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Direct modeling of regression effects for
transition probabilities in the progressive
illness–death model
Leyla Azarang,a*† Thomas Scheikeb and
Jacobo de Uña-Álvarezc,d

In this work, we present direct regression analysis for the transition probabilities in the possibly non-Markov
progressive illness–death model. The method is based on binomial regression, where the response is the indicator
of the occupancy for the given state along time. Randomly weighted score equations that are able to remove
the bias due to censoring are introduced. By solving these equations, one can estimate the possibly time-varying
regression coefficients, which have an immediate interpretation as covariate effects on the transition probabilities.
The performance of the proposed estimator is investigated through simulations. We apply the method to data
from the Registry of Systematic Lupus Erythematosus RELESSER, a multicenter registry created by the Spanish
Society of Rheumatology. Specifically, we investigate the effect of age at Lupus diagnosis, sex, and ethnicity on
the probability of damage and death along time. Copyright © 2017 John Wiley & Sons, Ltd.
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1. Introduction

The three states progressive illness–death model (also known as disability model) is useful for investi-
gating the occurrence of an intermediate state in chronic diseases as well as death and is relevant for
irreversible diseases where recovery is impossible. The model involves three states: ‘Healthy’ (state 1),
‘Diseased’ (state 2), and ‘Dead’ (state 3), and three possible transitions among them: 1 → 2, 2→3, and 1
→ 3 (Figure 1). In this model, states 1 and 2 are transient, while state 3 is absorbing. The model may be
used, for example, to describe the disease process in cancer studies. Also, in epidemiology, it is applied to
investigate both incidence of a disease and death. Another example is the study of systemic lupus erythe-
matosus (SLE) disease in Section 4, where ‘No damage’, ‘Damage’, and ‘Dead’ are identified as relevant
states (Figure 4).

Often, it is of interest to estimate the transition probabilities for the illness–death model, because they
allow for long-time predictions [1]. For the lupus data in Section 4, these transition probabilities serve
to evaluate the damage-free and total survival probabilities, among other curves of interest. The standard
nonparametric approach to estimate the transition probabilities under the Markov assumption is the time
honored Aalen–Johansen estimator [2]. Because the Markov assumption ignores disease history, it might
be inappropriate in many settings. Meira-Machado et al. [3] introduced for the first time non-Markov
nonparametric estimators for the transition probabilities for the progressive illness–death model. Similar
approaches were developed by Allignol et al. [4], Titman [5], and de Uña-Álvarez and Meira-Machado
[6]. In particular, the latter paper introduces a simple estimator for the transition probability matrix, which
depends on the Kaplan–Meier estimators computed for different event times and specific subsamples. In
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Figure 1. Progressive illness–death model.

a sense, the method we introduce in this paper to estimate regression effects for transition probabilities
is a more general case of such simple approach.

We consider baseline covariates. In the presence of censoring, Aalen et al. [7] provided estimators for
the transition rates based on an additive model and then combined the estimated rates conditionally on
the covariates into appropriate conditional transition probabilities. This approach is similar to Aalen’s
additive model for the cause-specific hazard in competing risks model, for which the Markov condition
is always satisfied, and it does not allow for a direct estimation of covariate effects on the transition
probabilities. For competing risks, Scheike et al. [8] showed that translating the effects on cause-specific
hazards into effects on the cumulative incidence functions (which are particular transition probabilities)
is difficult in general.

The subdistribution approach by Fine and Gray [9] provides estimators for the covariate effects on
the cumulative incidence functions by solving the inverse probability of censoring weighted (IPCW)
version of Cox-type score equations. Other existing techniques to directly estimate effects on transition
probabilities are the pseudo-value approach (cf. [10,11]) and the binomial regression approach based on
IPCW score equations by Scheike et al. [8]. Both the binomial regression approach and the pseudo-value
approach allow for a variety of link functions. However, the choice of the link function is important for
the interpretation of the regression parameters [12]. Meira-Machado et al. [13] considered the estima-
tion of transition probabilities conditioning on continuous covariates. Their approach is based on kernel
smoothing, which can be applied to multiple covariates but suffers from the curse of dimensionality even
in low dimension. Besides, it does not allow to incorporate categorical covariates, which often appear in
biomedical practice.

In this paper, we address the problem of estimating the transition probabilities in a possibly non-
Markov progressive illness–death model in the presence of covariates, using a binomial approach
analogous to that in [8] for competing risks. We account for possible violations of the Markov property
using a subsample idea used by Allignol et al. [4] in the setting without covariates. For this purpose, we
proceed by restricting the sample to two subsamples depending on whether the transition is made from
the initial state or intermediate state. In the first case, the subsample is the set of individuals observed in
the initial state by a given time s and, in the second case, those observed in the intermediate state by that
time. It is assumed that all the individuals are in the initial state by time zero. The proposed method can
be applied for both continuous and categorical covariates and, because of its semi-parametric structure,
it allows for the construction of accurate estimators regardless of the dimension of the covariate vector.
Furthermore, the given semi-parametric approach allows for the interpretation of the covariate effects on
transition probabilities in a simple way.

The rest of the paper is organized as follows. In Section 2, we describe the model in detail, and we
introduce the new method, which is investigated through simulations in Section 3. In Section 4, we apply
the method to data from the Registry of Systematic Lupus Erythematosus Patients of the Spanish Society
of Rheumatology (RELESSER), a multicenter registry created by the Spanish Society of Rheumatology.
Specifically, we investigate the effect of age at Lupus diagnosis, sex, and ethnicity on the probability of
damage and death along time. In Section 5, a final discussion is given.
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2. Model and estimators

The progressive illness–death model (Figure 1) is a three-state model that allows transitions in only one
direction and which consists of an initial state (state 1), an intermediate, transient state (state 2), and a
final absorbing state (state 3). All the individuals are assumed to be in the initial state at time zero. The
sojourn time in the initial state and the total survival time are denoted by Z and T , respectively. In the
case of a direct transition from the initial state to the final state, we have T = Z. Also, a vector of time-
independent covariates X is available. We consider possibly right-censored data. Then, instead of Z and
T , we observe Z̃ = min(Z,C) and T̃ = min(T ,C), where C is the potential censoring time, which we
assume to be independent of (Z,T) conditionally on X. The censoring indicators for Z and T , Δ1 = 1{Z⩽C}
and Δ = 1{T⩽C}, are also observed.

Let 𝜁 (t) denote the state occupied by the process by time t. It is of our interest to estimate the conditional
transition probabilities given X = x, pij(s, t|x) = P(𝜁 (t) = j|𝜁 (s) = i,X = x), i ⩽ j; i = 1, 2; j = 1, 2, 3,
where s remains fixed and t > s. Explicitly, we assume a logit link function so

pij(s, t|X) =
exp

(
X′𝜷

(s)
ij (t)

)
1 + exp

(
X′𝜷

(s)
ij (t)

) ,
where 𝜷 (s)

ij (t) is the vector of possibly time-varying coefficients at time t. Other link functions are possible.
The model allows for a time-dependent evaluation of the covariate effects on the transition probabilities.

Because of censoring, the individual trajectories may not be completely observed. This implies that the
value of 𝜁 (t) may be unavailable. However, the censored information may be used to introduce suitable
estimating equations for 𝜷 (s)

ij (t). Let Δt
1 and Δt be the censoring status of Z and T by time t, these are

Δt
1 = 1{min(Z,t)⩽C} and Δt = 1{min(T ,t)⩽C}. To be specific, we consider in the following lines the particular

case in which i = 1 and j = 2. In this case, we have {𝜁 (t) = j} = {𝜁 (t) = 2} = {Z <= t < T}
and therefore

p12(s, t|x) = P(Z ⩽ t < T|Z > s,X = x)

= E

[ 1{Z⩽t<T}Δt

E(Δt|Z,T , Z̃ > s,X = x)
||Z̃ > s,X = x

]

= E

[
1{Z̃⩽t<T̃}Δt

G(s)
x (min(T̃ , t))

||Z̃ > s,X = x

]
, (1)

where G(s)
x (t) = P(C ⩾ t|C > s,X = x) is the conditional survival function of the censoring time given

X = x and C > s. This equation (1) suggests that the indicator Yi(t) = 1{Z̃i⩽t<T̃i} should be weighted by

the random weight W (s)
12 (Xi, T̃i,Δt

i) = Δt
iG

(s)
Xi
(min(T̃i, t))

−1
in order to eliminate the censoring bias in the

evaluation of p12(s, t|x). In practice, because G(s)
x is unknown, it must be replaced by an estimator Ĝ(s)

x ,
leading to an estimated weight Ŵ (s)

12 . The estimator Ĝ(s)
x can be constructed by the Kaplan–Meier method

if the censoring time is independent of the covariates; otherwise, a semi-parametric estimator based on,
for example, Cox regression can be used.

To estimate 𝜷
(s)
12(t), we consider the estimating equation

∑
i∶Z̃i>s

𝜕p12(s, t|Xi)

𝜕𝜷
(s)
12(t)

Ŵ (s)
12 (Xi, T̃i,Δt

i)
[
Yi(t) − p12(s, t|Xi)

]
= 0.

As mentioned earlier, s is considered to be fixed and t ∈ [a, 𝜏], where 𝜏 is the last event time point, that
is, p12(s, a|x) > 0, and we assume that the survival function of the censoring distribution at 𝜏 is larger
than zero. Equation (1) indicates that this is an unbiased score function for 𝜷 (s)

12(t). In the uncensored case,
the solution of this equation is just the ordinary least squares estimator, while in the censored case, it is
the minimizer of the sum of squares of differences between the censored binary response Yi(t) and the
predictor p12(s, t|Xi), and the random weights outside the brackets remove the censoring bias. The only
terms depending on t in the estimating equation earlier are Yi(t) and Ŵ (s)

12 = Ŵ (s)
12 (Xi, T̃i,Δt

i) , i = 1,… , n,
which are left unchanged for t between two consecutive points in the set {Z̃i, T̃i ∶ Z̃i ⩽ T̃i, Z̃i > s,Δi = 1}.
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Therefore, 𝜷̂
(s)
12(t) is piecewise constant. Thus, by using standard software for generalized linear models,

one can estimate the effect of covariates at each jump point.
Similar issues as those described for p12(s, t|X) appear for the other transition probabilities. Of course,

the state indicators, the random weights, the set of jump points for the regression parameter, and the
subsample to be used in the construction of the score equation will be specific for each particular case.
Explicitly, for the transition probabilities p11(s, t|X), p13(s, t|X), and p23(s, t|X), the jump points of 𝜷̂

(s)
11(t),

𝜷̂
(s)
13(t), and 𝜷̂

(s)
23(t) are {Z̃i ∶ Z̃i > s}, {T̃i ∶ Z̃i > s}, and {T̃i ∶ Z̃i ⩽ s < T̃i}, respectively. The

differences stem from the definition of the binary responses and the random weights, which are 1{Z̃i>t},

1{T̃i⩽t}, 1{T̃i⩽t}; andΔt
1iG

(s)
Xi
(min(Z̃i, t))−1,Δt

iG
(s)
Xi
(min(T̃i, t))−1,Δt

iG
[s]
Xi
(min(T̃i, t))−1 correspondingly, where

G[s]
x (t) = P(C ⩾ t|Z ⩽ s < T , s < C,X = x) stands for the conditional survival function of C given

X = x for the subset of individuals observed in state 2 by time s. To see that the aforementioned weights
introduce unbiased score equations, note that we have

p11(s, t|x) = P(Z > t|Z > s,X = x)

= E

[
1{Z>t}Δt

1

E(Δt
1|Z, Z̃ > s,X = x)

||Z̃ > s,X = x

]

= E

[
1{Z̃>t}Δt

1

G(s)
x (min(Z̃, t))

||Z̃ > s,X = x

]
,

p13(s, t|x) = P(T ⩽ t|Z > s,X = x)

= E

[ 1{T⩽t}Δt

E(Δt|Z,T , Z̃ > s,X = x)
||Z̃ > s,X = x

]
= E

[
1{T̃⩽t}Δt

G(s)
x (min(T̃ , t))

||Z̃ > s,X = x

]
,

and
p23(s, t|x) = P(T ⩽ t|Z ⩽ s < T ,X = x)

= E

[ 1{T⩽t}Δt

E(Δt|Z,T , Z̃ ⩽ s < T̃ ,X = x)
||Z̃ ⩽ s < T̃ ,X = x

]
= E

[
1{T̃⩽t}Δt

G[s]
x (min(T̃ , t))

||Z̃ ⩽ s < T̃ ,X = x

]
.

As discussed earlier for G(s)
X , G[s]

X can be estimated using the Kaplan–Meier estimator or a semi-parametric
regression approach (e.g., Cox model) by considering the corresponding subsample {i ∶ Z̃i ⩽ s < T̃i}
for the last case. Here, again, the weights are time dependent, but between two consecutive jump points
remain constant; hence, the stepwise nature of 𝜷̂

(s)
ij (t) remains. These weights, as defined, are non-zero

for large censored observations, which is convenient in order to control the variance at the right tail of
the survival time distribution.

Asymptotic properties of the introduced estimators under regularity conditions can be established as
usual in M-estimation. For example, if the number of time points in the score equation is fixed, the
proposed estimator is the solution of a weighted version of the standard generalized linear model score
equation. Therefore, if the weights were known, the uniqueness and consistency of the estimator would
hold, provided that the first derivative of the score equation is continuous and invertible in 𝜷

(s)
ij (t) and

converges uniformly in an open-neighborhood of 𝜷(s)
ij (t) [14]. Note that the uniform convergence of the

derivative of the score equation follows for sufficiently smooth link functions. To deal with the random
weights, assume that both Ĝ(s)

x (.) and Ĝ[s]
x (.) converge uniformly to their respective limits and that the

survival function of the censoring distribution is bounded away from zero on [0, 𝜏]. Then, under such
conditions, it is easy to see that the consistency result holds for the random weights too, in the finite-t case.
When we consider the score equations jointly for all t ∈ [s, 𝜏], a uniform consistency result can still be
derived from [14] if the first derivative of the score equation converges to an invertible function uniformly
on t (e.g., [15]). To fulfill this condition, it suffices to impose the boundedness of all the arguments in the
score equation, noting again the smoothness of our link function.

Copyright © 2017 John Wiley & Sons, Ltd. Statist. Med. 2017, 36 1964–1976
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On the other hand, the asymptotic normality can be obtained from the decomposition of
√

n
(
𝜷̂
(s)
ij (t) −

𝜷
(s)
ij (t)

)
as a sum of centered iid random variables plus a negligible remainder, by applying the Central

Limit Theorem (CLT) (see also Liang and Zeger [16] for asymptotic results in generalized estimating
equations). To be more specific, for p12(s, t|x), we have the following iid decomposition:√

n{I12(t, 𝜷12(t))}−1
∑

i∶Z̃i>s

W12i(t)

where

I12(t, 𝜷12(t)) = E

([
𝜕p12(s, t|X)
𝜕𝜷

(s)
12(t)

]T

W (s)
12 (Xi, T̃i,Δt

i)
[
𝜕p12(s, t|X)
𝜕𝜷

(s)
12(t)

])
and

W12i(t) =

[
𝜕p12(s, t|Xi)

𝜕𝜷
(s)
12(t)

W (s)
12 (Xi, T̃i,Δt

i)[Yi(t) − p12(s, t|Xi)] + 𝜓12i(t)

]
.

The random weights are responsible for the 𝜓12 terms, whose explicit form is given in the Appendix.
Interestingly, their contribution is typically very small and ignoring them will give conservative standard
errors as argued in [8]. For p23(s, t|X), the iid decomposition is as follows:√

n{I23(t,𝜷23)}−1
∑

i∶Z̃i⩽s<T̃i

W23i(t)

where

I23(t,𝜷23(t)) = E

([
𝜕p23(s, t|X)

𝜕𝜷
(s)
23(t)

]T
Δt

G[s]
x (min(T̃ , t))

[
𝜕p23(s, t|X)

𝜕𝜷
(s)
23(t)

])
and

W23i(t) =

[
𝜕p23(s, t|Xi)

𝜕𝜷
(s)
23(t)

.
Δt

G[s]
x (min(T̃i, t))

[1{T̃i⩽t} − p23(s, t|Xi)] + 𝜓23i(t)

]
,

where again the explicit form of the 𝜓23 is given in the Appendix. The same argument can be used to
prove the asymptotic normality for the other transition probabilities.

3. Simulation study

We investigate the performance of our method through simulations. A binary covariate X is considered,
X ∼ Ber(p), p = 1∕2. The progressive illness–death model is simulated by means of three latent transition
times: T12, T13, and T23, where Tij denotes the potential transition time from state i to state j. Given X, the
transition times T12 and T13 are simulated as independent random variables as follows: T12|X = x; T13|X =
x are generated from an exponential model with rates 1 and 0.1; and 1.5, 0.1, and T23|T12 = u,X = x
is generated from exponential model with rates u ∗ 0.7 and u ∗ 0.3 for x = 0 and x = 1, respectively;
here the dependency of T23 on T12 violates the Markov condition. The variables Z = min(T12,T13),
𝜌 = 1{T12⩽T13}, T = Z + 𝜌T23 are then computed. An independent censoring time C is generated from a
uniform model with minimum value 0 and maximum values 64 and 11, which correspond to 15% and
45% of censoring on the total survival time T , respectively.

The observed variable is finally given by (X, Z̃, T̃) where Z̃ = min(Z,C), T̃ = min(T ,C).
When the link function is logistic, we have

pij(s, t|X = x) =
exp

(
X

′
𝜸ij(s, t)

)
1 + exp

(
X

′
𝜸ij(s, t)

)
=

exp
(
𝛽ij1

(s, t)(1 − x) + 𝛽ij2
(s, t)x

)
1 + exp

(
𝛽ij1

(s, t)(1 − x) + 𝛽ij2
(s, t)x

)1968

Copyright © 2017 John Wiley & Sons, Ltd. Statist. Med. 2017, 36 1964–1976
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where i = 1, 2; j = 1, 2, 3, 𝜸
′

ij(s, t) = (𝛽ij1
(s, t), 𝛽ij2

(s, t) − 𝛽ij1
(s, t)) and X

′ = (1,X). Thus, the simulated
𝛽ij1

(s, t) and 𝛽ij2
(s, t) functions in the logistic model are given by

𝛽ij1
(s, t) = log

pij(s, t|x = 0)
1 − pij(s, t|x = 0)

, 𝛽ij2
(s, t) = log

pij(s, t|x = 1)
1 − pij(s, t|x = 1)

whose expressions may be directly obtained from the conditional distributions of the Tij’s. The effect of
a covariate increase (from x = 0 to x = 1) on pij(s, t|X = x) is controlled by 𝛽ij(s, t) = 𝛽ij2

(s, t) − 𝛽ij1
(s, t).

Figure 2. Bias (top) and standard deviation (bottom) of 𝜷̂ ij for (i, j) = (1, 2) (solid lines), (i, j) = (1, 3) (dashed
lines), and (i, j) = (2, 3) (dotted lines). Censoring percentage 15% (left) and 45% (right).

Figure 3. Estimated regression coefficients and conditional transition probabilities p12(s, t|X) averaged along
1000 Monte Carlo trials, together with 95% oscillation limits: s = 0.22, n = 500, and censoring percentage 45%.
The dotted line equals the estimator, whereas the solid line is the true value. [Colour figure can be viewed at

wileyonlinelibrary.com]

Copyright © 2017 John Wiley & Sons, Ltd. Statist. Med. 2017, 36 1964–1976
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In the simulation, 1000 samples with sample sizes n = 100, n = 300, and n = 500 are generated.
In Figure 2, the bias and the standard deviation of the estimated effects (𝛽ij) on transition probabilities

pij, i = 1, 2, j = 2, 3, i < j averaged along the 1000 trials are given. For this, we take specific values for
the pair of time points (s, t), s < t. For p12(s, t) and p13(s, t), s = 0.22 and t = 2.82 equal the 25% quantile
of Z, and the 50% quantiles of T given Z > s, respectively, while for p23(s, t|X = x), we consider s = 1.10
and t = 6.10 corresponding to the 75% quantile of Z and 50% quantile of T given Z ⩽ s < T .

In Figure 2, standard deviation increases with an increasing censoring degree and decreases with an
increasing sample size. Both features were expected. The absolute bias is in general of smaller order
compared with the standard deviation. Results for other pairs (s, t) (not shown) were similar to those in
Figure 2.

In Figure 3 we report, for a fixed s, the estimators 𝛽1(s, t) and 𝛽2(s, t) for the transition probability p12
along time t averaged along the 1000 Monte Carlo paths, for the case n = 500 and censoring degree 45%;
the averages of the resulting conditional transition probabilities given X = 0 and X = 1 are also reported.
In this figure, the true curves being estimated and the 95% pointwise oscillation limits of the estimators
are included too. The lower and upper oscillation limits are, respectively, 0.025 and 0.975 quantiles of
the estimates along 1000 Monte Carlo trails. The dashed line equals the estimator, whereas the straight
line is the true value. We take s = 0.22, and the time endpoints are taken as the 95% quantile of total
survival time, T̃ , given Z̃ > s of the subgroup X = 0 and X = 1, respectively, for 45% censoring degree,
that is, 𝜏 = 5.70 and 𝜏 = 8.57.

In Figures 3, we see that the estimators accurately estimate their respective targets. Also, the 95%
oscillation intervals get wider as time increases. Note that the endpoint for the subgroup X = 0 is smaller
than the one for X = 1, because the 95% quantile of T̃ is smaller for X = 0. Then, the plots inform on the
performance of the estimators for the time-varying coefficients on a time interval, which skips the upper
5% tail of T̃ in each subgroup; this makes the plots for 𝛽1 and 𝛽2 ,respectively, comparable. We have
constructed the plots in Figure 3 for the cases n = 100 and n = 300 too (not shown). By comparing these
plots to those corresponding to n = 500, one sees that the accuracy of the estimators greatly improves as
the sample size grows, as expected. The similar results have been concluded from the plots corresponding
to the transition probabilities p11, p13, p23 (not shown again).

4. Lupus data

Systemic lupus erythematosus (SLE), often abbreviated as lupus, is a systemic autoimmune disease (or
autoimmune connective tissue disease) in which the body’s immune system mistakenly attacks healthy
tissue. SLE, the most common and severe type of lupus, affects many internal organs in the body. SLE
most often harms the heart, joints, skin, lungs, blood vessels, liver, kidneys, and nervous system. Because
the information about the clinical characteristics of SLE usually comes from small number of patients,
the Spanish Society of Rheumatology (SER) promoted the creation of a large multicenter registry of
SLE patients, aimed to increase the overall knowledge of the disease. RELESSER was conducted by
members of the Systematic Autoimmune Disease Study Group of the SER, and it involved 45 centers
homogeneously spread across Spain [17].

In this section, we study the lupus (SLE) dataset of the RELESSER registry. Because damage is associ-
ated with mortality in SLE patients (see Pego-Reigosa et al. [18] and references therein), we consider it as
a relevant intermediate event in our analysis. We model the lupus dataset by the progressive illness–death
model in Figure 4, where the ‘Healthy’ state stands for no damage, and the ‘Diseased’ state refers to the

Figure 4. Progressive illness–death model for the lupus data.
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Table I. Lupus data. Number of patients at risk, damaged, dead,
and censored.

At risk Damage Death Censored

Age at diagnosis
Young (< 50 years) 2913 1063 126 2787
Elderly(≥ 50 years) 547 276 73 474
Missing 112
Sex
Male (0) 333 160 30 303
Female (1) 3130 1180 169 2961
Missing 109
Ethnicity
Caucasian (0) 3284 1289 191 3093
Hispanic (1) 183 52 8 175
Missing 105

Figure 5. Lupus data. Damage-free survival (left) and total survival (right) for two age groups: young (< 50 years)
and elderly(≥ 50 years). [Colour figure can be viewed at wileyonlinelibrary.com]

first among the following damages provoked by lupus: ocular, neuropsychiatric, pulmonary, cardiovas-
cular, peripheral vascular, gastrointestinal, musculoskeletal , skin, diabetes, malignancy, and premature
gonadal failure. Specifically, we analyze the n = 3572 cases in RELESSER corresponding to the patients
for which the (maybe censored) transition times were available. The number of patients at risk, damaged,
dead, and censored according to the epidemiological variables age, sex, and ethnicity for this dataset
are described in Table I. We restricted our attention to Caucasian and Hispanic patients because other
ethnicity groups were heavily censored and reported very small sample sizes.

4.1. Preliminary survival analysis

Damage-free survival and total survival curves for each group of age, sex, and ethnicity were obtained
by a direct application of the Kaplan–Meier estimator to the (censored) damage-free survival times and
total survival times. These curves showed that age at diagnosis and sex are important for prognosis (with
a poorer survival for older patients and males), while the effect of ethnicity was less clear (crossing
curves). In Figure 5, we report the survival curves corresponding to age for illustration. The impact
of the epidemiological variables on the damage-free survival and total survival was assessed through
multivariate Cox proportional hazards regression too. Cox regression reported a significant effect of age
and sex (p-values page = (p < 0.001, p < 0.001) and psex = (p < 0.001, 0.0315) for the damage-free
and total survival, respectively), while the effect of ethnicity was significant on total survival (peth =
0.0352, the relative hazard Hispanic vs. Caucasian was 2.17), but it was not significant for damage-free
survival (peth = 0.2090). In subsection 4.2, we apply the time-varying coefficient approach proposed in
this paper to investigate the adjusted effects of the epidemiological covariates, which results in a more
flexible multivariate analysis. Besides, a dynamic viewpoint is included by estimating covariate effects
on transition probabilities pij(s, t) for various values of s.

Copyright © 2017 John Wiley & Sons, Ltd. Statist. Med. 2017, 36 1964–1976
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4.2. Direct modeling approach

In this subsection, we analyze the lupus data by employing the time-varying coefficient approach
introduced in Section 2. Results corresponding to estimated (time-varying) effects adjusted for the epi-
demiological covariates age, sex, and ethnicity, together with 95% pointwise bootstrap confidence bands
based on nonparametric resampling and normal method (normal approximation of two-sided nonpara-
metric confidence interval), are displayed in Figure 6. The first two rows in Figure 6 correspond to p11(s, t)
for s = 0 (top) and s = 24 (middle), where time is in months. That is, covariate effects on damage-free
both from the date of diagnosis (s = 0) and 2 years later (s = 24) are the focus. Bottom row in Figure 6
depicts the effect of covariates on p12(0, t). For p2j(s, t), j = 2, 3, no covariate was significant for the
considered values of s (to save space, results are not shown).

From Figure 6(a), we can see that the adjusted effect of age on p11(0, t) is negative and time-varying,
increasing in absolute value along time. That is, the damage-free survival decreases with age, the effect
being stronger for older patients. On the other hand, Figure 6(d) indicates that this effect becomes roughly
constant when the analysis is restricted to the patients without damage 2 years after diagnosis. Besides,
the adjusted effect of age on p12(0, t) is positive at early times but negative at late times (Figure 6(g)). A
possible explanation for this is that older patients have more chances to develop damages, but a larger
probability of dying too. Indeed, the effect of age on the cumulative probability of death, p13(0, t), is
positive and increasing along time (not shown).

Figure 6. Lupus data. Estimated adjusted effect of age, sex, and ethnicity (from left to right) on p11(s = 0, t) (top),
p11(s = 24, t) (middle), and p12(0, t) (bottom), with 95% bootstrap pointwise confidence limits. [Colour figure can

be viewed at wileyonlinelibrary.com]
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As for the effect of sex, from Figure 6(b), it is seen that females have a larger damage-free survival,
and that the adjusted effect of sex on p11(0, t) is constant along time. However, for the patients without
damage 2 years after diagnosis, no significant differences are found between male and female damage-
free survival functions in the following 8 years (Figure 6(e)), possibly because of the decreased sample
size. The plot corresponding to p12(0, t) (Figure 6(h)) indicates that the larger damage-free survival of
the females could be due to a relatively smaller probability of visiting the intermediate state (damage),
rather than to a smaller probability of death. This was confirmed by computing the adjusted effects of
sex on p13(0, t) (not shown), which did not reach significance.

From Figure 6(c), we see that, when adjusting for age and sex, Hispanic patients have a damage-
free survival significantly smaller than that of Caucasian; their total survival is smaller too (effects not
shown). These are interesting findings compared with the preliminary survival analysis earlier, which
was somehow inconclusive with respect to ethnicity. Unlike for age and sex, ethnic groups have crossing
Kaplan–Meier curves and, therefore, proportional hazards assumption may fail. The adjusted effect of
ethnicity is constant along time in both cases (damage-free survival, total survival). However, the effect
vanishes when analyzing alive and damage-free patients two years after lupus diagnosis (Figure 6(f)).
On the other hand, no significant effect of ethnicity was found for p12(0, t) (Figure 6(i)) meaning that, for
s = 0, Hispanic patients worsen their damage-free survival (compared with Caucasian) by increasing the
probability of death.

The pointwise confidence limits in Figure 6 are occasionally wide for early and late times. Indeed,
the estimator for the time-varying coefficient is not accurate at time points where the state occupancy
indicators are strongly unbalanced or heavily censored. In practice, this means that significance will
only be reached along some compact time interval where there exists enough, well-balanced sampling
information.

In Figure 7, we depict the conditional transition probabilities for the patients with and without damage
1 year after diagnosis. Conditional curves corresponding to Caucasian males and females are separately
displayed, while covariate age is fixed at the average. In particular, it is seen how p11(12, t) (respectively
p12(12, t)) is larger (resp. smaller) for the Caucasian females when adjusting for age, the differences being
less clear for the other transition probabilities. The provided results were obtained by using the logit link

Figure 7. Lupus data. Adjusted transition probabilities p11(12, t|x), p12(12, t|x), p13(12, t|x), and p23(12, t|x) for
two different groups of sex (male and female) based on logit link function, when evaluated at the average of age

and for Caucasian ethnicity.
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function. Adjusted transition probabilities based on the probit link were also computed, giving almost
identical results to those in Figure 7 (not shown). Then, we can sum up that the choice of the link function
has a minor impact in the resulting estimator. This robustness property of the method is interesting, being
due to the fact that the proposed approach imposes no parametric structure along time.

5. Discussion

In this paper, a new method to incorporate covariates in the transition probability matrix for the right-
censored progressive illness–death model has been proposed. The new method employs direct binomial
regression in the sense discussed by Scheike et al. [8] for competing risks. The flexibility of the method,
which imposes no structure for the covariate effects along time, is one of its main advantages. This may
prevent the researcher from ignoring covariate effects that could remain undetected in a less flexible mod-
eling approach. The proposed method is able to deal with multiple covariates and non-Markov structures.
This entails further flexibility. The lupus dataset analyzed in Section 4 could violate the Markov condi-
tion if, for the patients with damage at a given time point, the date of first damage was associated to the
survival time. Preliminary analysis of such possible association through a proportional hazards model,
including the epidemiological variables and the time to first damage as covariates, reported no significant
deviation from Markovianity (p = 0.4). In any case, the time-varying coefficient approach in this paper
is robust to this regard, which can be considered as an important property of the method.

This piece of work opens new interesting research lines for the future. For example, the general idea
behind the construction of the proposed estimator can be used in principle to introduce covariate effects
for transition probabilities in progressive multi-state models other than the illness–death model. Scheike
and Zhang [19] considered this problem in the case of the so-called occupation probabilities in a fairly
general multi-state process. They also pointed out some drawbacks of our estimating approach, such
as its possible inefficiency and violation of natural constraints; still, the flexibility and relative good
behavior of the direct binomial regression approach makes the method recommendable. Another possible
extension of the estimator proposed in this paper is to incorporate left-truncation; in the truncated setting,
the random weights must be corrected to properly compensate for the observational bias. This issue is
currently under investigation.

Appendix

Here, we present the𝜓 terms we mentioned in Section 2. First, we follow the martingale representation of
the Kaplan–Meier estimator (as in [9]) and, for simplicity, we suppose that the censoring is independent
of the covariates; then, our notation for G(s)

x and Ĝ(s)
x reduces to G(s) and Ĝ(s), respectively. Write

Ŵ (s)
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i∶Z̃i>s 1{T̃i⩾t} and Mc
1i’s are the basic censoring time martingales of the form
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where Nc
i (t) = 1{T̃i⩽t,T̃i=Ci}.

As a consequence, we have

∑
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Similarly , for the 𝜓 terms appearing in the decomposition pertaining to p23, we have

𝜓23i(t) = ∫
𝜏

0

q23(u, t)
𝜋2(u)

dMc
2i(u)

q23(u, t) = lim
p

Q23(u, t)∕n

Q23(u, t) =
∑

j∶Z̃j⩽s<T̃j

Δt
j

𝜕p23(s, t|Xj)

𝜕𝜷
(s)
23(t)

[
1{T̃j⩽t} − p23(s, t|Xj)

] 1{s⩽min(T̃j,t)}

G[s](min(T̃j, t)−)
,

𝜋2(u) = lim
p

p2(u)∕n

p2(u) =
∑

i∶Z̃i⩽s<T̃i

1{T̃i⩾t}

and

M̂c
2i(t) = Nc

i (t) − ∫
t

0
1{T̃i⩾u}dΛ̂c

2(u)

Λ̂c
2(t) =

∑
i∶Z̃i⩽s<T̃i

∫
t

0

1{p2(u)>0}

p2(u)
dNc

i (u).

Acknowledgements

We thank an anonymous reviewer and the associate editor for comments and suggestions that have improved the
paper. We especially thank Rheumatologists José-María Pego-Reigosa and Íñigo Rúa-Figueroa for providing the
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