that underlies much of human behaviour. Work on the type of 
habitats which maximize the advantage of planning shows that a patchy mix of 
open grassland and closed forested zones confers the greatest advantage16 (Fig. 
1d). This appears to be the type of habitat that hominins invaded after splitting 
from forest-dwelling chimpanzees24, and could, in combination with long range 
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vision, be a contributing factor to hominid exceptionalism in planning16. In 
addition, the development of large social groups in primates (particularly 
hominins) demand sophisticated planning of multi-agent interactions25; social 
interactions not only require updating the likely behaviour of other agents, but 
also demand iterative inferences26. The near quadrupling in brain volume of early 
hominins compared to chimpanzees may relate to the high computational burden 
of planning due to both their foraging and social environment.  

 

Figure 2. As rats approach a choice point, a theta-locked hippocampal representation sweeps ahead of 
the rat towards potential goals.  (a) A rat approaches a T-choice point.  Each oval indicates the place field of 
a place cell in CA1 of the hippocampus.  (b) Place cells fire at specific phases of the hippocampal theta rhythm, 
allowing different spatial locations to be decoded from neural activity (coloured circles) leading to a sweep 
forward ahead of the rat.  The descending phase of the oscillation is dominated by cells with place fields centered 
at the rat’s current location, where the ascending phase is dominated by cells with place fields ahead of the rat, 
sweeping towards different potential goals on individual theta cycles36,37.  (c) Bayesian decoding applied 
separately to the descending and ascending phases of the theta cycle finds more decoding of current location 
during the descending phase, but more decoding of locations ahead of the rat during the descending phase.  (d) 
On a task in which the goal is delayed in time, the duration of the descending phase of the theta cycle is unchanged 
by the distance to the goal, but the ascending phase increases proportionally.   Data for panels (c)/(d) adapted 
from ref. 10. 

 
Parallels between planning and information search. Intriguingly, between-

species variation in planning sophistication can be related to between-species 
variation in curiosity. Curiosity can be defined as the natural intrinsic motivation 
and tendency to proactively explore the environment and gather information 
about its structure27. Primates in particular, and carnivores in general, have a 
biased tendency for curiosity and exploration compared to other species like 
reptiles that might be unmoved by new objects or neophobic28. Humans and non-
human primates have an extended juvenile period, and playful curiosity during 
this period gives rise to increased brain growth and behavioural flexibility29. 
Curiosity-driven information search can also take advantage of existing cognitive 
capabilities. New Caledonian Crows, for example, use tools when exploring novel 
objects, suggesting they can generalise tool use from food retrieval to non-
foraging activities30.  
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This parallel between planning and curiosity reinforces the viewpoint that 
the primary goal of information sampling is to build up knowledge of the structure 
of the environment. Structural knowledge acquired during information sampling 
can then be flexibly deployed when planning actions online in new environments, 
or when reward locations or motivations change. Recent studies in cognitive 
science have made this link explicit, using information sampling behaviour to 
arbitrate between which planning strategies participants are using in a multistep 
decision task31. 
 Plan-based action selection and curiosity may have given rise to 
evolutionary advantages. To study the algorithmic implementation of these 
behaviours, however, it becomes necessary to develop a formal framework 
against which they can be quantified, and their neural representations measured. 
 
Formalising planning 
 Formally, value-based planning (e.g. tree search by a chess computer to 
find the best move) corresponds to computing the long-run utility of different 
candidate courses of action, in expectation over the possible resulting series of 
future situations and moves. In Reinforcement Learning (RL) algorithms, this type 
of evaluation is known as “model-based” planning.  

Model-based planning relies on an “internal model” or representation of 
the task contingencies to forecast utility. Such a model can be used, in effect, to 
perform mental simulation to forecast the states and values likely to follow 
candidate action trajectories. This is contrasted with “model-free” trial and error, 
which is used to describe habit-based action selection6. This formalism has 
provided a foundation for reasoning about planning in psychology and 
neuroscience5: inspiring new tasks and predicting whether and when organisms 
are planning in classic tasks17,32, and grounding the search for neural mechanisms 
that implement specific forms of planning33. It has also offered a formal 
perspective on how the brain decides when to plan, versus acting without further 
deliberation, by defining under what circumstances additional planning is likely 
to be particularly effective in improving one’s choices5,34. 

 
 Mental simulation in the hippocampal formation. There are many different 
variants of model-based planning, which share the central feature of using a 
cognitive map of the environment to simulate future trajectories, but differ in the 
pattern by which this occurs. Perhaps the most straightforward case searches 
through possible future paths from the current situation, using these sweeps to 
evaluate different courses of action. Neurophysiologically, the hippocampal 
formation is a likely candidate for the encoding of such a cognitive map35, and this 
has guided the search for neural correlates of ‘trajectory sweeping’ during 
planning.  

In spatial navigation in rodents, for example, place cell activity recorded 
during active exploration of the environment reflects the animal’s current 
location. However, it also transiently represents other locations distal from the 
animal, including – suggestively – sequentially traversing paths in front of the 
animal. These nonlocal “sweeps” have been hypothesized to reflect episodes of 
explicit mental simulation through potential trajectories7,33,36,37. Notably, these 
events represent individual paths rather than a wavefront of future locations in 
parallel. Furthermore, consideration of each path takes time, and often occurs 
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when the animal’s locomotion is stopped. Thus deliberation, much like 
information search in the physical world, has an opportunity cost. 

 

Figure 3. A normative model-based planning account of replay events, observed in hippocampal place 
cells and in simulations of spatial navigation tasks. (a) Spike trains of rat hippocampal place cells before, 
during, and after running down a linear track to obtain a reward. Forward and reverse replay are observed 
before and after the lap, respectively, during sharp-wave ripple (SWR) events38. (b-k) Simulations of spatial 
navigation tasks, in which the agent evaluates memories of locations, called ‘backups’, preferentially by 
considering ‘need’ (how soon the location is likely to be encountered again) and ‘gain’ (how much behaviour can 
be improved from propagating new information to preceding locations). Simulated replay produces extended 
trajectories in forward and reverse directions33. (b-d) Gain term, need term and resulting trajectory for reverse 
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replay on a linear track. There is a separate gain term (b) for each action in a state (small triangles). If a state-
action pair leads to an unexpectedly valuable next state, performing a backup of this state-action pair has high 
gain, as it will change the animal’s behaviour in that state. Once this backup is performed, the preceding action 
(highlighted triangle) will now have high gain, and is likely to be backed up next. Multiple iterations of this 
process can lead to reverse replay. (e) Reverse replay can also be simulated in more naturalistic 2D open fields, 
tracking all the way from the goal to the starting location. (f-h) Gain term, need term and resulting trajectory 
for forward replay on a linear track. The need term (g), derived from the successor representation of the agent 
(see Fig. 4), reflects locations likely to be visited in the future. If need term differences are larger than gain term 
differences, this term dominates in driving the replayed trajectory. Here, this tends to lead to forward replay. (i) 
Simulated forward replay events also arise in 2D open fields, sometimes exploring novel paths towards a goal. 
(j) The model predicts the balance between forward/reverse replay events observed before/after running down 
a linear track33,38. (k) When an agent is simulated in an offline setting after exploring a T-maze and observing 
that rewards have been placed in the right arm, more backups of actions leading to the right arm are 
performed33. The same has been observed in rodent recordings during sleep60. Data for panels (a)/(j) adapted 
from ref. 38; data for panel (k) adapted from ref. 60; all other panels adapted from ref. 33. 

 

Two distinct types of nonlocal sweeps have captured attention: one 
involving isolated trajectories linked to a high-frequency event in the local field 
potential known as a sharp wave ripple38,39, and the other linked to theta 
oscillations, involving repeated cycles of forward excursions that sometimes 
alternate between multiple potential paths36,37 (see Figs. 2 and 3). Both types of 
events have been argued to be candidates for model-based evaluation by mental 
simulation, though these hypotheses are not mutually exclusive. 

 
Theta cycling and mental simulation. Beyond the fact that non-local sweeps 

traverse relevant candidate paths, a number of additional observations 
surrounding theta cycling suggest their involvement in planning.  First, these 
sequences sweep serially to the goals ahead of the animal during the ascending 
phase of the theta cycle10,40, and coincide with prefrontal representations of 
goals41 (Fig. 2).  Second, journeys on which these non-local representations sweep 
forward to goals often include an overt external behaviour, known as  ‘vicarious 
trial and error’ (VTE), which is also suggestive of deliberation7. During VTE, rats 
or mice pause at a choice point and orient back and forth along potential paths7,17.  
Advances in experimental task design have helped to isolate these behaviours 
linked to planning, and capture the degree to which subjects use plan-based 
versus habitual controllers when selecting between courses of action.  

Taking VTE to indicate planning processes, VTE occurs when animals know 
the structure of the world (have a cognitive map), but don’t know what to do on 
that map.  VTE disappears as animals automate behaviors within a stable 
world42,43 and reappears when reward contingencies change44,45.  On tasks in 
which animals show phases of decision strategies, VTE occurs when agents need 
to use flexible decision strategies and disappears as behaviour automates (see 7 
for review). This indicates that the presence or absence of VTE matches with the 
conditions that normatively favour model-based or model-free RL respectively5. 
During VTE, neural signals consistent with evaluation are found in the nucleus 
accumbens core46.  

Interestingly, disruption of hippocampus or medial temporal lobe can (in 
certain circumstances) increase rather than decrease VTE behaviour47-49, 
suggesting that VTE may be initiated elsewhere. One candidate is prelimbic cortex, 
where temporary inactivation diminishes VTE in rats and also impairs 
hippocampal theta sequences10. This finding provides an intriguing link to studies 
of the role of monkey dorsal anterior cingulate cortex (dACC) in information 
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sampling. Neural activity in dACC shifts between exploration and choice repetition 
occurring ahead of reward delivery, triggered after the accumulation of sufficient 
information to predict and plan the correct future solution to a problem50. This 
region also contains neural ensembles that are engaged whenever the animal 
explicitly decides to check on the current likelihood of receiving a large bonus 
reward51 (see below). 

 

Figure 4. A normative model-based planning account of replay events, observed in hippocampal place 
cells and in simulations of spatial navigation tasks. (a) Spike trains of rat hippocampal place cells before, 
during, and after running down a linear track to obtain a reward. Forward and reverse replay are observed 
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before and after the lap, respectively, during sharp-wave ripple (SWR) events38. (b-k) Simulations of spatial 
navigation tasks, in which the agent evaluates memories of locations, called ‘backups’, preferentially by 
considering ‘need’ (how soon the location is likely to be encountered again) and ‘gain’ (how much behaviour can 
be improved from propagating new information to preceding locations). Simulated replay produces extended 
trajectories in forward and reverse directions33. (b-d) Gain term, need term and resulting trajectory for reverse 
replay on a linear track. There is a separate gain term (b) for each action in a state (small triangles). If a state-
action pair leads to an unexpectedly valuable next state, performing a backup of this state-action pair has high 
gain, as it will change the animal’s behaviour in that state. Once this backup is performed, the preceding action 
(highlighted triangle) will now have high gain, and is likely to be backed up next. Multiple iterations of this 
process can lead to reverse replay. (e) Reverse replay can also be simulated in more naturalistic 2D open fields, 
tracking all the way from the goal to the starting location. (f-h) Gain term, need term and resulting trajectory 
for forward replay on a linear track. The need term (g), derived from the successor representation of the agent 
(see Fig. 4), reflects locations likely to be visited in the future. If need term differences are larger than gain term 
differences, this term dominates in driving the replayed trajectory. Here, this tends to lead to forward replay. (i) 
Simulated forward replay events also arise in 2D open fields, sometimes exploring novel paths towards a goal. 
(j) The model predicts the balance between forward/reverse replay events observed before/after running down 
a linear track33,38. (k) When an agent is simulated in an offline setting after exploring a T-maze and observing 
that rewards have been placed in the right arm, more backups of actions leading to the right arm are 
performed33. The same has been observed in rodent recordings during sleep60. Data for panels (a)/(j) adapted 
from ref. 38; data for panel (k) adapted from ref. 60; all other panels adapted from ref. 33. 

Sharp-wave ripples and mental simulation. Nonlocal trajectory events 
during high frequency sharp-wave ripples (Fig. 3a) also have a number of 
characteristics consistent with planning. These events also occur when animals 
pause during ongoing task behaviour (particularly at reward sites52,53); they can 
produce novel paths54; they tend to originate at the animal’s current location and 
predict its future path55; their characteristics change with time in a fashion 
consistent with changing need for model-based evaluation; and disrupting them 
causally affects trial-and-error task acquisition56. Interestingly, disrupting sharp-
waves increases VTE, suggesting that sharp-wave-based and theta-based 
planning processes may be counterbalanced53.  

A key additional feature of these events is that the most obviously 
planning-relevant events – paths in front of the animal during task behaviour – 
are only one special case of a broader set of nonlocal trajectories, which occur in 
different circumstances and include paths that rewind behind the animal often 
following reward57,58; and wholly nonlocal events during quiet rest or sleep54,59,60. 

Recent computational modeling work33 (Fig. 3) has aimed to explain these 
observations in terms of a normative analysis of model-based planning,  
considering not just when it is advantageous to plan, but which trajectory is most 
useful to consider next. Formally, this means prioritizing locations that will cause 
a substantial change in the agent’s future behaviour (how much the agent stands 
to gain from performing the simulation). One should also prioritise locations that 
the animal is particularly likely to visit in the future (how much need there is to 
perform such a simulation). The expected value of a particular trajectory is then 
calculated as the product of these two terms (e.g Fig. 3b-d, f-h). Importantly, 
while this analysis captures the characteristics of forward sweeps during task 
behaviour (Fig. 3f-i), it also explains backward replay behind the animal when a 
reward is received (Fig. 3b-e), and trajectories that tend to occur during sleep 
(Fig. 3k), as a form of offline ‘pre-planning’ for when these situations are next 
encountered61.  

Human neuroimaging experiments also suggest that putative behavioural 
signatures of model-based planning are associated with forward or backward 
neural reinstatement at various time points9,62-64. Human replay appears to occur 
in the sequence to be used in future behaviour rather than the experienced 
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sequence65, and is particularly pronounced for experiences that will be of greater 
future benefit66 as predicted by the prioritization framework33. 

 

Figure 5. The successor representation (SR) allows for rapid revaluation, and extraction of components 
that identify key components of state space structure.  (a) Successor Representation (SR) at state s1 for a 
policy that moves an agent toward the reward box (from ref. 82). The SR encodes the (discounted) expected future 
visits to all states. (b) Comparison of model-free (MF) learning and Rescorla Wagner (RW) SR-based learning of 
a value function under changing reward locations (given a random walk policy). Following a change in the 
reward location, SR learning is only temporarily set back while the agent learns the new reward location, 
whereas MF learning must resume from scratch.  The error is reported as the summed absolute difference 
between estimated and ground truth value at each state divided by the maximum ground truth value to 
normalize82. (c) First 16 eigenvectors for a rectangular graph consisting of 1600 nodes randomly placed in a 
rectangle, with edges weighted according to the diffusion distance between states82, are reminiscent of grid fields 
recorded in entorhinal cortex. (d-g) Examples of how topological features of an environment are exposed by SR 
eigenvectors. In (d-f), each state is colored such that the first 3 eigenvectors set the RGB (see colour cube). This 
shows how states are differentiated by the first few eigenvectors, and how they expose bottlenecks and decision 
points. In (g), the first eigenvector is shown, revealing clusters in the graph structure. Panels (a) to (c) adapted 
from ref. 82. 

 
Efficiently representing large state spaces. No matter how simulation is 

implemented, model-based planning suffers from a potentially exponential 
growth in computation time as planning becomes deeper, except in small-scale toy 
problems with a limited range of possible future outcomes or state space67. This 
is because of how the decision tree branches. If, for example, at every planning 
step there are 2 new possibilities, the total number of possible paths to consider 
grows at 2n.  We therefore need formalisms that account for tractable planning at 
scale. 

Representation learning is a framework for improving the scalability of 
reinforcement learning. Essentially, representation learning involves learning to 
represent your current state so as to reduce the burden on the downstream RL 
algorithm, usually by representing its position relative to task structure68-70. By 
making state representations more efficient, model-free agents become more 
sensitive to task structure and therefore more flexible to changes in reward 
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contingencies. Alternatively, the learned representation may feed into a model-
based planner, in which case the representation implicitly organizes the search or 
planning occurring over it. 

Recent studies in human cognitive science have shown that humans can 
exploit environmental structure in order to learn efficient representations in 
multi-armed bandit tasks71,72 and guide exploration in large decision spaces73. 
This structure typically depends upon learning that certain options are correlated 
with one another. For example, if many options are presented, but options that are 
close in space tend to be similar to one another, then humans exploit this spatial 
relationship in their choices and searches73. More broadly, structure learning links 
to the older idea of a ‘learning set’, in which experience on a task allows faster 
learning of new problems on the same task35,74. In machine learning, a similar 
phenomenon has been termed meta-learning75. 

 The neural basis of structure learning remains relatively underexplored. 
Disconnection lesions between frontal and temporal cortex impair use of a 
learning set, demonstrating the importance of interactions between these brain 
regions76, as also shown by transection of the fornix (a white matter structure 
linking hippocampus and frontal cortex)77. More recently, human imaging studies 
have used representational similarity analysis between different RL states to 
identify entorhinal cortex71 and orbitofrontal cortex71,78 as key nodes for learning 
task structures.  

 
Compressing information about future state occupancy. Neural 

representations of the animal’s current state must not only be rich enough to 
support sophisticated planning behaviours, but also to render planning 
computationally tractable. One solution is to learn a “predictive representation” 
of states expected to occur over multiple steps into the future, meaning that states 
that predict similar futures are constrained to have similar representations79,80. If 
two states lead to similar outcomes, it is safe to assume that anything learnt about 
one state (such as its value) should apply to the other as well. This can simplify 
planning, since predictive representations incorporate statistics about multiple 
steps of future events directly into the current representation. This allows 
anticipation of future states without the need to iteratively construct them via 
mental simulation. 

One example is the successor representation79,81. The successor 
representation of one’s current state is a vector encoding the expected number of 
visits to each possible future (or successor) state (Fig. 4a). In addition to 
simplifying planning, this accelerates value learning following changes (Fig. 4b). 
In neuroscience, the idea of predictive representation has been applied to explain 
some features of hippocampal place fields82, such as asymmetric growth in fields 
with traversals83, although it does not explain the sweeps and sequences 
discussed earlier. It can also account for human and animal revaluation 
behaviour84,85 and properties of dopaminergic learning signals86.  We also suggest 
that it might be worth asking whether other neural systems, such as striatum 
(which develops representations with experience87,88) or prefrontal cortex (which 
shows hierarchical abstraction89,90) show these successor representation 
properties.  

A related idea is that the state transition map of a task can be represented 
in a compressed form by summing periodic components of different frequencies, 



   
 

   
 

13 

in particular low-spatial and low-temporal frequency ones that coarsely predict 
state occupancy far into the future. These components can be constructed by 
taking principal components of the transition matrix91, or equivalently the 
successor representation matrix82. The lower frequency components produce 
compressed representations that can support faster learning91 and improved 
exploration92. By capturing smoothed, coarse-grained trends of how states predict 
each other, they pull out key structural elements such as clusters, bottlenecks, and 
decision points (Fig. 4d-g). These periodic functions share some features of grid 
cells82 (Fig. 4c), thereby falling into a family of models that suggest entorhinal 
cortex provides a mechanism for incorporating the spatiotemporal statistics of 
task structure into hippocampal learning and planning93,94. Recent work has 
explored the use of this type of representation to permit efficient linear 
approximations to full model-based planning95.  

Taken together, prediction and compression comprise two key learning 
principles. Prediction motivates encoding relevant information about the 
structure of the environment, and compression causes this information to be 
represented compactly to make learning about reward more efficient.   

 

Figure 6. Unsupervised cell assembly detection to identify neural substrates of cognitive tasks. (a) One 
approach to cell assembly detection identifies coincidently active populations of cells, via independent 
component analysis (ICA) of firing rate in 25ms bins102. Here, 7 cell assemblies are derived from 60 hippocampal 
CA1 principal neurons during exploration of a spatial arena. The derived cell assemblies show spatial tuning 
(bottom row).  (b) After exposure to a novel spatial environment, greater ‘reactivation’ of the cell assemblies 
derived in (a) during sleep is correlated with greater ‘reinstatement’ of the same cell assembly pattern during 
subsequent re-exposure to the environment. (c) Another approach to cell assembly detection allows for detection 
of assemblies at arbitrary  temporal scales (bin width of firing rate used), and arbitrary time lag in activation 
between different neurons.96 (d) Top panels: distribution of timelags within detected cell assemblies between 
simultaneously recorded spiny projection neurons in ventral striatum (VS) and dopamine neurons in ventral 
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tegmental area (VTA) during associative learning of value with a conditioned stimulus (CS+). VS neurons lead 
VTA neurons in recovered cell assemblies. Bottom panel: assemblies emerge with learning for the rewarded (CS+) 
but not unrewarded (CS-) stimulus. (e) Cell assemblies in rat CA1 and anterior cingulate cortex (ACC) during 
open field exploration versus delayed alternation. In ACC, more significant assembly unit-pairs were found in the 
delayed alternation task across all temporal scales. In CA1, significantly more long-timescale cell assemblies 
were found during delayed alternation than during open field exploration (n.b. task differed slightly for CA1, 
requiring navigation through a figure-of-eight maze). Data for panels (a)/(b) from ref. 102; panels (c)/(e) 
adapted from ref. 96; panel (d) from ref. 104 (all panels used under CC-BY license). 

Obstacles, and potential solutions, for measuring neural substrates of 
planning. The same reasons that make understanding planning so interesting also 
make it difficult to study. By definition, planning is internally generated and often 
covert. Place cell activity recorded during navigation allows decoding of planning 
events in spatial tasks (e.g. Figs. 2/3), but it is less clear how to generalise this 
approach to non-spatial tasks, or to processes that occur over longer temporal 
scales. 

Instead of anchoring the investigation to overt behavioural markers, a 
possible solution is to use unsupervised data mining to identify neural events of 
interest directly from spike train data. Techniques like cell assembly detection96 
and state space model estimation97 uncover structures directly from spike train 
statistics without the need for any behavioural parametrization. Cell assembly 
detection is based on the assumption that assemblies relevant for a cognitive 
function generate recurring, albeit potentially noisy, stereotypical activity 
patterns. State space model estimation instead aims to capture the dynamics 
governing neural processes by fitting a set of differential equations on the 
experimental data. 

Due to the combinatorial explosion of potential patterns to test, many 
existing cell assembly detection methods restrict their search to stereotypical 
activity profiles characterized by a specific lag configuration (synchronous98,99 or 
sequential100 unit activations) or temporal scale (single spike98,100 or firing 
rate99,101 coordination; see Fig. 5a for example). Such approaches have identified 
reactivation of cell assemblies during sleep, supporting the consolidation of 
learning novel spatial arenas99,102 (Fig. 5b). Assembly-specific optogenetic 
silencing of these reactivation events impairs performance in approaching goal 
locations in a spatial navigation task103, consistent with the role outlined above for 
replay during sleep as a substrate for planning future actions (Fig. 3k).  

More recent techniques are now expanding the search to a wider set of 
testable pattern configurations96,100,101 and timescales96, treated as parameters to 
be inferred from the data (Fig. 5c). This approach has, for example, recently 
isolated the formation of interregional cell assemblies between dopaminergic 
midbrain and ventral striatum during value-based associative learning (Fig. 
5d)104. In naturalistic planning tasks, a similar approach might identify events 
linking dopaminergic activity to hippocampal cell assembly activity subserving 
planning105, although this remains to be tested. It is also possible to identify how 
the timescale of cell assemblies changes during goal-directed behaviour. For 
example, hippocampus and anterior cingulate cortex assembly temporal 
properties differ during passive exploration versus a delayed alternation task 
(Fig. 5e)96. 
 

Cognitive models of planning. So far, we have focused on different formal 
models of planning through well-defined state spaces or navigation through 
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known structures such as physical mazes. However, human participants can also 
incorporate knowledge about their own future behavioural tendencies into their 
planning. There is evidence that humans might approximate the effects of 
increasing horizons106 and use pre-emptive strategies to take into account their 
own future behavioural tendencies107.  

 

Figure 7. Cognitive planning behaviours can be functionally dissociated in several human fMRI studies. 
(a) Planning is advantageous in a scenario where people can search a limited number of times and need to decide 
each time to accept the drawn offer or continue searching for a better one. The optimal solution to this problem 
is a search tree of all possible actions and outcomes for each potential search strategy. This allows computing 
prospective value - the value of continuing to search. (b) As people move through a sequence of searches and 
thus the opportunities to encounter good offers become fewer, prospective value decreases. Dorsal anterior 
cingulate cortex was sensitive to the initial prospective value, while activation in nearby dorsomedial frontal 
cortex (area 8m/9) correlated with how much the prospective value might change when going through the 
sequence.  Thus it is linked to the potential  required online  adjustments in behavioural strategy107 (c) In a model 
of reasoning fit to human responses in a task in which participants had to learn digit combinations through trial-
and-error, different behavioral events were functionally dissociated in prefrontal and basal regions. Exploratory 
behaviour was associated with dACC activity, rejection of a new strategy was associated with dorsolateral 
prefrontal activity (BA 45), and confirmation of a new strategy was associated with ventral striatal activity. 
From 113. Reprinted with permission from AAAS. (d) Aversive pruning is a non-optimal heuristic planning 
strategy in which the computational complexity is reduced by not computing the remained of a branch of a 
decision tree whenever a large loss is encountered115. (e) While non-pruning trials had a clear value signal in 
subgenual cingulate cortex this was not present during trials where participants displayed aversive pruning.116 
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Neurally, such considerations appear to involve an interplay between 
different dorsomedial and lateral prefrontal brain regions107, which are regions 
uniquely specialised in primates. Human neuropsychology has established a 
fundamental role for dorsolateral prefrontal cortex (DLPFC) in lab-based planning 
tests108 and in real-life strategic planning109. A neural basis for these functions is 
well established in monkey neurophysiological responses in DLPFC21, whereas 
monitoring of constituent elements within extended sequential behaviours 
appears to depend upon dorsal anterior cingulate cortex (dACC) and pre-SMA 
regions110.  

Such responses contribute to a view of the frontal lobes as a rostro-caudal 
hierarchy, with more abstracted planning and control functions found more 
rostrally within this hierarchy89. The structures of representations that contribute 
to the elaboration of complex sequential plans can be seen to evolve as the task or 
environment is learned111. While dACC and its interactions with DLPFC appear 
particularly relevant for initial plan formation and prospective value generation, 
the nearby area 8m/9 considers how the initial plan will be prospectively adjusted 
following changes in the environment107 (Fig 6a/b). One approach to formalise 
this process is to derive RL algorithms that learn mixtures of new plans across 
time, and appropriately decide whether a previously learnt plan should be reused 
or a new one depolyed112. Such models reveal functional dissociations when 
applied to fMRI data during strategy learning113 (Fig. 6c). 

However, even in more sophisticated cognitive behaviours, much of 
planning still boils down to sampling internal representations or simulating 
specific sequences of actions, outcomes and environmental dynamics. A major 
challenge, as in studies of navigation, remains knowing what the underlying 
representations or states are – over which actions are selected, outcomes are 
associated and environmental dynamics are predicted.  

In behavioural tasks that involve mental simulation over multiple steps, 
several possible heuristics have been proposed for how humans might efficiently 
search through the large resulting state space. Each has had some supporting 
evidence. One option would be to only plan to a certain depth of a decision tree. In 
humans there is evidence for this114: people do not plan maximally deep, even 
when doing so would lead to greater reward. A related strategy is to stop sampling 
a specific branch if it appears to not be valuable (Fig. 6d). People indeed stop 
planning along branches that go through large losses, even when they are overall 
the best115. When this ‘pruning’ behaviour occurs, then subgenual cingulate 
activity no longer reflects the difficulty of the decision, defined in terms of the 
number of steps planned (Fig. 6e)116. An alternative strategy is to use ‘hierarchical 
fragmentation’117: first plan a few steps, and from the best possible state there 
plan further. Finally, mixtures of explicit tree search and model free systems are 
also possible118. While the exact strategy used may be task-dependent, it is 
possible that newly developed methods for decoding sequences of 
representations in human MEG and fMRI data64,65 could arbitrate between these 
heuristic planning strategies in multi-step cognitive tasks. 
 
Information sampling as planning via exploration 

Parallels between planning and information sampling. There are deep and 
as yet still relatively unexamined parallels between information creation, as in 
planning, and gathering new information, as in exploration. More particularly, 
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they are parallel at the level of control – the decision about what (or whether) to 
explore, and what (or whether) to plan.  

 

Figure 8.  Activity in dorsal anterior cingulate cortex (dACC) associated with information sampling 
across multiple decision-making studies. (a) Insula (aINS) and dorsal anterior cingulate cortex (dACC) show 
larger activity on exploration trials compared to exploitation trials in a human ‘observe or bet’ fMRI study.127 
(b) Activity in dorsal and ventral banks of ACC predicts gaze shifts to sample new information significantly 
earlier than interconnected portions of dorsal striatum (DS) and anterior palilidum (Pal) in monkey single-cell 
recordings.133 (c) dACC population activity reflected whether new information confirmed or disconfirmed a belief 
about which option to choose in an economic choice task. This population also ramps prior to commitment to a 
final decision.134 (d) Monkeys check a cue predictive of reward more when they are close to receiving a reward, 
and dACC single-cell activity predicts when a monkey will check the cue up to two trials beforehand.51 

In the RL framework, formal theories of optimal directed exploration119,120 
and deliberation33,34 share essentially the same mathematical core. Whether 
accomplished “externally” through seeking new information in the world, or 
“internally” through model-based simulation, exploration is valuable to the extent 
that it changes your future choices. Indeed, the expected value of exploration can 
in principle be quantified as the increase in earnings expected to result from 
making better choices. This means, for instance, that both planning and 
exploration eventually have diminishing returns, after which they are unlikely to 
produce new actionable information (at which point one should act habitually or 
exploit, respectively). Also, even while they both can produce value, they must 
both be weighed against their opportunity cost, since planning comes at the 
expense of acting, and exploring comes at the expense of both exploiting and 
energy121,122. This ties them to yet a third closely related area of theory, optimal 
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foraging4 – i.e., optimizing search and foraging when the organism can only do one 
thing at a time. In such decisions, a choice is rarely a single motor impulse but 
instead a series of extended interactions with a particular goal in mind. 
Information sampling may not only benefit the initial choice, but also the planning 
of the series of future actions taken after a choice has been made.   

So far, we have presented planning as a process of sampling and simulating 
the future. However, if an agent’s knowledge about the world is wrong or 
incomplete, sampling the actual world, rather than a simulated one from memory, 
is essential. Importantly, an agent can direct their exploration towards parts of the 
environment that are known unknowns, either because they have an explicit 
model of the uncertainty of their estimates122, or because they know how the 
environment will change over time123. This can be used to quantify the value of 
reducing uncertainty for different states34 and to quantify the gain of information 
against the energetic cost of gaining that information121,122.  

Value of information as narrowing planning and improving predictions. 
While existing models do not predict information sampling and planning in a 
unified manner, empirical observations suggest that information sampling can be 
highly strategic. For example, humans explore more when the information is more 
valuable because it can be used in the future. Such exploration is not random, but 
directed toward options with more uncertainty124. Early fMRI studies of 
exploratory behaviour identified a network of regions including dACC (see also 
Fig. 6c), frontopolar cortex and intraparietal sulcus that governed switches away 
from a currently favoured option towards exploring an alternative125,126. 
Subsequent studies have to some extent dissociated these regions, into those that 
reflect a simple decision to sample information, which activates dACC (Fig. 7a)127, 
versus frontopolar cortex that tracks estimates of option uncertainty across 
time128. Disrupting frontopolar cortex using transcranial magnetic stimulation 
selectively affects directed but not undirected exploration129. The converse is true 
of pharmacological interventions targeting the noradrenergic system130, whose 
inputs to dACC have been shown to modulate switching into exploratory 
behaviour131. 

Interestingly, animals also value information when it is of no apparent 
reward value. Several species have been shown to gamble energy of movement 
proportionate to the expected information gain122. Given the advancement of 
planning, sampling and simulation models, it should be possible to predict what 
kind of information an agent would be willing to pay for (“simulation pruning”) 
even if it does not directly link to reward, as it might nevertheless significantly 
benefit planning. For example, macaques will pay a cost to resolve uncertainty 
about a future outcome earlier132. This makes sense if the brain continuously 
predicts potential future outcomes through simulation and sampling but tries to 
avoid unnecessarily anticipating potential outcomes that could be ruled out.  

A recent study showed that neurons in several interconnected subregions 
of primate dACC and basal ganglia are active around eye-gaze movements that 
resolve uncertainty, with dACC being first to predict saccades that resolve 
uncertainty133 (Fig. 7b). In a task where multiple saccades must be made to 
sample information about two choice options, activity in dACC reports whether 
newly revealed evidence confirms or disconfirms a prior belief about which 
option should be chosen134. Activity in this dACC ‘belief confirmation subspace’ 
ramps immediately prior to commitment to a final decision (Fig. 7c), suggesting a 
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role for dACC in transforming newly sampled information into future choice 
behaviour. 

While the exploration-exploitation dilemma is often considered in terms of 
improving estimates of a static value function, another strong motivation for 
exploration in real-world behaviour is to sample when the world has changed. 
Indeed, macaques can adapt their search behaviour to specific features of 
environments123. Importantly, animals can even monitor internal representations 
of unobservable dynamic changes in the environment to optimize their checking 
behaviours and update those representations. Activity in dACC ramps across time 
prior to these checking behaviours, meaning that checks can be decoded on 
preceding trials51 (Fig 7d).  
 

Linking successor representations to information sampling in foraging 
problems. Ethological observations have shown that the exploratory patterns in 
many species follow statistical rules known as Lévy walks, with travel paths that 
follow scale-free power laws135,136. In conditions where prey are sparse, such 
patterns are more efficient than pure random movements to capture these prey. 
It is argued that this advantage will have acted as a selection pressure on 
adaptations that would give rise to Levy flight foraging137. 

Above, we highlighted the eigendecomposition of the successor 
representation as a model for grid cell activity in the entorhinal cortex during 
navigation and planning82; intriguingly, this may also provide a basis for 
generating Lévy walks. Different eigenvectors of this representation will occur at 
different spatial scales, meaning that they may be suitable for planning over 
different horizons. Indeed, recent evidence from a navigational planning task 
using human fMRI revealed a posterior-to-anterior spatial gradient in both 
hippocampus and prefrontal cortex, reflecting pattern similarity to successor 
states of increasing spatial scales90.  

When generating future actions, upweighting eigenvectors which 
represent low-frequency spatial information naturally leads the agent to adopt 
Lévy-like exploration of the environment. This exploration proves to be more 
efficient than random exploration when searching over environments with 
hierarchical structure, such as connected rooms138. By contrast, the sequences of 
samples generated by random exploration will better capture the true structure 
of the environment. This may explain why offline replay events in the 
hippocampus appear to follow a random diffusive pattern, even following 
behavioural exploration that has a Lévy-like superdiffusive structure139 – at least 
in the absence of goals that shape replay events towards locations useful for 
planning33. One potential issue here is that Lévy-like exploration is only predictive 
in information-scarce and low resource density contexts140. In information-rich 
contexts in which search proceeds in range of sensory organs, energy-constrained 
proportional betting on the expected information distribution is showing promise 
for predicting trajectories across multiple species122. 

 
Linking theta oscillations to external sampling. It is also clear that some of 

the neural implementations of online planning discussed earlier are also relevant 
for information sampling behaviours. Exploration signals have been shown to 
exist in conditions of high uncertainty in form of nonlocal representation of space 
along each theta cycle at high-cost decision points (VTE)36,141. The very same theta 
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cycles are also seen during internally generated sub-second patterns that govern 
sensory perception142 and sensorimotor actions143. Thus, these patterns, 
currently thought to reflect adaptive mechanisms for sampling information from 
the external world, may be coordinated with the sub-second patterns of 
generative activity described here, which can in turn be likened to sampling from 
internal representations. 

In biological agents as in artificial ones, a major purpose of external 
information sampling is to improve one’s confidence in pursuing the most 
valuable course of action. Converging evidence from information sampling studies 
in humans144-146 and non-human primates134 indicates a bias towards sampling 
evidence from a goal that is currently most favoured, rather than the option that 
will maximally reduce uncertainty. This fits well with foraging models of choice, 
which argue that even simple binary decisions may be made as a sequence of 
accept-reject decisions rather than as a direct comparison between two 
alternatives147. Once animals commit to accepting an option, they pursue this goal 
even when it becomes costly to do so148; sampling information may benefit 
planning of future actions needed to pursue their goal. Formalising this account of 
choice may require us to reformulate the RL problem as being one of minimising 
distance to goals, rather than maximising discounted future reward149. 
 
Summary 

In this review we have described some formal approaches, ideas and 
theories that have begun to breach into the territory of internal planning and 
information sampling in complex environments. Some of these have previously 
often been thought of as being too difficult, idiosyncratic or unstructured to be 
investigated directly. A couple of concepts have crystalized as being essential for 
this advance. Firstly, we conceive of planning as problem of internal sampling of a 
simulated environment, while trying to optimize such sampling toward the most 
valuable and most likely aspects of the future. Second, this progress is paired with 
a need to understand how states and knowledge are efficiently and conceptually 
organized to allow for planning in the first place.  Knowing how to plan by 
sampling, and what to plan over, allows the assessment of the evolutionary as well 
as individual benefits of planning as well as predictions of specific behaviour and 
neural mechanisms linked to overall planning and memory retrieval, 
consolidation and decision making specifically.  
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