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Multi-site tumor sampling highlights
molecular intra-tumor heterogeneity in
malignant pleural mesothelioma
Clément Meiller1, François Montagne1,2, Theo Z. Hirsch1, Stefano Caruso1, Julien de Wolf1,3, Quentin Bayard1,
Jean-Baptiste Assié1,4,5, Léa Meunier1, Yuna Blum6,7, Lisa Quetel1, Laure Gibault8,9, Ecaterina Pintilie10,
Cécile Badoual8,9, Sarah Humez11,12, Françoise Galateau-Sallé13, Marie-Christine Copin11,14, Eric Letouzé1,
Arnaud Scherpereel15,16, Jessica Zucman-Rossi1,8, Françoise Le Pimpec-Barthes1,8,17, Marie-Claude Jaurand1 and
Didier Jean1*

Abstract

Background: Malignant pleural mesothelioma (MPM) is a heterogeneous cancer. Better knowledge of molecular
and cellular intra-tumor heterogeneity throughout the thoracic cavity is required to develop efficient therapies. This
study focuses on molecular intra-tumor heterogeneity using the largest series to date in MPM and is the first to
report on the multi-omics profiling of a substantial series of multi-site tumor samples.

Methods: Intra-tumor heterogeneity was investigated in 16 patients from whom biopsies were taken at distinct
anatomical sites. The paired biopsies collected from apex, side wall, costo-diaphragmatic, or highest metabolic sites
as well as 5 derived cell lines were screened using targeted sequencing. Whole exome sequencing, RNA
sequencing, and DNA methylation were performed on a subset of the cohort for deep characterization. Molecular
classification, recently defined histo-molecular gradients, and cell populations of the tumor microenvironment were
assessed.

Results: Sequencing analysis identified heterogeneous variants notably in NF2, a key tumor suppressor gene of
mesothelial carcinogenesis. Subclonal tumor populations were shared among paired biopsies, suggesting a
polyclonal dissemination of the tumor. Transcriptome analysis highlighted dysregulation of cell adhesion and
extracellular matrix pathways, linked to changes in histo-molecular gradient proportions between anatomic sites.
Methylome analysis revealed the contribution of epigenetic mechanisms in two patients. Finally, significant changes
in the expression of immune mediators and genes related to immunological synapse, as well as differential
infiltration of immune populations in the tumor environment, were observed and led to a switch from a hot to a
cold immune profile in three patients.
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Conclusions: This comprehensive analysis reveals patient-dependent spatial intra-tumor heterogeneity at the
genetic, transcriptomic, and epigenetic levels and in the immune landscape of the tumor microenvironment.
Results support the need for multi-sampling for the implementation of molecular-based precision medicine.

Keywords: Thoracic tumor, Spatial molecular intra-tumor heterogeneity, Clonality, NF2 subclonal mutation, Tumor
microenvironment

Background
Malignant pleural mesothelioma (MPM) is a rare and
highly aggressive tumor arising in the thoracic cavity.
Exposure to asbestos is the main risk factor, and despite
the ban of this mineral fiber in several countries, MPM
remains a major public health problem worldwide. In
most patients, MPM is an incurable cancer with a very
poor prognosis, notably due to the ineffectiveness of
conventional anti-tumor treatments. The reference treat-
ment is based on systemic platinum-based chemother-
apy combined with pemetrexed, a treatment that
improves survival by only a few months even with the
recent addition of the anti-VEGF therapy bevacizumab
[1]. More recently, immunotherapy based on immune
checkpoint inhibitors has shown survival benefits in par-
ticular in patients with non-epithelioid histology, with-
out an accurate predictive biomarker for treatment
response besides age and histology [2–4]. Despite this
recent therapeutic progress, there is still an urgent need
to develop a precision medicine approach taking into ac-
count MPM heterogeneity.
Like most solid tumors, MPM is a heterogeneous can-

cer with high variability between patients [5]. The het-
erogeneity of MPM was first described at the histologic
level by defining three main types: epithelioid, sarcoma-
toid, and biphasic. Different histologic subtypes have
been described especially for the epithelioid type includ-
ing, but, not limited to, tubulopapillary, acinar, trabecu-
lar, solid, and micropapillary architectural subtypes [6,
7]. Interestingly, studies show that histologic subtype
and grade of epithelioid MPM have a prognostic impact
[6, 8]. More recently, the rare transitional type, which
could also be a subtype of the sarcomatoid type, was
described [9]. Large-scale omics and next-generation
sequencing (NGS) studies have demonstrated MPM
inter-tumor heterogeneity at the molecular level and led
to molecular classifications into two to four subtypes
[10–13]. More recent publications have shown that
MPM heterogeneity is well-described by a continuum
[10, 14]. Recently, we defined histo-molecular gradients,
which also takes into consideration intra-tumor hetero-
geneity, by determining the proportions of epithelioid-
like and sarcomatoid-like cellular entities (E.score and
S.score), related to the two extreme histological types of
MPM, within tumor samples. These gradients have a
high prognostic value and are of interest to guide

therapeutic strategies, including targeted therapies and
immunotherapies [10].
MPM is a solid tumor characterized by a diffuse locor-

egional growth within the pleural cavity. A polyclonal
origin has been described and subclonal cell populations
with specific mutations have been evidenced [15, 16]. So
far, only two studies have focused on spatial genetic het-
erogeneity [17, 18]. Variability in the mutational load
without involving key genes of mesothelial carcinogen-
esis was first observed between anatomical locations in a
series of six patients [17]. Very recently, a series of nine
patients also highlighted heterogeneous mutations be-
tween anatomical locations [18]. Some evidence sup-
ports spatial heterogeneity concerning the tumor
microenvironment [5]. Both the above studies showed
distinct T-cell repertoires depending on the tumor ana-
tomic region [17, 18]. However, contrary to inter-tumor
microenvironmental heterogeneity in terms of stromal
and immune cell infiltration [10, 19], intra-tumor cell
heterogeneity of the tumor microenvironment has not
yet been reported.
In the present study, we have gone further in the

characterization of MPM molecular spatial heterogeneity
in the largest series of patients (16 cases) studied so far.
We not only defined the heterogeneity at the genetic
level and, for the first time, characterized the spatial dys-
regulation of gene expression, epigenetic changes, and
tumor microenvironment differential infiltration.

Methods
Patients
Tumor samples were collected from up to four distinct
anatomical sites (apex, side wall, costo-diaphragmatic,
and highest metabolic sites detected by positron emis-
sion tomography (PET) scan when present, shown in
Additional file 1: Figure S1) in a series of 16 patients
who had diagnostic biopsies or surgery resections for
MPM in two French hospitals (CHRU of Lille and Hôpi-
tal Européen Georges Pompidou of Paris). For each pa-
tient, the tumor location is indicated (A: apex; B: side
wall; C: costo-diaphragmatic; D: highest metabolic site).
Non-tumoral samples (blood or muscle of the chest
wall) were available for 9 patients. Patients were diag-
nosed between 2014 and 2017 and tumors were certified
by the French National Pathology Expertise Network
(Mesopath) as MPM [20]. Histologic type, subtype, and
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grade were determined by MesoPath expert pathologists
and part of the series was reviewed according to the
WHO 2021 update [21]. The experiments were under-
taken with the understanding and written consent of
each subject. The study methodologies were conformed
to the standards set by the Declaration of Helsinki and
approved by a local medical ethics committee (CPP Ile-
de-France II). The sampling procedures were approved
by the French research ministry (CODECOH no. DC-
2016-2771). Samples were annotated with detailed
clinico-pathological and epidemiologic information ob-
tained from pathology reports (Additional file 1: Table
S1). Based on tumor purity and a quality check of ex-
tracted nucleic acids, two tumor samples per patient
were used for further analysis. Three metrics were used
to evaluate tumor purity: (i) pathologist assessment of
tumor cellularity, (ii) prediction by RT-qPCR of non-
tumor components using WISP deconvolution method
[10], and (iii) frequencies of variants determined by tar-
geted NGS. For the few patients with more than 2 quali-
fied tumor samples, paired samples with the closest
tumor purity were kept. In addition, MPM primary cell
lines were generated from five patients in our laboratory,
from fresh tumor samples collected at sites distinct from
the four previous locations. They were established, cul-
tured as previously described [22], and used at low-
passage numbers (6 to 10 passages). All tumor samples
and cell lines were analyzed by targeted NGS, 9 paired
tumor samples by whole exome sequencing (T199LE-A/
B, T200LE-A/C, T201LE-A/B, T203LE-A/C, T225LE-A/
D, T227LE-A/D, T277HP-A/C, T278HP-A/C, T333HP-
A/C), 8 by RNA sequencing (T199LE-A/B, T201LE-A/B,
T203LE-A/C, T225LE-A/D, T227LE-A/D, T277HP-A/C,
T278HP-A/C, T333HP-A/C), and 5 by methylation pro-
filing (T203LE-A/C, T227LE-A/D, T277HP-A/C,
T278HP-A/C, T333HP-A/C).

Nucleic acid extraction
For tumor samples, a preliminary step of tissue disrup-
tion and cell lysis was achieved using TissueLyser II
(Qiagen, Courtaboeuf, France). Genomic DNA and total
RNA from tumor samples and cell pellets, obtained from
cultures of MPM primary cell lines at passages 6 to 10,
were extracted using the AllPrep DNA/RNA/miRNA
Universal kit (Qiagen) according to the manufacturer’s
protocol. For the fresh tumor sample used to establish
MPM_83, automated DNA extraction was performed on
multiple sections (n = 34) of the frozen preserved sample
following the protocol of the Maxwell 16 Tissue DNA
purification kit and the Maxwell instrument (Promega,
Charbonnières-les-Bains, France). DNA and RNA quan-
tifications were done by fluorescence measurements
(Hoechst dye) on a FLUOstar Omega microplate reader
(BMG Labtech, Champigny sur Marne, France) and by

spectrometry on a NanoDrop-1000 (Ozyme, Saint-Cyr-
l’Ecole, France), respectively. We used agarose gel migra-
tion for DNA to ensure the absence of excessive degrad-
ation before sequencing and methylation analysis. We
assessed RNA integrity on a Fragment Analyzer (Agilent
Technologies, Courtaboeuf, France) before RNA-seq
analysis.

Targeted next-generation sequencing (NGS) and variant
calling
We performed targeted NGS using our in-house proto-
col recently published in detail to sequence 21 genes and
the TERT promoter on the whole series of samples (16
patients) [22, 23]. Briefly, library preparation was based
on a multiplex PCR enrichment and sequencing was
achieved by a MiSeq instrument (Illumina, Evry, France).
FASTQ files were generated by the Illumina MiSeq Re-
porter software. Primer sequences were removed using
the fastx_trimmer function from the fastx toolkit. Reads
were aligned on the human genome assembly hg19/
GRCh37 using the Burrows-Wheeler aligner (BWA) and
bam files were generated using samtools. Variant calling
was performed with Unified Genotyper and variant an-
notation was obtained using the Oncotator annotation
algorithm, along with the ensembl Variant Effect Pre-
dictor (VEP) algorithm and the Annovar annotation. Fi-
nally, based on these annotations, all somatic variants
with a functional consequence were checked by
visualization using Integrative Genomic Viewer (IGV)
software (Broad Institute, Cambridge, MA, USA). Vari-
ants of interest were validated either using whole exome
sequencing (WES) data or by a second independent tar-
geted NGS. Genome coordinates were converted to hu-
man genome assembly hg38/GRCh38 using the UCSC
LiftOver online tool [24].

Whole exome sequencing (WES) and variant calling
Library preparation, exome capture, sequencing, and
data analysis were performed by IntegraGen (Evry,
France). We screened all paired biopsies with non-
tumoral samples available (9 patients) [23]. Briefly, gen-
omic DNA was captured either using the Agilent in-
solution enrichment methodology with their biotinylated
oligonucleotide probe library (SureSelect Clinical Re-
search Exome V2, Agilent Technologies) or the Twist
Human Core Exome Enrichment System (Twist Bio-
science, San Francisco, USA), followed by paired-end 75
base massively parallel sequencing on Illumina
HiSeq4000. Sequence capture, enrichment, and elution
were performed according to the manufacturer’s instruc-
tions and protocols without modification, except for the
library prepared using NEBNext® Ultra II kit (New Eng-
land Biolabs, Evry, France). Image analysis and base call-
ing were performed using Illumina Real-Time Analysis
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(2.7.7) with default parameters. Sequence reads were
mapped to the human genome build hg38/GRCh38 by
using the BWA tool. The duplicated reads were removed
using sambamba tools. Variant calling, allowing the
identification of genetic alterations, as well as SNV (sin-
gle nucleotide variation) and small insertions/deletions
(up to 20 bp), was performed via the Broad Institute’s
GATK Haplotype Caller GVCF tool (3.7) for constitu-
tional DNA and via the Broad Institute’s MuTect tool
for somatic DNA. Ensembl’s VEP (variant effect pre-
dictor) program processed variants for further annota-
tion [25, 26]. An in-house post-processing workflow was
applied to filter out candidate somatic mutations that
were more consistent with artifacts or germline muta-
tions. Finally, the variants were validated by visualization
using IGV software. Two bioinformatics predictions for
missense pathogenicity were used: SIFT (5.2.2) and Poly-
Phen (2.2.2) and damaging variants were considered if it
was predicted by at least one tool. The circular binary
segmentation algorithm implemented in the Bioconduc-
tor package DNAcopy (DNAcopy 1.32.0) as well as
FACET R package (v.0.6.1.) were used to reconstruct
copy-number profiles from WES data [27, 28]. For
FACET analysis, single nucleotide polymorphisms (SNP)
count matrix for both tumoral and non-tumoral samples
was obtained by processing bam files with snp-pileup
(arguments: -q15; -Q20; -P100; -r20,0). Then, SNP
matrix was processed using preProcSample function
(cval = 25, snp.nbhd=250, ndepth=30) to generate log-R-
ratio and the segmentation. ProcSample (cval=150, min.-
nhet=5) was then used to estimate the wild-type 2-copy
state. Finally, emcncf (min.nhet=5) function was used to
estimate sample ploidy and purity. R package ggplot was
used to make pangenomic graphical representations.
Cancer-related genes were based on Tier 1 of the Cancer
Gene Census (CGC) database [29, 30].

Clonality prediction
For each mutation, we used the Palimpsest R package
[31] to estimate the fraction of tumor cells harboring
this variant (cancer cell fraction, CCF) in each tumor, as
previously described [32]. In addition, the emcncf (min.-
nhet=5) function of FACET package (v.0.6.1.) was used
to determine cellular fraction and allele-specific copy-
numbers per segments from CNV data [28]. T200LE
was excluded from this analysis as results were not reli-
able probably due to low tumor purity. CCF for CNV
was calculated by dividing a cellular fraction by tumor
purity. For pairs of tumor samples from a given patient,
the comparison of the CCF distribution between samples
was used to sort mutations or CNV among clonal
shared, subclonal shared, clonal private, and subclonal
private variants. Variants or CNV were considered sub-
clonal if the CCF value of both tumor samples were

lower than 0.5 and, for variants only, if the upper limit
of the confidence interval was below 1. Shared variants
were found in both paired tumor samples in contrast to
private variants.

RNA sequencing
Library preparation and sequencing were performed by
IntegraGen on paired biopsies of 8 patients [23]. Librar-
ies were prepared using the TruSeq Stranded mRNA kit
(Illumina) or the NEBNext Ultra II Directional RNA Li-
brary Prep Kit (New England Biolabs), according to the
supplier’s recommendations. Briefly, the key steps of
both protocols were (i) purification of PolyA-containing
mRNA molecules using poly-T oligo attached magnetic
beads from 1 μg total RNA, (ii) RNA fragmentation
using divalent cations at an elevated temperature to ob-
tain approximately 300 bp fragments, (iii) double-strand
cDNA synthesis, and (iv) Illumina adapter ligation and
cDNA library amplification by PCR for sequencing.
Paired-end 75 base massively parallel sequencing was
then carried out on an Illumina HiSeq4000. FASTQ files
were aligned to the human reference genome hg38/
GRCh38 using TopHat2 V.2.0.14 [33]. We removed
reads mapping to multiple locations, and we used
HTSeq [34] to obtain the number of reads associated
with each gene in the Gencode v27 database. The Bio-
conductor DESeq2 package [35] was used to import raw
HTSeq counts for each sample into R statistical software
(R Foundation for Statistical Computing, Vienna,
Austria) and to apply variance stabilizing transformation
to the raw count matrix. FPKM values (number of frag-
ments per kilobase of exon model and millions of
mapped reads) were calculated by normalizing the count
matrix for the library size estimated with the DESeq2
package and the coding length of each gene. Differen-
tially expressed genes were determined using both
FPKM and DESeq2-normalized RNA-seq data: genes
that displayed a FPKM value below 1 in both paired bi-
opsies were excluded and we considered as differentially
expressed only genes with a difference of DESeq2 ex-
pression values between paired samples above 1. Hier-
archical clustering was done using cosine distance and
Ward’s linkage method in R statistical software with the
500 most differentially expressed genes. Network ana-
lysis of the distribution of the differentially expressed
genes among tumor samples was performed using the
web-based interactive tool DiVenn [36].

Gene fusion detection
Fusions detected by TopHat2 (--fusion-search --fu-
sion-min-dist2000 --fusion-anchor-length13 --fusion-
ignore-chromosomes chrM) were filtered using the
TopHatFusion pipeline [37]. We discarded artifacts
based on fusion redundancy among samples from
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different patients. Fusions validated by BLAST and
with at least 20 split-reads or pairs of reads spanning
the fusion event in at least one of the paired tumor
samples were retained. Shashimi plots were generated
using junctions.bed provided by TopHat2 to deter-
mine the junctions supported by splitted reads and
bedtools genomecov function (with -bga -split op-
tions) to calculate the coverage from the aligned bam
files.

Molecular classification and histo-molecular score
predictions
Expression data from RNA sequencing (DESeq2-normal-
ized counts) were used to predict molecular subgroups
and histo-molecular scores (E/S.score) based on cen-
troids and deconvolution approaches, respectively, as de-
scribed previously [10].

Methylation profiling
Experimental works and data analysis were performed
by IntegraGen on paired biopsies of 5 patients [38]. First,
bisulfite conversion of 500 ng of DNA samples was per-
formed with the Zymo EZ DNA Methylation Kit
(Ozyme) according to the manufacturer’s instructions.
Then, methylation analysis was performed on the Infi-
nium MethylationEPIC BeadChip Kit (Illumina) follow-
ing the supplier’s recommendations. Briefly, samples
were denatured, neutralized, and incubated in the Illu-
mina hybridization oven for 20–24 h at 37 °C to uni-
formly amplify genomic DNA, then enzymatically
fragmented. Following the fragmentation step, samples
were hybridized to the BeadChip and incubated at 48 °C
for 16–24 h in the Illumina hybridization oven. Finally,
non-hybridized and unspecific hybridized DNA samples
were washed from the BeadChip, and labeled nucleotides
were added to extend and stain primers hybridized to
the samples. The Illumina iScan system (with the iScan
Control Software) was used to scan Illumina MethEpic
BeadChips and raw data were analyzed with GenomeS-
tudio software v2011 according to Illumina’s recommen-
dations to generate result files with beta-values. Loci
were considered as differentially methylated between
paired tumor samples when both detection p-values
were lower than 0.05 and a difference of at least 0.2 was
observed between beta-values of each tumor sample. To
compare with genes previously reported to be correlated
to the E.score or the S.score [10], we only considered
genes with expression changes in the expected sense ac-
cording to the histo-molecular scores of the paired biop-
sies. Hierarchical clustering was done using cosine
distance and Ward’s linkage method in R statistical soft-
ware with the 500 CpG showing the most variability in
their methylation beta-value.

Pathway dysregulation analysis
Signal pathway dysregulation analysis was performed by
two complementary approaches : over-representation
analysis and single-sample Gene Set Enrichment Ana-
lysis (ssGSEA). Differentially expressed or methylated
genes lists obtained for each patient were used as input
for over-representation analysis in the web-based Gene
SeT AnaLysis Toolkit using the KEGG, Reactome, or
GeneOntology Biological Process non-redundant data-
bases [39]. We only considered pathways with false dis-
covery rate (FDR) adjusted p-values lower than 0.05.
Gene ratio is the proportion of differentially expressed
genes regarding the total number of genes included in a
given pathway. SsGSEA were calculated as gene-set vari-
ation analysis (GSVA) enrichment scores using the
DESeq2-normalized RNA-seq data, after excluding genes
with a FPKM value below 1 for all samples, and the
GSVA package [40]. The absolute value of the delta of
each ssGSEA score between paired tumor samples
(ssGSEA_score) was used to assess intra-tumor
heterogeneity.

Tumor microenvironment estimation
The microenvironment cell population counter (MCP-
counter) method [41] was used to compute scores of in-
filtration for different cell populations from DESeq2-
normalized RNA-seq data. To optimize the prediction of
the relative abundance of stromal and immune cells
within MPM tumors, the genes included in the signature
of each cell population were selected based on their ab-
sence of expression in 22 MPM cell lines. IGKC and
CHRM3-AS2 were also excluded as gene expression was
not present in all datasets. The complete list of genes
used for each population is available in Additional file 1:
Table S2. For integrative analysis with public datasets, a
total of 295 samples from three different series of RNA-
seq were combined in the integrated analysis, including
the 16 paired tumor samples, 209 samples from Bueno
et al. [11, 42], and 70 samples from TCGA [13] down-
loaded through the Broad Institute TCGA GDAC fire-
hose tool [43]. Then, we standardized gene expression
separately to have a mean of 0 and a standard deviation
of 1 per gene in each dataset. Statistical analysis and data
visualization were performed using R software. Unsuper-
vised hierarchical clustering was performed using cosine
distance and Ward’s linkage method. The Wilcoxon test
was used to estimate the difference in the abundance of
immune populations within paired tumor samples.

Immunohistochemical staining
Formalin-fixed, paraffin-embedded (FFPE) tumor biop-
sies (3 biopsies at distant sites per patient) were sec-
tioned at a thickness of 3 μm and stained on positively
charged glass slides. Deparaffinization, rehydration, and
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antigen retrieval were performed by CC1 (prediluted;
pH 8.0) antigen retrieval solution (Ventana Medical Sys-
tems, Inc.) on the Ventana BenchMark ULTRA auto-
mated slide stainer for 32 min at 100 °C. Specimens were
incubated with primary antibodies anti-CD3 (clone
LN10; Leica; dilution 1:100), anti-CD8 (clone C8/144B;
Dako, dilution 1:25), and anti-CD20 (clone L26; Diago-
mics; dilution 1:150) followed by visualization with the
Ultraview DAB IHC Detection Kit. The specimens were
then counterstained with hematoxylin II and bluing re-
agent (Ventana) and coverslipped. Each IHC run con-
tained a positive control.

Results
Mutational intra-tumor heterogeneity
Paired tumor samples collected prior to chemotherapy
treatment at two distinct anatomical sites from 16 MPM
patients and five MPM-derived primary cell lines were
analyzed by different NGS and omics methods (Fig. 1a).
Patient characteristics are detailed in Additional file 1:
Table S1. In summary, patients were chemonaïve, mostly
male (81%), had a past exposure to asbestos (62%), and
were diagnosed at a median age of 74 years. One tumor
was biphasic and the others were epithelioid, the most
frequent histologic type. Even if the epithelioid tumors
belong to different subtypes and grades, our series do
not fully reflect the histologic diversity of MPM. Germ-
line mutations in cancer-related genes for 9 patients are
reported in Additional file 1: Table S3A. Among genes
previously reported as altered by pathogenic or likely
pathogenic germline mutations in MPM [44], damaging
variants were found in SDHA and PALB2 genes in pa-
tients T225LE and T277HP, respectively.
To investigate mutational intra-tumor heterogeneity,

we performed targeted NGS on a panel of key genes of
mesothelial carcinogenesis [22] for the entire series and
WES for patients with non-tumoral DNA available to go
deeper in their genetic characterization. Most of the
protein-altering somatic variants, validated using mul-
tiple sequencing approaches and IGV visualization, were
common between paired samples from a given patient
(Fig. 1b, c; Additional file 1: Table S3B-D). However, we
found intra-tumor heterogeneous variants in the well-
known mesothelioma driver gene NF2. Among eight
patients harboring NF2 mutations, three displayed intra-
tumor heterogeneity. The first patient (T227LE) had a
NF2 nonsense variant in the derived primary cell line
(MPM_83), although it was not called in the paired bi-
opsies. Therefore, we investigated the presence of the
variant in the fresh tumor sample used to establish
MPM_83 by sequencing multiple sections of this sample
and found the NF2 variant at different frequencies, con-
firming the subclonal status of the NF2 mutation (Add-
itional file 2: Figure S2, Additional file 1: Table S3E). For

the second patient (T278HP), we detected an NF2 splice
site variant in the sample localized at the apex but it was
absent in the paired costo-diaphragmatic sample and in
the derived primary cell line (MPM_70). Finally, the
third patient (T333HP) presented an NF2 nonsense vari-
ant at low frequency in both biopsies, but the mutation
was not found in the derived primary cell line (MPM_
71), suggesting that this mutation was subclonal and
probably absent in the fresh tumor sample used to estab-
lish MPM_71. In addition to NF2, we also detected
intra-tumor heterogeneous mutations in three cancer-
related genes [29]: (i) a frameshift insertion variant in
CTNNB1 for patient T225LE, (ii) a missense variant in
the protein tyrosine phosphatase receptor PTPRT for pa-
tient T227LE (however, based on RNA-seq data, this
gene does not seem to be expressed in both samples of
this tumor), and (iii) a nonsense variant in the transcrip-
tional coactivator PSIP1 for patient T333HP, to our
knowledge the first mutation in this gene described for
MPM (Fig. 1b).
The clonality of the protein-altering variants was also

assessed to investigate subclonal tumor populations that
could be in different proportions among paired samples.
To perform a robust analysis of clonality, we calculated
the cancer cell fraction of each variant, by normalizing
variant frequencies with copy number and tumor purity
(Additional file 1: Table S4A). As expected, we found
most of the cancer-related gene variants to be clonal and
shared by both paired samples except for the four genes
mentioned previously (Additional file 2: Figure S3).
Tumor clonality was heterogeneous between patients,
who showed a variable number of private variants ran-
ging from 0 to 12 (Additional file 1: Table S4B). Strik-
ingly, we found a subclonal tumor population present in
both biopsies in patient T333HP supported by six vari-
ants, including NF2 (Fig. 1d). Of note, the variant fre-
quencies in the clonal tumor population (ARID2,
SETD2, and TERT promoter) and in the subclonal popu-
lation (NF2) were validated by targeted NGS for this pa-
tient (Additional file 1: Table S3B). This suggests the
polyclonal dissemination of these tumors throughout the
thoracic cavity. Furthermore, shared subclonal variants
were also identified in three other patients, i.e., T199LE,
T203LE, and T225LE (Additional file 2: Figure S3).

Copy number variations and fusion transcripts
Because MPM is often characterized by chromosomal al-
terations, we took advantage of WES coverage and
RNA-seq data to analyze copy number variations (CNV)
and fusion transcripts, respectively. First, we found that
pangenomic CNV between paired samples were very
similar using both DNAcopy or FACET tools, notably in
the CDKN2A, BAP1, and NF2 loci (Additional file 2: Fig-
ures S4 and S5). Segmentation and CNV clonality
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provided by FACET analysis identified mainly clonal
shared CNV, but also some clonal private (n = 22), sub-
clonal private (n = 4), and subclonal shared (n = 1) CNV

(Additional file 1: Table S4C). However, all homozygous
deletions were clonal and shared by paired tumor sam-
ples, and, as expected, often located in the CDKN2A

Fig. 1 Study workflow and mutational intra-tumor heterogeneity. a Study workflow presenting the anatomical sites selected for the multi-
sampling procedure and related molecular analysis showing the patient series size and sample selection. b Heatmap of the cancer-related gene
variants with damaging consequences detected in paired biopsies and derived primary cell lines. The legend in the bottom left indicates the
color codes used in the heatmap. Intra-tumor heterogeneous variants are framed in blue. c Mutational intra-tumor heterogeneity. Trees
schematically illustrate the cancer-related gene variants with damaging consequences detected in paired biopsies and derived primary cell lines
of the four patients displaying intra-tumor heterogeneity at the genetic level. Solid lines are for paired biopsies and dotted lines for primary cell
lines (CL). d Clonality of the variants with structural consequences detected in tumor samples from patient T333HP. On the left, the graph shows
the adjusted cancer cell fraction (CCF) values of each protein variant, validated using IGV visualization. Each variant was then categorized
according to its clonality (clonal when present in all cells of a sample) as well as to its spatial segregation (shared when present in the two
biopsies, private otherwise) and was colored according to its clonality status. Cancer-related genes are indicated. Subclonal variants only present
in a fraction of cancer cells but in both paired biopsies are surrounded by a red circle and might be consistent with the polyclonal diffusion of
these tumors throughout the thoracic cavity. On the right, the clonal evolution is schematically represented as a tree. For subclonal populations,
the line width is proportional to the number of variants
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locus. Interestingly, we identified a CNV with a subclo-
nal status in both paired tumor biopsies in patient
T333HP, supporting previous results based on variant
clonality analysis. Then, we searched for fusion tran-
scripts in RNA-seq data that we generated for the same
series of samples screened with WES, except for tumor
samples from patient T200LE due to poor RNA quality
in addition to very low tumor content. In three patients,
we detected fusions involving a cancer-related gene,
such as STK11 and KDM6A, quoted as altered in MPM
in the Cosmic database (release v91), or TFG reported in
fusions in other cancers (Additional file 1: Table S5,
Additional file 2: Figure S6A) [45]. Interestingly, we
found that the fusion transcript in patient T277HP in-
volving TFG and ADGRG7 led to abnormal gene expres-
sion of the adhesion G-protein coupled receptor ADGR
G7, a gene not commonly expressed in MPM (Add-
itional file 2: Figure S6B). For these three fusions, both
paired samples harbored the rearrangement. To note, we
also detected four fusion transcripts restricted to one of
the paired samples in three patients, but they did not in-
volve cancer-related genes. In conclusion, we did not ob-
serve structural intra-tumor heterogeneity at the
genomic level with an evident contribution to cancer
development.

Differential gene expression and signal pathway
dysregulation
Gene expression analysis, from the RNA-seq data of
paired samples from eight patients, indicated global
gene expression as being patient-specific, as shown by
unsupervised clustering (Additional file 2: Figure S7).
The number of differentially expressed (DE) genes be-
tween paired samples ranged from 647 to 2119 genes,
regardless of tumor cellularity (Spearman correlation
test, R squared=0.01, p = 0.79), with a majority of
protein coding genes (Additional file 2: Figure S8A).
A high proportion of these protein coding genes was
found to be differentially expressed in several tumor
samples (Additional file 1: Table S6A, Additional file
2: Figure S8B). However, shared DE genes were dis-
tributed throughout all tumor samples (Additional file
2: Figure S8C). We performed signal pathway over-
representation analysis using the KEGG, Reactome,
and GeneOntology databases on protein coding genes
differentially expressed between paired samples.
Among the top recurrent pathways detected in all
these databases, we found two main families, the first
one related to cell adhesion and extracellular matrix
organization and the second to immune communica-
tion (Additional file 1: Table S6B-D).
We also analyzed signal pathway dysregulation by

ssGSEA across the whole cohort (Additional file 1: Table
S6E). Recurrent major changes between paired tumor

samples concern immune pathways, more precisely re-
lated to immunological synapses involving specific im-
mune cells infiltration such as antigen-presenting cells
(dendritic and B cells) and T cells.

Histo-molecular heterogeneity
We previously proposed classification in four mo-
lecular subtypes and histo-molecular gradients deter-
mining the proportion of epithelioid-like and
sarcomatoid-like components (E/S.scores) to describe
MPM inter- and intra-tumor heterogeneity [10].
Based on RNA-seq data, we first predicted the mo-
lecular subtypes and obtained similar subgroups be-
tween paired biopsies (Fig. 2a). Then, we estimated
the E/S.scores and observed changes greater than
10% in the E/S.scores among paired samples in the
three patients T199LE, T227LE, and T278HP. Inter-
estingly, these three patients showed differential en-
richment for the pathways associated with cell
adhesion and extracellular matrix (Fig. 2a), which
makes sense in the context of our previous publica-
tion [10]. As expected, patients T201LE, T203LE,
T277HP, and T333HP displayed similar E/S.scores
between paired samples and did not show major
changes in these pathways. In contrast, patient
T225LE showed a slight increase in the S.score, but
a differential expression of genes enriched in these
pathways. ssGSEA data also show a globally higher
variation of these pathways between paired tumor
samples of patients T225LE, T227LE, and T278HP
and to a lesser extent T199LE compared to the four
others (Additional file 2: Figure S9).

Epigenetic intra-tumor heterogeneity
To evaluate intra-tumor heterogeneity at the epigen-
etic level, we performed methylome analysis in five
patients with sufficient remaining quantities of DNA.
As for the transcriptome analysis, the global methyla-
tion profile, illustrated by unsupervised clustering,
remained very specific for each patient (Additional file
2: Figure S10A). Differential methylation analysis be-
tween paired samples showed that the majority of dif-
ferentially methylated (DM) CpG were associated with
protein coding gene loci in all patients (Additional file
1: Table S7A, Additional file 2: Figure S10B). How-
ever, this analysis highlighted that the number of DM
CpG between paired samples varied by patient, with
two patients (T227LE and T278HP) showing a high
number of DM CpG, 5476 and 19178 respectively
(Additional file 2: Figure S10C). Taking into account
protein coding gene expression, a potential impact of
methylation was only observed in these two patients,
as DM CpG were identified in 18% and 41%, respect-
ively, of DE genes (Fig. 2b). Interestingly, among the
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DE protein coding genes associated to DM CpG, 18%
and 47%, respectively, in patients T227LE and
T278HP, are genes previously identified to be corre-
lated with the E/S.scores of the histo-molecular gradi-
ents (Fig. 2c). Furthermore, in T278HP, these genes
were enriched in previously identified pathways in-
volved in cell adhesion and extracellular matrix
organization (Additional file 1: Table S7B; Additional
file 2: Figure S10D). These results support the notion
that epigenetic regulation could contribute to the

variations occurring in the proportions of epithelioid-
like and sarcomatoid-like components in patient
T278HP and to a lesser extent in patient T227LE, in
agreement with our previous studies demonstrating
that histo-molecular gradients are related to epigen-
etic regulation [10].

Tumor microenvironment
We next analyzed the immune landscape changes in
paired samples. Comparison based on over-

Fig. 2 Intra-tumor heterogeneity at the transcriptomic and epigenetic levels. a Molecular heterogeneity (molecular classifications and histo-
molecular gradients) of the paired tumor samples and the over-represented pathways linked to cell adhesion and the extracellular matrix are
shown in the table. For each patient, the tumor location is indicated (A: apex; B: side wall; C: costo-diaphragmatic; D: highest metabolic site). The
molecular classifications into two to four subtypes and the E/S.scores were predicted based on RNA-seq data and are colored in blue or green
depending on the subtypes and with a red gradient for the E/S.scores. Pathway over-representation is indicated by a circle with the size and a
color proportional to the gene ratio and the FDR p-values, respectively. b, c Based on transcriptome and methylome analysis, the differentially
expressed protein coding genes with an associated differentially methylated CpG (DE_DM genes) between paired tumor samples were
determined. The percentage of DE_DM genes among all the differentially expressed protein coding genes is shown in the histogram for each
patient. The number of DE_DM genes is indicated at the right of the histogram bars (b). The proportion of protein coding genes previously
shown to be correlated to the E/S.scores [10] in all DE_DM genes is indicated in the pie charts for patients T227LE and T278HP (c). DE:
differentially expressed; DM: differentially methylated
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representation analysis of the immune system-related
pathways redundant among the KEGG, Reactome, and
GeneOntology databases (Additional file 1: Table S6)
highlights pathways belonging to immune cell communi-
cation such as cytokines and chemokines (Fig. 3a). The
ssGSEA analysis points out changes in immunological
synapse pathways (Fig. 3b). Overall, dysregulation in im-
mune pathways between paired tumor samples was
higher in T199LE, T225LE, T227LE, and to a lesser ex-
tent T201LE. Several immune checkpoints also showed
differential expression between paired samples (Fig. 3c).
In particular, a fold change greater than 2 was found in
immune checkpoints targeted by immunotherapy, i.e.,
PDL1 (CD274) for T277HP and T278HP, CTLA4
(CTLA4) for T227LE, and PD1 (PDCD1) for T278HP. In
addition, we estimated the relative proportions of im-
mune and stromal populations using MCP-counter de-
fined biomarkers (Additional file 1: Table S2) from
RNA-seq data to determine the consistency of the tumor
microenvironment between paired samples. Clustering
analysis using the estimated cell populations from paired
samples integrated with tumor samples from the Bueno
and TCGA series [11, 13] separated tumor samples in
two clusters, one with a high level of immune cell infil-
tration corresponding to a hot tumor immune profile,
and the other with a lower level of infiltration corre-
sponding to a cold profile (Fig. 4a). Three paired tumor
samples from patients T199LE, T225LE, and T227LE,
which displayed the highest dysregulation in immune
pathways using both pathway analyses, were distributed
separately between hot and cold tumors, indicating
major changes in terms of the tumor microenvironment
composition. Clustering of paired samples without the
integration of other tumor samples also separated the
tumor paired samples of patients T199LE, T225LE, and
T227LE between the cold and hot phenotypes (Add-
itional file 2: Figure S11). These paired samples showed
significantly different relative proportions of stromal and
immune cell populations with an increase in the infiltra-
tion of all cell populations in the hot immune profile
paired sample compared to the cold immune profile
sample (Fig. 4b). More complex changes with an in-
crease or decrease in certain cell populations between
paired samples were also observed in other patients
(Additional file 2: Figure S12A). Individual comparison
of cell populations showed that natural killer cells, cyto-
toxic lymphocytes, myeloid dendritic cells, T cells, B
cells, and T CD8 cells were variable in paired tumors
switching from a cold to a hot immune profile (Add-
itional file 2: Figure S12B). SsGSEA analysis of the aggre-
gated pathways linked to specific immune cell
populations confirmed the greatest changes in the infil-
tration within paired tumors with a hot/cold mixed pro-
file. Comparison between paired tumors with a hot/cold

mixed profile and the others displayed significant differ-
ences (Mann-Whitney test, p = 0.04) for natural killer
cells, myeloid dendritic cells, and T cells (Additional file
2: Figure S13). IHC using anti-CD3, anti-CD8, and anti-
CD20 antibodies on 3 FFPE tumor samples per patient,
biopsied at distant anatomic sites, showed heterogeneous
infiltration of T and B cells in T199LE patient and to a
lesser extent in T225LE and T227LE patients (Add-
itional file 2: Figure S14).

Discussion
The present study provides a comprehensive description
of spatial intra-tumor heterogeneity in MPM, along with
new insights into tumor evolution and clues to the im-
pact on therapy.
By a robust analysis of clonality restricted to validated

somatic protein-altering variants, we confirmed the oc-
currence of MPM populations with different mutation
profiles, depending on the anatomic site in the same pa-
tient, as previously observed [17, 18]. All tumors har-
bored many shared clonal mutations, supporting the
notion that MPM was derived from a single cell in our
series, contrary to the polyclonal origin previously de-
scribed [15]. Along with these shared clonal variants, the
presence of private clonal or subclonal variants indicates
that tumor cells spread in the thoracic cavity and con-
tinue to evolve separately at different locations. One im-
portant finding was the existence of subclonal tumor
populations shared between anatomic sites for at least
one patient and likely in three others, which supports
polyclonal dissemination throughout the thoracic cavity
in some MPM patients. Evidence of polyclonal dissemin-
ation has been observed in metastases for several cancers
[46]. This is possibly related to multiple waves of migrat-
ing cells or to the implantation of circulating tumor cell
clusters composed of genetically distinct clones that
have been described in biological fluids [47]. For MPM,
numerous large tissue fragments and multicellular balls
or berry-like clusters of cells are observed by cytology in
the pleural fluid of patients [48, 49]. Our results suggest
that these multicellular structures of tumor cells partici-
pate in the spread of MPM in the thoracic cavity.
NF2 is one of the main mutated tumor suppressor

genes in MPM. As it plays a key role during mesothelial
carcinogenesis, inactivating variants were expected to be
clonal [50]. However, we clearly demonstrate the pres-
ence of subclonal NF2 mutations in three patients, char-
acterized by clonal mutation in other key MPM mutated
cancer genes including BAP1, SETD2, and the TERT
promoter. The existence of MPM subclones harboring
NF2 mutations was first suggested by a study identifying
one cell line with homozygous NF2 mutation, although
this was almost undetectable in the original tumor in a
series of nine MPM patients [16]. Heterogenous NF2
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mutations between different tumor regions were also re-
ported in two out of nine patients in another study, but
the subclonality was not confirmed by a rigorous CCF
analysis as we performed here [18]. Altogether, these

results suggest that subclonal NF2 mutations are fre-
quent in MPM and support that NF2 inactivation could
be a late event during MPM development. Merlin
encoded by the NF2 gene, is a multifunctional protein

Fig. 3 Intra-tumor heterogeneity of immune pathway. a, b Dysregulated immune pathways identified by over-representation analysis (a) and
single-sample Gene Set Enrichment Analysis (ssGSEA) (b). For each patient, the tumor location is indicated (A: apex; B: side wall; C: costo-
diaphragmatic; D: highest metabolic site). The immunologic status “hot” or “cold” was determined based on clusterization of stromal and immune
cell infiltration (see Fig. 4). Over-representation of each pathway linked to immune communication is indicated as a circle, whose size is
proportional to the gene ratio and the color gradient represents the FDR p-values (a). The differences in the ssGSEA score (delta_score) of each
paired tumor sample are indicated as a color gradient (b). c The differential expression between paired tumor samples of immune checkpoints is
shown in the heatmap. Differential expression was set to 0 for genes which did not display an FPKM score higher than 1 in at least one of the
paired biopsies. The differentially expressed genes with a fold change of at least 2 are framed in blue. The genes encoding PDL1 (CD274), CTLA4
(CTLA4), and PD1 (PDCD1) are indicated by a blue arrow
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exhibiting well-established tumor-suppressive function
through several cellular processes, not only linked to the
activation of Hippo pathway, but also to the inhibition
of PI3K/AKT/mTOR pathway as well as to regulatory

functions in the nucleus [50]. Although NF2 inactivation
is clearly a driver of mesothelial carcinogenesis, it is pos-
sible that this inactivation does not play a role in tumor
initiation for MPM, but will promote the development

Fig. 4 Differential infiltration of stromal and immune cell populations. a Unsupervised clustering of the paired tumor samples of eight patients
with 209 and 70 tumor samples from the Bueno and TCGA series, respectively, was performed based on cell populations determined by the
MCP-counter method. The paired tumor samples of the eight patients (series U1138) are indicated by a color code at the top of the heatmap as
well as the series of each tumor sample. b The violin plots show the normalized MCP-counter values of immune and stromal cell populations
between paired tumor samples for patients T199LE, T225LE, and T227LE, which are characterized by a hot/cold mixed immune profile. Each cell
population is indicated in the box plots by a color point connected by a dotted line between paired tumor samples. The p-values of the
Wilcoxon test comparing distribution between paired tumor samples are indicated at the top of the violin plot
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of a more aggressive tumor. This hypothesis is in line
with several findings: (i) inactivation of NF2 in mouse
models led to a variety of malignant tumors but not to
mesothelioma [51], except if this inactivation was associ-
ated with asbestos exposure or with the inactivation of
other tumor suppressor genes [52]; recent studies
screening germline mutations in large cohorts of pa-
tients (reviewed in [44]) did not identify NF2 as a cancer
susceptibility gene for MPM; and (iii) NF2 mutations
showed a significantly higher mutation rate in MPM
with an advanced stage [22]. We previously showed that
MPM with mutations in members of the Hippo pathway
could be more sensitive to specific anti-cancer molecules
[53]. The Hippo pathway is becoming attractive for tar-
geted therapy in cancer, and numerous companies are
developing compounds to inhibit the Hippo pathway
[54]. Implementation of a therapeutic strategy based on
Hippo pathway dysregulation will need to take into ac-
count the clonality of NF2 mutations in MPM. A hetero-
geneous frameshift deletion was also found in CTNNB1.
Inactivating mutations were previously reported in
MPM [22, 55]. Loss of the beta-catenin protein in a
MPM subclonal population lead to alterations in the
Wnt signaling pathway, which is involved in therapeutic
resistance [56]. Consequently, detection of this subclonal
population could be of therapeutic interest.
The presence of chromosomal abnormalities including

structural changes is a key feature of MPM [57]. How-
ever, our data and those of Chen et al. [18] showed that
chromosomal profiles are globally similar between differ-
ent regions within the same tumor. Similarly to copy
number aberrations, we did not identify specific relevant
gene fusions limited to one of the paired tumor samples.
As chromothripsis and chromoplexy lead to massive re-
arrangements in several chromosome regions in MPM
[58, 59], specific omic or NGS approaches will be needed
to deeply analyze spatial tumor heterogeneity at the
chromosome level. However, our results suggest that the
main chromosomal alterations occurring in MPM are
early events of mesothelial carcinogenesis, in accordance
with the mechanism of action of asbestos, which is well-
described as a genotoxic agent inducing chromosomal
damage [60].
In addition to the detection of heterogeneous popula-

tions characterized by specific mutations, our results
highlight major changes at the transcriptomic level be-
tween tumors at different anatomic sites in some pa-
tients, leading to the dysregulation of specific pathways.
We showed that gene expression changes are related to
epigenetic mechanisms in at least two patients. Methyla-
tion analysis is limited to 5 patients, with only two with
consistent changes, and allows only descriptive conclu-
sions to be drawn. Dysregulation of cell adhesion and
extracellular matrix organization pathways is frequent in

patients and may reflect variations between the propor-
tion of epithelioid and sarcomatoid phenotypes accord-
ing to the anatomical site. One histologic study showed
that a diagnosis of epithelioid MPM in the initial biopsy
was changed to the biphasic or sarcomatoid type in 19%
of cases when the surgical resection was evaluated [61].
In agreement, we observed variation greater than 10%
and up to 23% in the E/S.scores of the paired biopsies of
three patients [10]. We found epithelioid tumor samples
with high S.score (up to 0.68), consistent with previous
observations in larger series [10, 22]. This may be related
to the tumor representativity of a FFPE tumor section
compared to a piece of frozen tissue, or to a different
evaluation sensitivity. Another hypothesis is that the
S.score predicts the proportion of sarcomatoid-like cells,
which may not have completely a characteristic sarco-
matoid cell morphology. Gene expression-based signa-
tures to predict physiological process or prognosis such
as the E/S.score or the CV score (CLDN15/VIM) in
MPM [10, 11, 62], as well as response to treatment is be-
coming popular, and some of them have been evaluated
in phase 3 clinical trials for breast cancer [63]. Based on
our results, multi-site tumor sampling should be recom-
mended before implementing these assays in MPM.
Finally, we found consequent spatial intra-tumor het-

erogeneity of the immune microenvironment. We veri-
fied that this result was not due to a bias in sequencing
depth between samples. This is in line with previous
studies showing changes in the T cell repertoires at dif-
ferent anatomic sites [17, 18]. Using the MCP-counter
method, whose predictions were validated previously by
immunohistochemistry in MPM [10], we emphasized
differential immune cell infiltration between paired sam-
ples. Importantly, for three patients, the immune profile
could be considered hot or cold depending on the paired
samples. Substantial gene expression variation was also
observed for PDL1, PD1, and CTLA4 in some patients.
As immunotherapy with immune checkpoint inhibitors
is emerging as a promising therapeutic option for MPM
patients, biomarkers to predict the response to this
treatment are a crucial issue [2]. No predictive bio-
marker is currently clearly defined for MPM, but im-
mune cell infiltration and immune checkpoint
expression have been suggested in other cancers, indi-
cating that spatial intra-tumor heterogeneity needs to be
taken into account to identify biomarkers in MPM [64].
The limitation of this study is the small size of the

series in terms of patients and tumor samples per pa-
tient. Further studies in larger series are needed to
confirm the frequency of our major findings and to
have an exhaustive view of spatial intra-tumor hetero-
geneity in MPM. To predict response to therapy, it
would be also crucial to monitor clonal evolution
after treatment.
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Conclusions
Spatial intra-tumor heterogeneity is complex in MPM
and varies among patients. We highlighted multiple
types of heterogeneity, i.e., (i) genetic, (ii) transcriptomic,
(iii) epigenetic, and (iv) linked to the immune micro-
environment. It was found that the accuracy of histo-
logic classification is increased by the examination of
several tumor biopsies, and multi-sampling is recom-
mended [21, 61]. Our molecular analysis also supports
the notion that separate anatomic sites should be sam-
pled from the pleural cavity to be able to estimate prog-
nosis or predict response to treatment based on
molecular characteristics, with the aim of developing
molecular-based precision medicine strategies in order
to improve patient survival and quality of life.
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