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Abstract

Background: Multiple omics technologies are increasingly applied to detect early, subtle molecular responses to
environmental stressors for future disease risk prevention. However, there is an urgent need for further evaluation of
stability and variability of omics profiles in healthy individuals, especially during childhood.

Methods: We aimed to estimate intra-, inter-individual and cohort variability of multi-omics profiles (blood DNA
methylation, gene expression, miRNA, proteins and serum and urine metabolites) measured 6 months apart in 156
healthy children from five European countries. We further performed a multi-omics network analysis to establish
clusters of co-varying omics features and assessed the contribution of key variables (including biological traits and
sample collection parameters) to omics variability.

Results: All omics displayed a large range of intra- and inter-individual variability depending on each omics feature,
although all presented a highest median intra-individual variability. DNA methylation was the most stable profile
(median 37.6% inter-individual variability) while gene expression was the least stable (6.6%). Among the least stable
features, we identified 1% cross-omics co-variation between CpGs and metabolites (e.g. glucose and CpGs related
to obesity and type 2 diabetes). Explanatory variables, including age and body mass index (BMI), explained up to
9% of serum metabolite variability.

Conclusions: Methylation and targeted serum metabolomics are the most reliable omics to implement in single
time-point measurements in large cross-sectional studies. In the case of metabolomics, sample collection and
individual traits (e.g. BMI) are important parameters to control for improved comparability, at the study design or
analysis stage. This study will be valuable for the design and interpretation of epidemiological studies that aim to
link omics signatures to disease, environmental exposures, or both.

Keywords: Multi-omics, Exposome, Variability, Population study, Metabolomics, DNA methylation, Cross-omics,
mRNA, miRNA, Children
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Background
Characterizing early indicators of health and disease tra-
jectories during pregnancy and childhood is at the core
of the life course approach [1–4]. Early life englobes the
most critical/sensitive periods for organ development,
which makes it especially vulnerable to the effects of en-
vironmental exposures [5, 6]. The integration of multiple
omics data—such as epigenomics, transcriptomics, pro-
teomics and metabolomics—is increasingly applied to
detect early, subtle molecular responses to environmen-
tal exposures because it employs a holistic view on all
cellular processes [7–10]. However, there is an urgent
need for further evaluation of stability and variability of
omics profiles, between and within healthy children. Epi-
demiological studies that incorporate omics profiles to
monitor healthy individuals over time need to be in-
formed of technical and biological variability in order to
interpret changes in omics profiles, even if they are
small. Omics variability may be determined by factors
hindering subtle biological changes of interest, such as
seasonality, individual characteristics (age and BMI),
stage of life (i.e. hormones might vary between pre-
puberty and adulthood stages) as well as by technical
variability (due to measurement error and limited preci-
sion of analytic tools), which therefore must be con-
trolled at the design of the study [2, 5, 6].
Temporal variability in omics profiles has been de-

scribed previously to assess the reliability of single
time-point measurements in cross-sectional studies
and to understand ageing and disease processes [11,
12]. In this paper, we define “intra-individual variabil-
ity” as the variability estimated within individuals over
time and “inter-individual variability” as the between-
individuals variability. We also define the “short-term”
as a time span of hours or days, the “medium-term”
as a time span of months, and the “long-term” when
considering years. For example, in the short term, the
metabolome in urine and blood is assumed to be
more dynamic than other omics as it is the down-
stream result of in vivo substances and environmental
factor influence [4]. On the other hand, DNA methy-
lation is generally considered to be the most stable
omics profile over short periods of time [13] and
could provide more valuable information for environ-
mental epidemiological purposes than other omics, as
some methylomics signatures (e.g. smoking signatures)
have been shown to persist over time even when the
exposure no longer exists [2, 13–19]. Previous studies
have also shown low levels of intra-individual variabil-
ity in > 95% of the gene expression profile and in
25.5% of the miRNAs analysed, which are proposed
as good biomarkers for many human diseases [20–
27]. Overall, the blood proteome is considered quite
stable over time with strong inter-individual variability

due to genetics, although some proteins are highly in-
fluenced by body mass composition and acute inflam-
mation [28].
To date, multi-omics platforms have mainly been used

in studies with a small sample size that focused on diet-
ary or physical activity interventions rather than follow-
ing up healthy people from the general population [2,
29, 30]. They agreed that inter-individual variation, ra-
ther than intra-individual variation, was the main ex-
planatory factor for all omics measurements. However,
previous multi-omics profile studies have not considered
changes related to short and medium term. Especially,
there is a lack of evidence regarding children from the
general population, nor single or multi-omics studies,
and the contribution of several factors such as age, sex
and BMI.
In the present study, we estimated intra- and inter-

individual variability in multi-omics profiles (blood DNA
methylation, gene expression, miRNA, proteins and serum
and urine metabolites) in 156 children from five European
countries at two time points with a 6-month interval. We
further aimed to assess interrelationships between the
variability in different omics layers by performing a cross-
omics correlation network analysis. Finally, we aimed to
decompose the variance in multi-omics profiles according
to (1) inter-individual characteristics: sex, ancestry, age,
maternal education, Mediterranean diet quality index
(KIDMED score) and zBMI (which do not change in a 6-
month period); and (2) intra-individual characteristics:
hours of fasting before the visit for blood/ urine sampling,
heavy exercise practice the same day or the day before
sampling, having a cold at the moment of the visit, hour
of sampling, day of the week and season (Fig. 1).

Methods
Study design and population
The HELIX (Human Early Life Exposome) study is a
collaborative project of six-population based cohorts in
different European Countries: UK (BiB: Born in Brad-
ford) [31], France (EDEN: Étude des Déterminants pré
et postnatals du développement et de la santé de l’Én-
fant) [32], Spain (INMA: Infancia y Medio Ambiente)
[33], Lithuania (KANC: Kaunus cohort) [34], Norway
(MoBa: Norwegian Mother and Child Cohort Study)
[35] and Greece (RHEA: Mother Child Cohort study in
Crete) [6, 36]. The aim of the HELIX study was to meas-
ure and describe multiple environmental exposures dur-
ing early life (pregnancy and childhood) in a prospective
cohort and associate these exposures with molecular
omics signatures and child health outcomes.
From the six existing European longitudinal

population-based birth cohorts studies participating in
HELIX, a subcohort of 1301 mother-child pairs was se-
lected to be fully characterized for a broad suite of
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Fig. 1 Study workflow

Gallego-Paüls et al. BMC Medicine          (2021) 19:166 Page 3 of 16



environmental exposures and omics data, to be clinic-
ally examined, and to have biological samples col-
lected [6]. From this subcohort, 156 children were
selected to be part of the panel study: 28 from BiB
(UK), 28 from EDEN (France), 40 from INMA Saba-
dell (Spain), 30 from KANC (Lithuania) and 30 from
RHEA (Greece) [37]. Children from MoBa (Norwe-
gian Mother and Child Cohort Study; Norway) were
not included in this panel study. The Child Panel
Study had the same inclusion criteria as the HELIX
subcohort: (a) age 6–11 years at the time of the visit,
with a preference for ages 7–9 years if possible; (b)
sufficient stored pregnancy blood and urine samples;
(c) complete address history available; and (d) no ser-
ious health problem.
Concretely, the panel study consisted of two visits (A

and B) where data on exposures, individual behaviours,
phenotypes and omics profiles were collected [38]. The
mean difference between the two visits (A and B) was
6.11 months (standard deviation (SD): 2.18 months). In
order to characterize in depth the variability of the
omics measurements, the study population was further
restricted to children with complete information for
both visits (A and B) for at least one of the omics (N=
156).
Prior to the start of data collection, national ethics

committees had granted all the required permissions
that allowed cohort participant recruitment and follow-
up visits. Additionally, all the participants were asked to
sign a HELIX specific informed consent.

Sample collection
Biological samples were collected using the same stan-
dardized protocols across all five cohorts. Urine samples
were collected twice daily (first morning void and bed-
time sample) in high-quality polypropylene tubes. The
two urine samples were brought by the participants to
the centre in cool packs and stored at − 4 °C until pro-
cessing. After aliquoting, the urine samples were frozen
at − 80 °C under optimized and standardized procedures.
A pooled sample of both the morning and the night
urine samples was used for the analysis when available
(94.9% of individuals in the first visit and 95.5% in the
second visit). In visit A, 7 children only had a morning
sample available, and 1 child only had night sample. For
visit B, this happened in 4 and 3 children for morning
and night samples, respectively.
Eighteen milliliters of blood was collected at the end of

the clinical examination of the child, ensuring an approxi-
mate 3-h fasting time since the last meal (visit A mean: 3:
34 h (SD: 1:11 h); visit B mean: 2:35 h (SD: 1:31 h)). Blood
samples were collected using a ‘butterfly’ vacuum clip and
local anaesthetic and processed into a variety of sample
matrices for serum, plasma, whole blood for RNA

extraction, red cells and a buffy coat for DNA extraction.
After processing, these samples were frozen at − 80 °C
under optimized and standardized procedures [6].

Summary of laboratory processing of omics signatures,
quality control and normalization
We performed in-depth omics profiling at two time points
~ 6months apart for all 156 children. Because only 87
children had complete data of all omics analyses at both
visits, we decided to analyse each omics profile independ-
ently (i.e. all paired samples available for each specific
omics layer). The final sample size for each omics layer
was 149, 105, 100, 149, 154 and 154 children for DNA
methylation, blood gene expression, miRNA expression,
proteins, serum metabolites and urine metabolites, re-
spectively. Details on laboratory and data processing
methods are available in Additional file 1 - Supplementary
Methods [39–48]. While DNA methylation, gene and
miRNA expression screenings were based on genome-
wide arrays, the other methods were targeted or semi-
targeted. From now on, we use the term “features” to refer
to the omics variables in our study: CpGs, gene and
miRNA transcripts, proteins and metabolites. Because our
study did not have technical replicates (biological samples
systematically aliquoted in two replicates before sample
preparation), which would be the ideal way to measure
technical variability, potential technical variability was fil-
tered out as much as possible in each omics layers, before
fitting the variance partition models.
All samples were randomized in the arrays by sex and

cohort, and in addition, the samples from the same indi-
vidual in the microarray-based platforms were paired in
the same plate/array (see Supplementary Methods). In
the methylation, gene and miRNA expression data, we
corrected remaining technical batch effects and blood
cell composition by calculating surrogate variables (SVs)
while protecting for cohort, sex and age with the SVA
and SmartSVA methods [44, 49]. We used residuals
from the correction process to analyse blood DNA
methylation, gene and miRNA expression. We excluded
probes for CpGs that did not reach a 62.5% interclass
correlation coefficient (ICC) to minimize technical vari-
ability, based on a previous analysis with technical repli-
cates [46]. Gene and miRNA expression were filtered
out based on call rate or other omics based on other
technical parameters (see Table 1). All omics measure-
ments were normalized and log2 transformed except for
DNA methylation.

Statistical analyses
All statistical analyses were performed using R version
3.6.3 [50].
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Linear mixed effect models
Variability present in the different omics layers was cal-
culated with the variancePartition R package [47].
Briefly, it fits a linear mixed effect model to partition the
variance attributed to multiple variables in the data. As
this analytical process uses a multiple regression model,
the effect of each variable is assessed while correcting
for the others. Therefore, variancePartition assessed the
contribution of each meta-data variable to variation in
each feature.
We considered two mixed effect models: (1) a model

to estimate the proportion of variance attributable to
intra-individual, inter-individual and cohort variability
and (2) the same model adjusting for several explanatory
variables (inter- and intra-individual variability-related
variables, see list below) to determine the proportion of
variance they accounted for. Individual IDs were entered
in the models to account for inter-individual variability,
whereas we took residuals as a measure of intra-
individual variability.
The following explanatory variables were added to the

model as a measure of (1) inter-individual variation: sex,
ancestry of the child, age, maternal education—as a gen-
eral measure of socio-economic status—KIDMED score
as a measure of healthy diet pattern [51] and zBMI, as we
did not observe significant changes in the 6-month period;
and of (2) intra-individual variation: time to last meal
(hours of fasting), heavy exercise practice the same day or
the day before the sample collection, having a cold at the
moment of sampling, hour of sample collection, run order
for the urine metabolome model, day of the week and sea-
son at which the samples were collected. These were

biological traits and sample collection parameters that
were obtained through questionnaires. All omics, except
the urine metabolome, were corrected for omics platform
technical variables; therefore, we only included the run
order as a covariate in the urine metabolome model. Time
to last meal and hour of sample collection were not in-
cluded in the urine metabolome model because we used
pooled samples (morning and night).
Before running the models, we ensured the absence of

collinearity between the explanatory variables by obtain-
ing a collinearity score: if this score were to be > 0.99,
the variance partition estimates would produce mislead-
ing results and overestimate the contribution of variables
modelled as fixed effects [47]. No variables were elimi-
nated due to collinearity.
In the case of the methylome, we aimed to assess the

amount of variance attributed to differences in the im-
munological cell type composition. For this purpose, an
extra model was performed with a dataset corrected for
batch effect using the ComBat method [52] instead of
using SVA method, in order to keep the effect of cell
type composition.
Additionally for the methylome, we checked whether

CpGs located in the 4th quartile for intra- and inter-
individual variability were enriched for CpG island rela-
tive position (island, shore, shelf, open sea) and for over-
lap with CpGs associated with exposures/traits in the
EWAS Atlas [53].

Gaussian graphical modelling (GGM)—network analysis
A GGM was used to assess direct associations between
changes in omics features and elucidate biologically

Table 1 Omics data description and technical variability management

Omics
profile

Matrix Sample size
(omics available
for both visits)

Number
of
features

Laboratory processing Batch correction Criteria for
feature
exclusion

DNA
methylation

Blood
leukocytes

149 91601 Randomized by cohort and
sex, and panel samples
paired in plate and array

Residuals of SVs protecting for cohort,
sex and age. Cell type composition also
corrected with SVs.

< 98% call rate
and < 62.5% ICC

Gene
expression

Whole
blood

105 45438 Randomized by cohort and
sex, and panel samples
paired in plate.

Residuals of SVs protecting for cohort,
sex and age. Cell type composition also
corrected with SVs.

< 25% call rate

miRNA
expression

Whole
blood

100 453 Randomized by cohort and
sex, and panel samples
paired in plate and array.

Residuals of SVs protecting for cohort,
sex and age. Cell type composition also
corrected with SVs.

< 25% call rate

Proteins Plasma 149 36 Randomized by cohort Overall protein average minus plate
specific protein average subtracted for
each individual and each protein

< 30%
measurements in
the linear range
(LIN)

Serum
metabolites

Serum 154 177 Fully randomized - > 30% CV and >
30% BLD + zeros

Urine
metabolites

Urine 154 44 Fully randomized - > 30% CV

Definitions. Call rate (for DNA methylome): proportion of detection of a given CpG among samples; Call rate (for miRNA and gene expression): proportion of
detection of gene or miRNA among samples. Abbreviations. SV surrogate variables, ICC interclass correlation coefficient [35], CV coefficient of variation, BLD below
limit of detection
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relevant associations [54–58]. GGMs were built on the
delta matrix calculated as the change in omics features
between visits (i.e. the change in feature X for a child be-
tween time points is correlated with the change in Y,
where the correlation is again calculated across all chil-
dren). The omics features included: CpG sites with 100%
intra-individual variability and proteins, serum and urine
metabolites in the highest quartile for intra-individual
variability. Gene expression and miRNAs were excluded
because the number of participants with complete data
including these layers was significantly lower (n=87) and
would penalize the identification of biologically relevant
associations. The data matrix contained 139 samples ×
13,167 features (13,103 CpGs, 9 proteins, 44 serum me-
tabolites and 11 urine metabolites). We computed
GGMs using the ggm.estimator.pcor function from the R
package “GeneNet” [48]. This function estimates pair-
wise partial correlation coefficients conditioned against
all remaining variables, allowing to filter out indirect as-
sociations that may appear in omics data [48, 54]. We
considered significant partial correlations between fea-
tures those with p values below the false discovery rate
(FDR) threshold of 0.05 (p < 1.28 × 10−7). To construct
and visualize the resulting GGM networks, we used
Cytoscape 3.8.2 [59]. Edges connecting the nodes repre-
sent significant partial correlations and they were
weighted using partial correlation coefficients (PCCs).
The opacity of each node is based on its connectivity de-
gree (number of edges connecting a particular feature).

Results
Study participants
A total of 156 children from five cohorts across Europe
(BIB in the UK, EDEN in France, KANC in Lithuania,
RHEA in Greece and INMA in Spain) were followed up
for this study, with demographic data detailed in Table 2.
Time span between both visits (A and B) was 6.1 months
(2.2 SD). Children were on average 7.8 (1.7 SD) years old
in visit A. Most of the participants of the study (71.2%)
were in the healthy BMI range and remained in the same
category from visit A to visit B. Samples were collected on
average 3:36 h (1:12 SD) after the last meal during visit A,
and after 2:36 h (1:30 SD) during visit B. The hour of sam-
ple collection at both visits was almost the same, being 16:
54 h (2:54 SD) and 16:18 h (3:06 SD) for visits A and B, re-
spectively. Table 2 shows the description of other explana-
tory variables measured in the study.

Variance partition analysis shows large heterogeneity
between and within omics
A large heterogeneity in terms of the proportion of vari-
ance explained by cohort, inter- and intra-individual
variability between omics layers and within the same
omics layer was found (Fig. 2 and Table S1). Overall,

omics features presented little variability due to cohort
(median variability of features ranging from 0% for the
methylome to 15.7% for the proteome).

DNA methylation
Variation in blood DNA methylation was mainly due to
intra-individual variability with a median of 62.2% across
all CpG sites and a median inter-individual variability of
37.6% (Q1: 4.1%; Q3: 65.8%). We note however a large
heterogeneity between the CpGs with the lower and
upper quartiles ranging from 33.9 to 95.6% for intra-
individual variability and from 4.1 to 65.8%, for inter.
This heterogeneity was partially expected due to the
intra-experimental variation in Illumina BeadChip data.
Indeed, intra-individual variability of each CpG site in
our study was associated to previously reported ICCs,
described in the same tissue and the same array, but in
adults [46] (Additional file 1 - Figure S1).
CpG sites with the highest inter-individual variability

were enriched for CpG shores, whereas CpG sites with
high intra-individual variability were enriched in open
sea areas. We further aimed to evaluate the importance
of blood cellular composition in blood DNA methylation
variability. For this, we applied the same model for vari-
ance partition but without residualizing the effect of
blood cell proportions (Additional file 1 - Figure S2).

Table 2 Population description (N=156)

Start of the study

Sex Male 89

Female 67

Ancestry European ancestry 145

Pakistani 10

Other 1

Cohort BIB, UK 28

EDEN, France 28

KANC, Lithuania 30

RHEA, Greece 30

INMA, Spain 40

Age (years); mean (SD) Total 7.8 (1.7)

BIB 6.7 (0.2)

EDEN 10.8 (0.5)

KANC 6.7 (0.5)

RHEA 6.3 (0.12)

INMA 8.6 (0.5)

zBMI; mean (SD) 0.4 (1.2)

zBMI categories Thinness (zBMI < − 2) 1

Healthy (− 2 ≤ zBMI < 1) 111

Overweight (1 ≤ zBMI ≤ 2) 27

Obese (zBMI > 2) 17
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Fig. 2 Variance partition analysis of omics data. Total variance was apportioned between cohort, inter-individual and intra-individual effects. A
The heatmap colour (yellow to red) indicates the variance of features at each coordinate. B The violin plot describes the statistics of the variance
explained by each component
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When these were added as explanatory variables, differ-
ences in immune cell type composition explained a me-
dian of 14.0% of the intra-individual variance (Q1: 6.0%;
Q3: 34.8%).

Gene expression
Intra-individual variability explained the majority of the
variance in most of the transcript clusters—groups of
probes that define the expression of a gene (median:
93%; Q1: 78%; Q3: 100%).

MiRNAs
MiRNAs presented a variance partition pattern similar
to the gene expression, although not as pronounced.
Intra-individual variability was predominant for most of
the miRNAs (median: 65.2%; Q1: 51.8%; Q1: 81.4%).

Proteins
Proteins presented large heterogeneity as well (median
cohort variability median: 15.7%; Q1: 4.5%; Q3: 35.3%;
median intra-individual variability: 60%; Q1: 48.8%; Q3:
66.3%;). For instance, the variability of C-reactive protein
(CRP) was largely explained by intra-individual variabil-
ity (87.2%), while the variability of the epidermal growth
factor protein (EGF) was attributed to cohort by 55%.

Serum and urine metabolites
The serum metabolome presented, in average, the high-
est inter-individual variability (median: 43.4%; Q1:
31.1%; Q3: 53.7%), and the lowest intra-individual vari-
ability (median: 50.7%; Q1: 41.3%; Q3: 60.3%). Urine me-
tabolites also presented a relatively high median inter-
individual variability (median: 28.82%; Q1: 16%; Q3:
40.2%), compared to other omics.

Gaussian graphical model networks identify few CpG-
metabolite change dependencies
Our multi-omics study design also allowed us to analyse co-
dependencies in the variability of biological features across
the different molecular layers. After applying GGM on the
delta matrix (e.g. correlations on the change in omics fea-
tures between visits, see the “Methods” section [54–58]), we
found 70 connected components and a total of 755 nodes
and 1781 undirected edges (FDR < 0.1, Fig. 3). Edges were
weighted using partial correlation coefficients [PCCs ranged
from 0.003 to 0.007, p values ranged from 2.22 × 10−16 to
1.28 × 10−7]. The largest connected component contained
409 nodes mainly formed by CpG sites (99%), plus 69
smaller connected components that contained from 26 to 2
nodes. Most connected components (88.5%) were formed by
features from the same omics layer, including three formed
exclusively by serum metabolites as follow: (1) amino-acids
(Arg, Phe, Trp, Met, Met.SO, Tyr and His), (2) carnitines
and (3) phosphatidylcholines (PCs). Proteins included in the

model (P=9) did not show any significant partial correlation
to other features. Among the connected components com-
posed by features from different omics layers, all consisted of
one serum or urine metabolite directly correlated to a group
of CpGs, indicating CpG-metabolite change dependencies.
These metabolites included trimethylamine oxide (TMAO),
carnitine C3-DC (C4-OH), PC ae C38:1, glucose and citrate
(Fig. 4A–E, respectively). CpGs cg16076587 and cg08510264
present in the same connected component as glucose are an-
notated to INPP5A (Inositol polyphosphate-5-phosphatase A)
and IRS2 (Insulin receptor substrate 2) genes, respectively.

Biological traits can help to interpret some of the omics
variability, especially in the serum metabolome
We further aimed to evaluate the association of omics
variability with several anthropometric and dietary traits.
Overall, the inclusion of explanatory variables accounted
for up to 9% of the serum metabolite inter-individual
variability (change from a median of 43% to 34% with
additional explanatory variables) and up to 3–4% (me-
dian change) of the intra-individual variability in the
gene expression, miRNA and proteins (Additional file 1
- Table S1). Percentage of omics features explained by
each explanatory variable per omics dataset, considering
three different thresholds: ≥ 1%, ≥2% and ≥ 5% of vari-
ance explained are also provided (Additional file 1 –
Table S2).
On average, for all the omics, intra-individual variabil-

ity was negligibly affected by the inclusion of the ex-
planatory variables. However, these variables explained a
large percentage of variance in some particular features
(Fig. 5) as described further below. Considering all the
omics features as a whole, we identified that age, zBMI
and hour of sample collection had a major effect on fea-
ture variability.
Generally, DNA methylation was poorly explained by

the explanatory variables: only 3% of the CpGs had more
than 2% of the variance explained by individual traits;
the KIDMED score explained the most variability (≥ 2%
of the variance in 9.6% of CpGs).
In gene expression, age, maternal education, KIDMED

score, week day and hour of sample collection were re-
sponsible for at least 2% of the variance in more than 5%
of the transcripts each, with the KIDMED score showing
the largest influence. MiRNAs were mainly influenced
by the hour of sample collection, age, ancestry, and
KIDMED score. Concretely, ancestry and hour of sample
collection explained more than 5% of the variance in
4.6% and 8.7% of the miRNAs, respectively. Further-
more, the KIDMED score explained more than 2% of
variance in 10.6 % of miRNAs.
Proteins were mostly influenced by zBMI, ancestry,

and age, where each trait explained more than 5% of
the variance in 22.2%, 16.7% and 16.7% of the
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proteins, respectively. Among the proteins largely ex-
plained by zBMI were leptin and insulin. Similarly,
these same proteins showed sex differences, found in
higher concentrations in females. Ancestry explained
25–12% of the variability in these proteins (in order
of magnitude): interleukin (IL)8, TNF alfa, BAFF, in-
sulin and HGF (see Additional file 2). Insulin ap-
peared to be the only protein significatively
influenced by the hours of fasting and CRP was asso-
ciated with having a cold.

Serum metabolites were mostly affected by ancestry
and age, explaining more than 5% of the variance in
24.3% and 16.4% of the metabolites, respectively. By
contrast, ancestry and age explained more than 5% of
variance in just 2.3% and 9.1% of the urine metabo-
lites, respectively. Our results showed that time to last
meal explained more than 2% of the variance in only
a 10.7% of the serum metabolites. Among the metab-
olites most influenced by sex, BMI and hours of fast-
ing, we found sphingomyelin C18:1 and tyrosine for

Fig. 3 Network representation of the Gaussian graphical model (GGM) of the DNA methylome, proteins, serum and urine metabolites with high
intra-individual variability measured in 157 children from five European countries. Blue nodes represent CpG sites. Red and yellow nodes
represent serum and urine metabolites, respectively. The opacity of the nodes is dependent on their degree (number of edges connecting a
particular feature). The edge thickness was weighted based on the partial correlation coefficients (PCCs) obtained from the GGM
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sex; glucose and 4-deoxyerythronic acid for BMI z-
score; and alanine for hours of fasting.

Discussion
The current study offers a multi-omics perspective of
medium-term omics variability in childhood. We mod-
elled the variability of 6 different types of omics data
(blood DNA methylation, gene expression, miRNA,
proteome, serum and urine metabolomes) for 156 chil-
dren from five European countries at two time points
with a 6-month interval, and found a large range of
intra- and inter-individual variability between and within
each omics profiles. We pointed out that overall intra-
individual variation accounted for the largest part of the
total variation in all omics. While DNA methylation and
serum metabolites exhibited stronger stability over time
for many features (median inter-individual variability:
37.6 and 43.4%, respectively), gene expression was the
less stable omics profile in average (median inter-
individual variability: 6.6%) and proteins and urinary

metabolites were somewhat in the middle, with strong
heterogeneity between features. Consequently, DNA
methylation and serum metabolites (targeted assay) will
better inform epidemiological studies that rely on single
measurements to compare individuals in the search of
biomarkers, whereas less stable omics profiles such as
gene expression will give more reliable information to
studies that assess individual trajectories over time (mul-
tiple time point measurements). We evidenced that vari-
ability of omics features comes from several sources.
Besides technical or analytical variability, which we tried
to control for, we identified physiological patterns in
intra-individual variability through inter-omics network
analysis. In all omics profiles, features with high inter-
individual variability were identified, which can be as-
cribed to biological (between individuals) variability.
While it is always preferable to adhere to standard sam-
ple collection conditions, this is not always possible, and
omics features with substantial biological variation are
potentially robust enough to yield meaningful findings in

Fig. 4 Main connected components of the Gaussian graphical model (GGM) network that involve direct associations between features from
different omics layers. Blue nodes represent CpG sites. Red and yellow nodes represent serum and urine metabolites, respectively. The opacity of
the nodes is dependent on their degree (number of edges connecting a particular feature). The edge thickness was weighted based on the
partial correlation coefficients (PCCs) obtained from the GGM
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spite of collection inconsistencies. The small proportions
of variability attributed to cohort demonstrated that
standardized sample collection protocols can produce
robust results in large-scale omics studies across differ-
ent countries. Biological traits and sample collection var-
iables, easy to collect in cohort studies, might help to
account for the unwanted variability, in particular for
metabolomics.
We found, in the case of the methylome, that the most

stable CpG sites were enriched in functional methylation
regions of the genome. CpG sites with the highest inter-
individual variability were enriched for CpG shores,

which are regions 0–2 kb from CpG islands (CpG rich
regions) [33]. On the other hand, CpG sites with high
intra-individual variability were enriched in open sea
areas, which are isolated CpG sites in the genome that
have been linked to chromosomal instability and loss of
imprinting [33, 34]. Recent studies point out that pheno-
typically relevant CpGs tend to be located in CpGs
shores [13, 16]. These CpGs with high inter-individual
variability are especially relevant for large-scale epi-
demiological studies since these probes could be used as
reliable biomarker candidates [16]. Our results reinforce
that strong methylation differences between individuals

Fig. 5 Violin plots showing multi-omics variability decomposed by biological traits and sample collection parameters measured in the study. Labels
correspond to omics features mostly explained by each variable. Abbreviations. Proteome: IL: interleukin; Apo A1: apolipoprotein A1; RA: receptor
antagonist; CRP: c-reactive protein. Serum metabolome: C: acylcarnitine; SM: sphingomyelin; PC: phosphatidylcholine; lysoPC: lysophosphatidylcholine
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already appear in childhood as previously reported [18],
even in our population of similar European ancestry
children. On the other hand, gene expression may re-
quire repeat sampling to account for intra-individual
and technical variability, in order to generate stable
enough markers to be deployed in epidemiological stud-
ies. Previous studies in healthy individuals show that
gene expression profiles are mostly stable and repeatable
in the short/medium term (< 5% of transcripts with high
intra-individual variability) [20–22, 24]. Our results, in
contrast, attributed the majority of the variation to intra-
individual effects, potentially due to RNA quality that
might differ between visits A and B. Effort has to be put
on the initial sample preparation (DNA, RNA extraction
and quality) and its harmonization across different cen-
tres or time point collection, since it strongly determines
the quality of omics measurements and might hinder
real biological response. To our knowledge, only two
previous studies have estimated miRNA variability in
terms of intra- and inter-individual effects, but these
studied a longer time span (5 years) [26] or a daily time
span (48 h) in cerebrospinal fluid [27]. Despite these dif-
ferences in study design, both studies agree that there is
diversity within the microRNome in terms of stability of
its features. Previous proteome studies in healthy human
volunteers have demonstrated moderate inter-individual
variability (CV ranging from 30% to 50%) [35, 36], simi-
lar to the urine proteome in seven adult donors [37]. A
study that estimated intra-individual variation of plasma
adipokines concluded that they may be useful bio-
markers of inflammation in population-based studies of
obesity-related disease due to their stability over time
[38]. These corroborate our results for IL-1β, IL-6, IL-8,
leptin, adiponectin, hepatocyte growth factor (HGF) and
CRP which presented the highest stability in our study.
Finally, metabolomics studies comparing serum and
urine metabolomes corroborate in children and adult
populations strongly corroborate our findings that the
serum metabolome is more stable and captures more
inter-individual specific variance, compared to the urine
metabolome [39–43].
Biological traits, such as body weight, sex and age,

accounted for inter-individual variability in gene expres-
sion, similar to results obtained by Hughes et al. (2015)
[25], where roughly 2% of total gene expression variation
was explained by these traits in placenta samples. Age
and hour of sample collection have also been found to
be significant sources of variation in blood gene expres-
sion patterns of healthy individuals [60]. Previous studies
on miRNA variability identified the strong influence of
age and sample storage time [15, 23], but the time of the
day or dietary intake has not been previously studied to
our knowledge. Among the proteins largely explained by
zBMI were leptin and insulin, hormones related to food

intake and fat storage [61] and the pro-inflammatory cy-
tokines IL-6 and IL-1 beta, both known to be elevated in
subjects with obesity or with serum lipid concentrations
abnormalities, leading to a state of chronic inflammation
[62]. Similarly, these same proteins showed sex differ-
ences, in particular leptin and IL-1 beta, known to be
higher in females and resulting in a higher risk to de-
velop obesity than males [63]. Interestingly, circulating
IL-8, a pro-inflammatory cytokine, was strongly influ-
enced by ancestry (6% of children had Pakistani ances-
try) in our cohorts (25% of variance explained). IL-8 was
previously found to be influenced by genetic polymor-
phisms in an eastern Indian population, potentially driv-
ing individual variations in the host’s immune response,
in particular to infectious diseases [64]. Intra-individual
factors such as hours of fasting and having a cold gave
the expected results: insulin appeared to be the only pro-
tein significatively influenced by the hours of fasting and
CRP was associated with having a cold. This is in line
with a previous study that considered the fasting/post-
prandial state of the samples and revealed that, on aver-
age, it explained less than 2% of the total variance [41].
Associations of serum and urine metabolites with sex,
BMI and hours of fasting (only for serum) was also pre-
viously reported in the cross-sectional study of 1300
HELIX children [39]. Interestingly, high levels of 4-
deoxyerythronic acid in children, found correlated to
higher BMI in our study, have been previously related to
early-onset type I diabetes although further understand-
ing of its metabolism is required [65].
A few recent studies have reported changes in multiple

omics profiles in clinical settings and after dietary well-
ness coaching intervention or physical activity [30, 66,
67], revealing omics signatures that may serve as poten-
tial diagnostic markers. However, variability of omics
profiles in healthy population and “normal” living condi-
tions remains under-studied. Large observational studies
would benefit enormously from this information, be-
cause it allows the interpretation of changes that do not
match a pattern. This is especially important for early-
life studies that focus on the origin of diseases in chil-
dren because omics profiles are able to capture very
early and subtle molecular responses, even before
physiological manifestations appear. Variations in omics
profiles due to factors such as BMI, age, physical activity,
fasting time and sampling conditions need to be well
characterized in order to interpret subtle changes related
to environmental exposures such as air pollution or
endocrine-disrupting chemicals, the ultimate goal of re-
cent exposome initiatives [60]. Omics measurements in
our study are of great clinical relevance as they provide
the basis for the discovery of new biomarkers of multiple
medical conditions such as cancer, heart disease, neuro-
logical disorders or inflammatory diseases [61–64]. Here,
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we provide insight into which omics features are stable
within individuals and demonstrate sufficient inter-
individual variation in order to reduce chance findings
when conducting epidemiological studies with follow-up
for disease outcomes [16].
We emphasize the fact that children from five Euro-

pean countries took part in the study. The multiple loca-
tions of our participants allow to generalize the
influence of factors such as lifestyle habits, seasonal in-
fluences and maternal education, which vary greatly be-
tween countries/cultures and not many studies consider.
A major strength of our study lies in the cross-omics ap-

proach. We created a network of interacting omics fea-
tures of four different omics layers (DNA methylome,
proteome, serum and urine metabolomes) using Gaussian
graphical models (GGMs). GGMs circumvent the selec-
tion of indirect associations that usually appear between
omics measurements, as Pearson correlations are generally
high in these data. GGMs are based on partial correlation
coefficients and provide an estimate of conditional de-
pendencies between variables, elucidating direct associa-
tions [54]. This enabled us to obtain a holistic view of the
biological significance of our results. By studying the inter-
action of multiple omics features, we exploited the data to
their full potential for further disease prediction and pre-
vention studies [56]. Moreover, it allowed us to go a step
further by identifying interactions of features across omics
layers, which is the main goal of the recent discipline in-
teractome within systems biology. Despite not finding
many dependencies across omics, a few metabolites were
related to groups of CpGs. These included TMAO, a com-
pound generated by the gut microbiota from diet-derived
components, hence with high variability and strongly de-
termined by diet, gut microbial flora and drug administra-
tion [65]. Elevated levels of TMAO positively correlate to
cardiovascular disease through the development of athero-
sclerosis in previous studies [68–73]. Variation in four
CpGs was related to glucose in urine (pool morning and
night urine), which level depends on lifestyle factors like
diet and exercise behaviours and its dysregulation related
to obesity and type 2 diabetes (T2D) in children [74].
Interestingly, two of these CpGs are within genes related
to obesity and T2D [53]. This supports previous studies
on GGMs that show their ability to reconstruct metabolic
pathways [54, 75, 76], including in this case across omics.
Our study had some limitations. In the first place, we

studied omics variability in 156 children and a larger
population size would have provided greater statistical
power to our model. However, this sample size allowed
us to analyse 6 different molecular layers in the same in-
dividual and at the same time-point, twice, data rarely
obtained in the past. Our study used targeted ap-
proaches to measure the proteome and the serum me-
tabolome profiles (semi-targeted for urine). While this

approach provided reduced biological coverage, we are
confident that this insured reliable annotation and quan-
tification of markers. In contrast, we report high intra-
individual effects in a large proportion of genome-wide
omics features that are potentially due to technical vari-
ability. Despite considering quality control parameters
(e.g. filtering for call rate) in order to minimize this ef-
fect, we note that precision in the intra-individual vari-
ability apportionments can be strengthened by adding
technical replicates. This, together with increasing the
number of individuals, would be the ideal way to
strengthen the biological signal. Moreover, despite hav-
ing measured many biological traits in the children
under study, there are relevant missing variables, such as
recent dietary intake in the last 24 h, which is expected
to influence the variability of omics such as the urine
metabolome. It would be interesting to study if and how
other factors account for variability within omics. Our
study could also benefit from a more exhaustive collec-
tion of repeated samples across short periods of time.
For example, having morning and night samples in the
same individual at different time points, as done previ-
ously for metabolomics [77, 78] or miRNAs [27].

Conclusions
We assessed omics profiles variability over the medium-
term in child cohorts from the general population, using
a multi-omics approach. We found large heterogeneity
within and between omics profiles. Intra-individual vari-
ability presented the highest median variability in all
cases. The cross-omics analysis we performed provides
global insights into how different omics features vary
over time, within and between individuals and among
cohorts from different countries. This study thereby pro-
vides a valuable framework for future epidemiological
studies that aim to detect omics signatures linked to
disease, environmental exposures or both.
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