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A B S T R A C T   

Challenges in the assessment of the health effects of the exposome, defined as encompassing all environmental 
exposures from the prenatal period onwards, include a possibly high rate of false positive signals. It might be 
overcome using data dimension reduction techniques. Data from the biological layers lying between the expo
some and its possible health consequences, such as the methylome, may help reducing exposome dimension. We 
aimed to quantify the performances of approaches relying on the incorporation of an intermediary biological 
layer to relate the exposome and health, and compare them with agnostic approaches ignoring the intermediary 
layer. We performed a Monte-Carlo simulation, in which we generated realistic exposome and intermediary layer 
data by sampling with replacement real data from the Helix exposome project. We generated a Gaussian outcome 
assuming linear relationships between the three data layers, in 2381 scenarios under five different causal 
structures, including mediation and reverse causality. We tested 3 agnostic methods considering only the 
exposome and the health outcome: ExWAS (for Exposome-Wide Association study), DSA, LASSO; and 3 methods 
relying on an intermediary layer: two implementations of our new oriented Meet-in-the-Middle (oMITM) design, 
using ExWAS and DSA, and a mediation analysis using ExWAS. Methods’ performances were assessed through 
their sensitivity and FDP (False-Discovery Proportion). The oMITM-based methods generally had lower FDP than 
the other approaches, possibly at a cost in terms of sensitivity; FDP was in particular lower under a structure of 
reverse causality and in some mediation scenarios. The oMITM–DSA implementation showed better perfor
mances than oMITM–ExWAS, especially in terms of FDP. Among the agnostic approaches, DSA showed the 
highest performance. Integrating information from intermediary biological layers can help lowering FDP in 
studies of the exposome health effects; in particular, oMITM seems less sensitive to reverse causality than 
agnostic exposome-health association studies.   

1. Introduction 

The exposome concept acknowledges that individuals are exposed 
simultaneously to a multitude of environmental factors from concep
tions onwards (Wild, 2005). The exposome, understood as the totality of 
the individual environmental (i.e. non-genetic exogenous) factors, may 

explain an important part of the variability in chronic diseases risk 
(Manrai et al., 2017; Sandin et al., 2014; Visscher et al., 2012). During 
the last decade, environmental epidemiology started embracing the 
exposome concept (Haddad et al., 2019) (see e.g. (Agier et al., 2019; 
Lenters et al., 2016; Patel et al., 2010)). Such studies typically face an 
issue encountered in many fields (Runge et al., 2019), that of efficiently 
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identifying the causal predictors of an outcome among a set of possibly 
correlated variables of intermediate to high dimension (currently, a few 
hundred to a few thousand variables). The correlation within the 
exposome (Tamayo-Uria et al., 2019) was shown to entail a possibly 
high rate of false positive findings, in particular when using ExWAS 
(exposome-wide association study), i.e. parallel univariate models with 
correction for multiple testing (Agier et al., 2016). Recent studies, 
typically conducted among a few hundred or thousand subjects, are also 
expected to have limited power (Chung et al., 2019; Siroux et al., 2016; 
Slama and Vrijheid, 2015; Vermeulen et al., 2020). In addition, they can 
suffer from reverse causality: if exposures are measured by biomarkers 
at the same time as the outcome, this opens the possibility of the health 
outcome influencing some components of the exposome. For example, 
the serum concentration of persistent compounds can be influenced by 
the amount of body fat, which is related to health outcomes such as 
obesity or cardiovascular disorders (Cadiou et al., 2020). The potential 
for reverse causality is even stronger if biomarkers of effect (e.g. bio
markers of oxidative stress or inflammation) are considered to be part of 
the exposome, as sometimes advocated (Rappaport, 2012; Vermeulen 
et al., 2020). Indeed, these may also be consequences of the considered 
health outcome. 

Benchmark studies and reviews tried to identify which statistical 
methods could help to face some of these issues (Agier et al., 2016; 
Barrera-Gómez et al., 2017; Lazarevic et al., 2019; Lenters et al., 2018). 
Dimension reduction tools are a relevant option to consider (Chadeau- 
Hyam et al., 2013). Dimension reduction can be achieved by purely 
statistical approaches, or rely on external (e.g., biological) information. 
Past simulation studies focused on statistical dimension reduction 
techniques and generally assumed a simple causal structure and that the 
variability of the outcome explained by the exposome was higher than 
5% (Agier et al., 2016; Barrera-Gómez et al., 2017; Lenters et al., 2018): 
within this framework, they showed that dimension reduction tech
niques such as regression-based variable selection methods simulta
neously considering multiple variables were more efficient than the 
ExWAS to control the false positive rate (Agier et al., 2016). When it 
comes to non-purely statistical dimension reduction approaches, it may 
be relevant to try relying on biological parameters, including ‘omic 
(methylome, transcriptome, metabolome…), inflammatory or immu
nologic markers, possibly acting as intermediary factors between the 
exposome and health. This logic is embodied in the Meet-in-the-Middle 
(MITM) design (Chadeau-Hyam et al., 2011; Jeong et al., 2018), which 
detects “intermediary” biomarkers associated with both exposures and 
the health outcome. To relate the exposome to child body mass index 
(BMI), we recently applied a tailored MITM design (Cadiou et al., 2020), 
named hereafter “oriented Meet-in-the-Middle” (oMITM), with a 
dimension reduction aim, and using methylation data to reduce expo
some dimension. The oMITM approach used here and in (Cadiou et al., 
2020) shares with the classical MITM the principle of separated steps 
testing the association within the three layers. However, in our oMITM 
design, the steps followed a specific order and we added an adjustment 
on the outcome at the step testing the association between the exposures 
and the methylome. Moreover, the objectives differ as our aim is not to 
identify relevant biomarkers as done in the first studies using MITM 
(Huang et al., 2018; Jeong et al., 2018; Vineis et al., 2020, 2013) but to 
use the methylome to reduce the exposome dimension in order to point 
more accurately the exposures possibly influencing the outcome. 

From our previous work (Cadiou et al., 2020), we hypothesize that 
oMITM 1) could allow lowering the high FDP reported for agnostic 
ExWAS, and 2) could be less sensitive to reverse causality than agnostic 
dimension reduction methods. This might be obtained at a cost of a 
decreased sensitivity, in particular as the proportion of exposures whose 
health effect is not mediated by the considered layer increases (Cadiou 
et al., 2020). Specifically, we aimed here to test if methods relying on 
intermediary multidimensional biological data allow to more efficiently 
identify the causal predictors of a health outcome among a large number 
of environmental factors. We both considered methods making use of 

information on potential mediators of the health effects of exposures and 
agnostic methods ignoring the intermediate layer, and compared their 
sensitivity and False Discovery Proportion (FDP). Data were generated 
assuming five different possible causal models, including reverse cau
sality, for realistically low values of the share of the outcome variability 
explained by the exposome. After comparing the methods using simu
lated data, in a second section, we use causal inference theory to discuss 
which designs may be most adapted under each possible causal 
structure. 

2. Materials and methods 

2.1. Overview of the simulation 

We relied on a Monte-Carlo simulation to compare the efficiency of 
methods aiming at identifying which components of the exposome 
influenced a health outcome under various causal models and hypoth
eses (altogether defining a total of 2381 scenarios). Exposome, inter
mediary layer and outcome data were generated under these various 
scenarios. For each scenario, 100 datasets were simulated (see below). 
The 6 methods compared, as well as two control methods (see below), 
were applied to each dataset and their performances were assessed, and 
synthesized over all datasets related to a given scenario. 

2.2. Causal structures considered 

Five different causal structures were considered (see Fig. 1): in 
structures A, B and C the exposome (E) affected the outcome (Y) directly 
or/and indirectly. In A, there was no direct effect from E to Y, all the 
effect being mediated by the intermediary layer (i.e. an “indirect effect” 
in the mediation analysis terminology (Vanderweele and Vansteelandt, 
2009)). B assumed a causal link from M to Y and a direct effect from E to 
Y, without mediation through M. C assumed both a direct and an indi
rect effect of E on Y. Structure D is a situation with reverse causal links 
from Y to M and from Y to E. Structure E assumed total independence 
between the three layers. 

Fig. 1. Causal structures considered in the simulation study of the performance 
of methods relating a layer of predictors E (e.g., the exposome) to a health 
outcome or parameter Y using a layer of possibly intermediary parameters M (e. 
g. biological parameters such as DNA methylation). 
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Table 1 
Details of the methods compared in the simulation study.  

Name Description References Name used in 
figure 

Agnostic methods 
ExWAS with Benjamini- 

Hochberg correction 
Independent linear regressions corrected for multiple testing using Benjamini- 
Hochberg correction. The output corresponds to exposures significantly associated 
with the outcome. 

(Benjamini and Hochberg, 1995) ExWAS 

Lasso Penalized regression model relying on a generalized linear framework developed by 
Tibshirani (Tibshirani, 1996). The LASSO penalty promotes sparsity and performs 
variable selection through shrinkage: the lowest regression coefficients, 
corresponding to the least informative predictors, are attributed a zero value, 
according to a penalty parameter λ. As advised by Tibshirani (Tibshirani, 1996) and 
implemented in the glmnet package (Friedman et al., 2010), λ is determined by 
minimizing the prediction root mean squared error (RMSE) using 10-fold cross- 
validation. λ sequences tested in the cross-validation process is a sequence of 100 
values deterministically determined from the data (Friedman et al., 2010). 
Exposures with non-zero coefficients in the final model using optimal lambda are the 
output of this selection method. 

(Tibshirani, 1996) (Friedman et al., 2010). LASSO 

DSA (Deletion Substitution 
Addition) algorithm 

DSA is an iterative linear regression model search algorithm (Sinisi and van der Laan 
2004) following three constraints: maximum order of interaction amongst 
predictors, maximum power for a given predictor, and maximum model size. At each 
iteration, the following three steps are allowed: a) removing a term, b) replacing one 
term with another, and c) adding a term to the current model. The search for the best 
model starts with the intercept model and identifies an optimal model for each 
model size. The final model is selected by minimizing the value of the RMSE using 5- 
fold cross-validated data. We allowed no polynomial or interaction terms, and made 
no restriction on the number of predictors. Exposures selected by DSA are the output 
of this selection method. 

(Sinisi and van der Laan 2004) DSA  

Methods incorporating information from an intermediary layer 
Oriented Meet in the 

Middle - ExWAS 
Design of the oriented Meet-in-the-Middle approach from (Cadiou et al., 2020), 
using ExWAS-type corrected for multiple testing using Benjamini-Hochberg 
correction for all three steps. 3 steps: a) tests of association between the intermediary 
layer and the outcome with an ExWAS-type approach corrected for multiple 
comparisons using Benjamini and Hochberg procedure; b) tests of association 
between each exposure and the intermediary variables found associated with the 
outcome in step, adjusted on the outcome, corrected for multiple testing using the 
Benjamini-Hochberg procedure. Correction for multiple testing takes into account 
all the tests performed at this step (i.e. number of exposures x number of 
intermediary variables found associated with the outcome in step a); c) Test of the 
associations between exposures found associated with at least one intermediary 
variable at step b) and the outcome, using an ExWAS design corrected for multiple 
comparisons. Correction for multiple testing takes into account all the tests 
performed at this step (i.e. number of exposures found associated with at least one 
CpG at step b)). Exposures found associated with the outcome in step c) are the 
output of this selection method. 

(Cadiou et al., 2020) (Benjamini and 
Hochberg, 1995) 

oMITM-ExWAS 

Oriented Meet in the 
Middle -DSA 

Design of the oriented Meet-in-the-Middle approach from (Cadiou et al., 2020), 
using ExWAS-type corrected for multiple testing using Benjamini-Hochberg 
correction for the two first steps and DSA for the last steps. 3 steps: a) tests of 
association between the intermediary layer and the outcome with an ExWAS type 
approach corrected for multiple comparisons using Benjamini and Hochberg 
procedure; b) tests of association between each exposure and the intermediary 
variables found associated with the outcome in step, adjusted on the outcome, 
corrected for multiple testing using the Benjamini-Hochberg procedure. Correction 
for multiple testing takes into account all the tests performed at this step (i.e. number 
of exposures x number of intermediary variables found associated with the outcome 
in step a); c) DSA algorithm (implemented as described above) is applied to select 
exposures associated with the outcome among the exposures found associated with 
at least one intermediary variable at step b) Exposures found associated with the 
outcome in step c) are the output of this selection method. 

(Cadiou et al., 2020) (Benjamini and 
Hochberg, 1995) (Sinisi and van der Laan 
2004) 

oMITM-DSA 

Mediation Mediation analysis in 3 causal steps: a) ExWAS using Benjamini-Hochberg 
correction; b) Tests of the associations between the exposures selected in step a) and 
each intermediary variable, corrected for multiple comparisons using Benjamini- 
Hochberg correction; c) tests of the association of each intermediary variable with 
the outcome adjusted on each exposure found associated with the outcome at step a), 
corrected for multiple testing using Benjamini-Hochberg procedure. Exposures for 
which corrected p-values are significant for at least one intermediary variable site in 
both step b and c are the output of this selection method. 

(MacKinnon et al., 2002; Vanderweele and 
Vansteelandt, 2009) 

Mediation  

Control methods 
Steps 1 and 2 of the 

oriented Meet-in-the- 
Middle 

2 first steps of the design of the Meet-in-the-Middle approach using ExWAS-type, 
corrected for multiple testing with Benjamini-Hochberg correction (Cadiou et al., 
2020). a) tests of association between the intermediary layer and the outcome with 
an ExWAS type approach corrected for multiple comparisons using Benjamini and 
Hochberg procedure; b) tests of association between each exposure and the 
intermediary variables found associated with the outcome in step a), adjusted on the 
outcome, corrected for multiple testing using Benjamini-Hochberg procedure. 

(Cadiou et al., 2020) oMITM – steps 
1 and 2 

(continued on next page) 
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2.3. Generation of realistic exposome, intermediary layer and outcome 
data 

To build datasets according to these causal structures, we first 
generated independent variables corresponding to a set of exposures 
(our exposome) and a biological layer (e.g., corresponding to metab
olomic signals or methylation levels at various sites on the DNA) by 
independently sampling with replacement real data of the exposome and 
DNA methylome from 1173 individuals of HELIX project (Cadiou et al., 
2020; Maitre et al., 2018; Vrijheid et al., 2014). For the exposome, 173 
quantitative variables corresponding to the exposures were obtained 
from the real prenatal and postnatal child exposome data of Helix, 
selecting only the quantitative exposures and covariates. Variables were 
then standardized and bounded (a standardized value greater than 3 in 
absolute value being replaced by a value lower than 3 in absolute value 
randomly drawn in the distribution). For the intermediary layer, 2284 
quantitative variables were obtained from the real methylome data of 
Helix and the a priori selection of CpGs related to BMI via a genetic 
database performed in Cadiou et al. (2020) by selecting only enhancers 
CpGs belonging to selected pathways. These variables were 
standardized. 

From this sampled dataset, in which the exposure E and the meth
ylome M were, by construction, independent, we used linear models to 
possibly add an hypothesized effect of some exposures on variables of 
the intermediate layer, and to generate a health outcome possibly 
related to E and/or M according to the above-mentioned causal struc
tures (Fig. 1): in causal structures A, B and C, assuming a causal effect of 
the exposome or the intermediate layer on the outcome, the outcome (Y) 
was drawn from a normal distribution to which potential effects of E and 
M were added. The variance of this distribution was set to ensure that 
the total variability explained by E and M was that defined by the 
desired scenario. To simulate a reverse causal link (structure D, Fig. 1) 
and a situation without causal link between the three layers (structure 
E), we generated the outcome by bootstrapping the real child BMI data 
of HELIX cohorts; a linear effect of the outcome was added to the 
exposome and to the methylome for causal structure D (all scripts are 
available in Supplementary Material 2). BMI was standardized accord
ing to WHO guidelines (Cadiou et al., 2020; de Onis et al., 2007). 

For each causal structure, different scenarios varying the intensity of 
the hypothesized associations and the number of predictors from each 
layer were generated: in particular, for the structures displaying an ef
fect of E on Y, the total variability of Y explained by E and M, fixed 
within a scenario, varied between 0.01 and 0.4 and the number of true 
predictors of Y within E varied between 1 and 25; the number of ele
ments of M with an effect on Y varied between 10 and 100 in the causal 
structures assuming such an effect. The parameters of the different 
scenarios are detailed in Supplementary Table 1. For each scenario 
considered, 100 datasets were simulated. 

The simulation (detailed in Supplementary Material 1) additionally 
made the following assumptions:  

• All direct effects of a variable on another were assumed to be linear.  

• The magnitude (i.e., slope) of all effects from the predictor variables 
of a given layer (e.g. E) on the predicted variables of another layer 
were identical within a given scenario.  

• A variable from M could not be affected by more than one exposure. 
In consequence, when multiple exposures were assumed to affect the 
intermediary layer, the number of variables from M affected by E was 
a multiple of the number of exposures. 

2.4. Methods to relate the exposome and health 

For each generated dataset, we applied 8 different statistical 
methods, detailed in Table 1:  

– three “agnostic” methods ignoring the intermediary layer: ExWAS 
with Benjamini-Hochberg correction (Benjamini and Hochberg, 
1995), Lasso (Friedman et al., 2019; Tibshirani, 1996), Deletion 
Substitution Addition (DSA) algorithm (Sinisi and van der Laan, 
2004);  

– three methods using the intermediary layer to reduce the dimension 
of the exposome: two implementations of our oMITM-design (Cadiou 
et al., 2020) and a mediation analysis using parallel simple linear 
regressions (Küpers et al., 2015; MacKinnon et al., 2002);  

– two “control” methods: “ExWAS steps 1 and 2” and “ExWAS on 
subsample”, meant to inform the comparison between the results of 
the previous methods (see below and Table 1), and not to provide 
directly interpretable results. 

The oMITM design, detailed in Table 1 and implemented by Cadiou 
et al. (2020), consists in three series of association tests: a) between the 
intermediary layer M and the outcome Y, allowing to identify compo
nents of M associated with Y; b) between the components of the inter
mediary layer selected at step a) and the exposures E, with an 
adjustment on the outcome Y; c) between the exposures selected at step 
b) and the outcome Y (see (Cadiou et al., 2020) for details). Various 
statistical methods can be used at steps a), b) and c). We tested two 
different implementations of the oMITM design: the first one (oMITM- 
ExWAS) used ExWAS-type methods at all steps, i.e. a series of parallel 
linear regression models (one per tested predictor) corrected for multi
ple testing using Benjamini-Hochberg procedure (Benjamini and Hoch
berg, 1995); the second oMITM implementation used an ExWAS-type 
approach at steps a) and b) and DSA algorithm at step c). DSA (Sinisi and 
van der Laan, 2004) is is an iterative linear regression model search 
algorithm, which has been shown to provide the best performance 
(assessed as the compromise between sensitivity and FDP) in studies 
relating the exposome to health, compared to other common methods 
including ExWAS (Agier et al., 2016). DSA was not considered for steps 
a) and b) as, as a wrapper method, it is not computationally feasible to 
use it on a set of covariates of dimension higher than a few hundred. 

2.5. Assessing methods’ performances 

To assess the characteristics of each scenario, variabilities of Y 
explained by the true predictors of the exposome, by the true predictors 
of M and by both were measured and their mean and standard deviation 

Table 1 (continued ) 

Name Description References Name used in 
figure 

Correction for multiple testing takes into account all the tests performed at step b) (i. 
e. number of exposures x number of intermediary variables found associated with 
the outcome in step a)). Exposures found associated with at least one intermediary 
variable in step b) are the output of this selection method. 

ExWAS on a random 
subsample 

ExWAS corrected for multiple testing using a Benjamini-Hochberg procedure on a set 
of nR random exposures, where nR is the number of exposures in the reduced 
exposome when applying oMITM -ExWAS on the same dataset. Exposures found 
associated with the outcome are the output of this selection method. 

(Benjamini and Hochberg, 1995) ExWAS on 
subsample  
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were computed over the 100 runs. For causal structures A and C, the 
variability explained by the exposome for each variable of M affected by 
the exposome was also measured and averaged. Then the mean and 
standard deviation of this averaged variability were computed over the 
100 runs. For causal structures D and E, the variability explained by Y 
was measured for each variable of M or each exposure predicted and 
means and standard deviations were computed across the exposome and 
the intermediary layer. 

To compare methods, for each scenario of causal structures A, B and 
C, false discovery proportion (FDP) and sensitivity to identify true pre
dictors within the exposome were measured and mean and standard 
deviation were computed. FDP was defined as the proportion of expo
sures that were not causal predictors among the exposures selected. 
When no exposure was selected, FDP was set to 0. Sensitivity was 
defined as the proportion of exposures selected among the true causal 
predictors. For scenario from structures D and E, for which there were no 
true predictors of Y, the mean and standard deviations of the number of 
predictors found were computed over the 100 runs. The “sensitivity” to 
detect exposures affected by Y was also computed. In causal structures 
A, B and C, methods’ performances were compared in term of FDP, 
sensitivity and accuracy (defined as the sum of sensitivity and 1 – FDP). 

The script, developed in R, is provided in Supplementary Material 2. 

2.6. Comparisons between oMITM, mediation and direct association test 
using structural causal modelling theory 

We used the theory of structural causal modelling (Pearl, 2009, 
1995) to identify in which causal structures a causal association could be 
expected to be identified using the oriented Meet-in-the-Middle design 
in the simpler situation of three unidimensional variables (e.g. one 
exposure, one CpG, one outcome, ignoring the higher dimension of E 
and M in our simulation). Twenty-five Directed Acyclic Graphs (DAG) 
were assessed, corresponding to the 27 theoretical possibilities 
combining 3 variables with 3 modalities (no causal link, causal link, 
reverse causal link) without the two diagrams corresponding to cyclic 
graphs (E → M → Y → E and Y → M → E → Y). For each causal structure, 
potential bias were identified for each association test through the ex
istence of a spurious association between two variables because of a 
backdoor path not controlled for or because of adjustment for a collider 
(Pearl, 2009, 1995). This allowed to determine if oMITM would be able 
to show an association, assuming that statistical power was sufficient. 
We determined for each causal structure if the design was expected to 
provide a false-positive, false-negative, true-positive or true negative 
finding, according to the theoretical output (exposure selected or not) 
and the presence of a causal link from the exposure to the outcome in the 
causal structure considered. Similar analyses were done for the media
tion design (see Table 1), for a design similar to the oMITM but without 
adjustment on the outcome in the second step b) (which corresponds to 
the MITM design most commonly implemented in the literature (Cha
deau-Hyam et al., 2011)), and for the basic association test between E 
and Y ignoring M. 

3. Results 

3.1. Performances under causal structures assuming an effect of the 
exposome on health 

The characteristics of the scenarios under causal structures assuming 
an effect of the exposome on health (structures A, B and C) are sum
marized in Supplementary Table 2. On average over these three struc
tures, DSA and oMITM-DSA provided the highest accuracy; FDP was 
lower for oMITM-DSA and sensitivity higher for DSA (Table 2). 

When we considered the three causal structures A, B and C sepa
rately, the most accurate method differed between causal structures. 
When we assumed that the totality of the effect of E on Y was mediated 
by M (structure A), the variability of Y explained by E was necessarily 

lower than under the other causal structures with direct E-Y relation 
(Supplementary Table 2). The method maximizing accuracy was 
oMITM-DSA (Table 2). It was immediately followed by the oMITM- 
ExWAS and then the mediation analysis. Average sensitivity was 
higher than 0.095 for all the agnostic and non-agnostic methods and it 
increased with the variability of E explained by Y. The method dis
playing the lowest FDP was oMITM-DSA (average FDP across scenarios, 
0.038), which also showed one of the lowest sensitivities on average 
(0.095); however, as soon as the variability explained by the exposome 
was above 0.1, its sensitivity was above 0.70 while its FDP remained 
below 0.20 (Fig. 2). In a few scenarios (when the variability explained by 
the exposome was between 0.05 and 0.1, see Fig. 2 and Supplementary 
Fig. 1), oMITM-DSA even showed a better sensitivity than its agnostic 
counterpart, DSA, with a similar FDP. When the variability explained by 
the exposome was low (below 0.01), oMITM-DSA often did not select 
any predictor, contrarily to DSA, which always showed an average non- 
null FDP in this range of variabilities. oMITM-ExWAS and mediation had 
an average FDP and an average sensitivity that were both of 0.1. Overall, 
the reduced exposome selected by the two oMITM designs (after steps 1 
and 2 of oMITM) contained more true predictors than a random set of 
exposures of the same dimension; this can be seen by comparing the 
sensitivity of oMITM-ExWAS to the sensitivity of the control method 
ExWAS on subsample (Fig. 3A), which was lower in all scenarios. Inter
estingly, the FDP of oMITM-ExWAS and ExWAS on subsample were 
similar and lower than the FDP of ExWAS. This shows the influence of 
the dimension on the FDP for ExWAS-based methods and illustrates the 
benefit of the dimension reduction steps provided by oMITM. 

Coming to the agnostic methods, DSA and ExWAS displayed similar 
global performances (Table 2), but DSA showed better (lower) FDP in 
the few scenarios for which the variability explained by E was higher 
than 0.1 (Fig. 2A and B). LASSO displayed the highest FDP (average, 
0.41) and had a high FDP even when the variability explained by the 
predictors was low (Fig. 2A), as, contrarily to the other methods, it most 
often selected a non-null number of variables in these situations (Sup
plementary Fig. 1C). 

When we assumed that the exposome directly influenced health 
(without mediation by the intermediate layer, structure B), all methods 
relying on information from the intermediary layer unsurprisingly 
showed very low sensitivity (lower than 0.010); they also had very low 
FDP (lower than 0.013, Table 2), as they did not select any exposure in 
most scenarios (see Supplementary Fig. 2C). Coming to the agnostic 
methods, their sensitivity increased with the variability of Y explained 
by E (Fig. 4B). Among both types of methods, the one maximizing ac
curacy was DSA, which performed far better than the other methods 
(Table 2). oMITM-DSA ranked second in terms of accuracy: there were 
some scenarios (when both variabilities explained by E and M were 
higher than 0.1) in which oMITM methods selected some exposures that 
were true predictors (Fig. 4B and Supplementary Fig. 2A). In these 
scenarios, oMITM-DSA showed good sensitivity (average, 50%) and very 
good FDP (lower than 15%). Indeed, counter-intuitively, for these sce
narios, the reduced exposome selected by oMITM design was non-empty 
and contained more true predictors than would be selected by chance 
(this can be seen in Fig. 3B by comparing the sensitivity of oMITM- 
ExWAS to the sensitivity of ExWAS on subsample, which was always 
lower). On the contrary, mediation provided a null sensitivity, always 
failing to detect true predictors (Fig. 4B). This relatively good behavior 
of oMITM under causal structure B can be explained by the selection bias 
(Hernán et al., 2004) induced in step b) of the oMITM design when 
adjusting on Y: a “spurious” link between E and Y is created, leading to 
add some causal predictors of Y in the reduced exposome. 

For structure C, the situation with both direct and indirect effects of 
the exposome on health, performances ranged between those observed 
in scenarios A and B; oMITM-DSA and DSA were, again, the methods 
with the highest accuracy (Fig. 5). 
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3.2. Performance under causal structures without effect of the exposome 

In a situation with causal links from Y to E and to M (corresponding 
to reverse causality, structure D, scenarios described in Supplementary 
Table 3), all agnostic methods displayed a non-null number of hits, with 
the number of hits increasing when the variability of E explained by Y 
increased (Fig. 6B and Supplementary Fig. 4A). This is consistent with 
the fact that these methods cannot distinguish an influence of E on Y 
from an influence of Y on E: as shown in Fig. 6, as the variability of 
exposures explained by Y increased, exposures were more often selected 
as hits. This proportion of hits had values similar to the sensitivity dis
played by these agnostic methods in structures A, B and C. 

Both oMITM methods selected no exposure most of the time (Fig. 6 
and Table 2). On the contrary, the mediation analysis showed a non-null 
number of hits as soon as the mean variability of E explained by Y was 
higher than 0.05 and the mean variability of M explained by Y was 
higher than 0.3: the number of exposures influenced by Y selected by 
mediation analysis increased with the share of the variability of M 
explained by Y (see Fig. 6A). 

The situation without any causal link (structure E) can be seen as the 
limit of all four precedent structures when the strength of all associa
tions approaches zero. All methods using methylome information 
selected no exposure, while agnostic methods erroneously selected some 
exposures, with LASSO showing the highest error rate (Table 2 and 
Fig. 7). 

3.3. Comparisons between methods using causal inference theory 

Applying causal inference theory, we compared the number of 
possible causal structures under which various analytical strategies 
would be able to identify a true effect of an exposure on health in ideal 
situations of large sample size. The results are synthesized in Table 3, 
while details of results for each causal situation are displayed in Sup
plementary Table 4. In Supplementary Table 5, the step-by-step results 
for oMITM are detailed. 

A test of association between E and Y ignoring M was expected to 
properly identify all situations in which E influenced Y (0 false negative, 
9 true positive results, Table 3), but also identified associations corre
sponding to reverse causality (10 false positive results). Among the 
methods using the intermediary variable M, oMITM and MITM without 
adjustment on Y both displayed false negative results under 2 causal 
structures (structures J and K, Supplementary Table 4). The mediation 
test displayed false negative results under 2 additional causal structures 
(Table 3): in particular, contrarily to oMITM, it was not able to detect the 
structure A in which E affects Y indirectly through M (structure A, 
Supplementary Table 4, Fig. 1). Coming to false positives, oMITM was 
the design minimizing the false positive findings (6 versus at least 8 for 
any other design). MITM led to false positives in two situations of 
reverse causality to which oMITM, on the contrary, was not sensitive 
(structures D and Q, Supplementary Table 4). The mediation method 
displayed, similarly to MITM, 8 false positives. 

Overall, oMITM was the design giving true results (true positive or 
true negative) in the highest number of causal structures (17 structures, 
versus 15 for tests of association ignoring M and for MITM not adjusted 
for Y, and 13 for mediation analysis, Table 3). 

4. Discussion 

We implemented a simulation considering five different causal 
structures to identify in which contexts specific methods making use of 
information from an intermediary biological layer could be more effi
cient than specific agnostic algorithms to identify components of the 
exposome influencing health. Our simulation study demonstrated that 
the oMITM design has high accuracy under various causal structures. In 
particular, it allows to avoid false-positive associations in some struc
tures corresponding to reverse causality more efficiently than all other 

tested designs which detected spurious associations, in particular those 
not making use of the intermediary layer. Moreover, in the causal 
structures with a direct effect of the exposome on the outcome, for which 
other methods sometimes suffer from an high false positive rate, oMITM 
allows decreasing false positive rate while conserving a good sensitivity. 

4.1. Strengths and limitations 

Former simulations about the performance of statistical methods to 
assess exposome-health associations generally considered simpler causal 
structures, without any intermediate layer nor reverse causality (Agier 
et al., 2016; Barrera-Gómez et al., 2017; Lenters et al., 2018). Other 
simulations considered multi-layered data, but often with an aim 
distinct from ours, such as the quantification of the share of the effect of 
an exposure on an outcome mediated by a high dimension intermediate 
layer (Barfield et al., 2017; Tobi et al., 2018). Similarly to previous 
simulations Agier et al., 2016; Barrera-Gómez et al., 2017; Lenters et al., 
2018), we made the assumptions of lack of confounding and measure
ment error. We did consider only continuous variables in all the three 
layers and further simulations would be necessary to generalize our 
results for example to non-continuous outcomes. 

We only studied experimentally 5 of the 25 possible causal structures 
theoretically possible, deferring the discussion about the remaining 
causal structures to the qualitative assessment of the simplified DAGs 
(which did not assume that either E or M had a dimension larger than 
one). We selected the 5 structures that we thoroughly tested so as to 
cover what we considered to be the most realistic situations in an 
exposome setting; the reader interested in another specific structure may 
modify our code to study it more deeply. We considered separately these 
causal structures, while in reality, with multidimensional exposures and 
intermediary layers, several causal structures are expected to co-exist: 
for example, an exposure could act directly and via an indirect effect 
mediated by M while another would only act on Y independently of M. 
Models’ performances estimated for different causal structures should 
not be compared one with another as the weight of scenarios with high 
or low variability explained by predictors were not the same across 
different causal structures. Within-structure comparisons/reasonings 
are more relevant. 

In some of the considered situations, the variability of Y explained by 
E was very low (below 5%), which seemed realistic to us. This corre
sponds to a situation of “rare and weak” event (Donoho and Jin, 2008), 
which may be more plausible than higher values of explained outcome 
variability assumed in previous simulations (Agier et al., 2016; Barrera- 
Gómez et al., 2017). Thus, we chose to include these scenarios to 
approximate the performance encountered in real studies. This led to 
point to major difference in terms of specificity between methods. Sit
uations in which E explained a large share of the variability of Y (above 
20%) were hard to reach in the causal model corresponding to mediation 
(structure A), which should be seen as a realistic feature of our simu
lation rather than a limitation thereof. This was a consequence of our 
choice not to simulate scenarios with strong effects of E on M (maximum 
average share of variability in M explained by E, 20%). 

We assumed that the dimension of our intermediary layer was 2284; 
this value corresponded to the dimension of a set of variables repre
senting DNA methylation sites selected on the basis of their a priori 
relevance for the considered outcome (Cadiou et al., 2020); this is also a 
realistic size for biological information of other nature, such as metab
olomic or immunological markers, although much larger sizes can also 
be encountered. The dimension of the intermediary layer in which the 
information is diluted is expected to impact the efficiency of approaches 
relying on this layer. 

Coming to our causal inference analysis, the main limitations are that 
we analyzed only low-dimensional DAGs (with three variables), whereas 
the analyzed designs are meant to be used in higher dimension, and that 
it only refers to continuous variables. 
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Table 2 
Performance of all methods under each causal structure. For structures A, B and C, FDP (average mean and standard error across scenarios), sensitivity (average mean and standard error across scenarios) and accuracy, 
defined as 1 - FDP+ sensitivity (mean across scenarios). For structure D, number of hits (average mean and standard error across scenarios) and sensitivity to find the exposures predicted by Y (average mean and standard 
error across scenarios). For structure E, number of hits (average mean and standard error across scenarios). For each performance indicator and for each structure, * indicates the method with the best performance for a 
given causal structure.   

Causal structure A Causal structure B Causal structure C Causal structure D Causal structure 
E 

Methods FDP (SD) Sensitivity 
(SD) 

Accuracy FDP (SD) Sensitivity 
(SD) 

Accuracy FDP (SD) Sensitivity 
(SD) 

Accuracy Number of hits 
(SD) 

Sensitivity to predicted 
exposures (SD)a 

Number of hits 
(SD) 

Agnostic methods 
ExWAS 0.132 

(0.199) 
0.126 (0.048) 0.994 0.388 

(0.188) 
0.363 (0.077) 0.975 0.361 

(0.222) 
0.288 (0.105) 0.927 6.622 (1.242) 0.554 (0.052) 0.32 (0.909) 

DSA 0.123 
(0.308) 

0.113 (0.054) 0.99 0.169 
(0.284) 

0.279 (0.082) 1.110* 0.172 
(0.306) 

0.216 (0.087) 1.044* 5.935 (2.625) 0.182 (0.022) 0.13 (0.661) 

LASSO 0.413 
(0.430) 

0.158 (0.098) 
* 

0.745 0.528 
(0.317) 

0.395 (0.106) 
* 

0.8671 0.540 
(0.341) 

0.320 (0.127) 
* 

0.780 41.4 (17.483) 0.463 (0.124) 2.56 (5.472)  

Methods incorporating information from an intermediary layer 
oMITM-ExWAS 0.094 

(0.065) 
0.105 (0.043) 1.011 0.012 

(0.032) 
0.010 (0.010) 0.998 0.109 

(0.085) 
0.088 (0.051) 0.979 0.014 (0.128) 0.001 (0.008) 0 (0)* 

oMITM-DSA 0.038 
(0.102)* 

0.095 (0.049) 1.057* 0.009 
(0.046) 

0.010 (0.010) 1.001 0.043 
(0.108)* 

0.073 (0.045) 1.03 0.003 (0.022)* 2x10-4 (0.002) 0 (0)* 

Mediation 0.097 
(0.081) 

0.105 (0.055) 1.008 0.003 
(0.020)* 

0.000 (0.003) 0.997 0.098 
(0.083) 

0.068 (0.044) 0.970 1.214 (0.4) 0.13 (0.034) 0 (0)*  

« Control » methods 
ExWAS on 

subsample 
0.091 
(0.091) 

0.041 (0.047) 0.959 0.014 
(0.039) 

0.001 (0.005) 0.987 0.110 
(0.100) 

0.043 (0.040) 0.932 0.002 (0.015) 8x10-5 (0.001) 0 (0) 

oMITM steps 1 
and 2 

0.177 
(0.158) 

0.176 (0.058) 0.999 0.028 
(0.110) 

0.010 (0.011) 0.982 0.164 
(0.151) 

0.132 (0.062) 0.968 0.026 (0.219) 0.001 (0.013) 0 (0)  

a Proportion of exposures influenced by Y identified by the approach. 
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4.2. Summary of methods performance 

Our oMITM is an innovative design, used here in two flavors 
(oMITM-ExWAS and oMITM-DSA). It shows similarities with a media
tion design and especially with the Meet-in-the-Middle framework 
described in the literature (Chadeau-Hyam et al., 2011; Jeong et al., 
2018; Vineis et al., 2013). It is notably distinguished from the classical 
Meet-in-the-Middle in that: 1) it does not aim to discover intermediary 
biomarkers but to reduce the exposome dimension in the context of an 
exposome-outcome association; this explains the order chosen for the 
different steps; 2) we added an adjustment for the outcome in the test of 
association between the exposure and the potential mediators. Overall, 
our oMITM design showed good performance compared to agnostic 
methods. Due to our adjustment on the outcome, oMITM can identify 
some true predictors even in structures under which there is no indirect 
effect of E on Y through M (causal structure B). We explained why this 
can happen in the theoretical part of our work: in structure B, a spurious 
association is created between the causal exposure and the intermediate 
biomarker due to the additional adjustment for the outcome, which 
results in what is called in the theory of causal inference a selection bias 
(Hernán et al., 2004); thus, the causal exposure is relevantly included in 

the reduced exposome (see paragraph 3.3 and Supplementary Table 5). 
In situations of reverse causation without causal link between E and M, 
the additional adjustment on Y of our oMITM design (corresponding to 
oMITM-ExWAS and oMITM-DSA) also allowed to avoid false positives 
due to reverse causality. In situations of mediation without any direct 
effect of the exposures, the reduced exposome was relevant; under this 
causal structure, oMITM allowed to decrease FDP in most scenarios, and 
in some scenarios to increase sensitivity (oMITM-ExWAS compared to 
ExWAS). The replacement of ExWAS by DSA in the last step of the 
oMITM design increases performance, in particular in terms of FDP 
when the effect of the exposures on the outcome was high. For example, 
in a situation with a causal effect of the exposome on the outcome and 
with a share of variability of the outcome explained by the exposome of 
a few percent, we expect oMITM-DSA to have a low sensitivity (around 
10% in the case of 10 true predictors) and a FDP between 10 and 25% 
(Supplementary Fig. 1). These performances contrast with those of 
ExWAS (sensitivity of 25% and FDP of 60%) but still allow to identify 
some predictors. In this situation of mediation, thus, the oMITM DSA is 
more appropriate than ExWAS (see below) for the search of relevant 
causal predictors currently performed in exposome studies, whereas the 
use of ExWAS should be reserved to exploratory studies where findings 

Fig. 2. A. 1- FDP and B. Sensitivity under causal 
structure A (see Fig. 1) for all compared methods 
(color). Performances were averaged across sce
narios according to categories of variabilities of Y 
explained by E (x-axis) and by M) and categories 
of mean variability explained by E for a covariate 
from M affected by E (shape). Values were 
smoothed to give the average trend by method 
according to the variability of Y explained by E 
for every category of variability of Y explained by 
M (colored curve).   
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must be interpreted cautiously given the high false positive rate. oMITM 
could be further enhanced by replacing the ExWAS-type methods used at 
step b) and c) by selection methods more adapted to a high dimension 
(see for example the reviews of (Fan and Lv, 2010; Lazarevic et al., 
2019)). 

We used an ExWAS-based implementation of mediation analysis 
(Küpers et al., 2015) to allow comparisons with the oMITM design 
(through the oMITM-ExWAS). However, alternative mediation imple
mentation, more adapted to multidimensional mediators, have been 
proposed (Barfield et al., 2017; Blum et al., 2020; Chén et al., 2018). 

Moving now to the agnostic methods, Deletion-Addition-Substitution 
algorithm was the best agnostic method in situations involving a causal 

effect of the exposome on the health outcome. As shown by Agier et al. 
(2016), DSA provided a better compromise between sensibility and 
specificity than ExWAS. However, it is prone to suffer from reverse 
causality, like all other agnostic methods. Our results on ExWAS are 
consistent with those from Agier et al. (2016) when R2 was higher than 
0.1. When R2 was lower than 0.01, ExWAS often selected no exposures 
and thus exhibited a FDP of 0 whereas the two other agnostic methods 
(DSA and LASSO) showed non-null FDP and null or very low sensitivity. 
LASSO was the worst performing agnostic method; in particular, it dis
played a very high FDP. In a case of correlation between a true predictor 
and other variables, LASSO is known to select one variable among a set 
of correlated variables (Leng et al., 2006). The high rate of false positive 

Fig. 3. Comparisons of performance 
(1-Average FDP and sensitivity) be
tween oMITM-ExWAS and control 
methods (oMITM-steps 1 and 2 and 
ExWAS on subsample) for causal struc
tures A, B and C. Performances were 
averaged across scenarios according to 
categories of variabilities of Y 
explained by E (x-axis) and by M and 
categories of mean variability 
explained by E for a covariate from M 
affected by E (shape). Values were 
smoothed to give the average trend by 
method according to the variability of 
Y explained by E for every category of 
variability of Y explained by M 
(colored curve).   
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findings that we observed may be explained by our choice of a penalty 
parameter (the parameter which minimizes the error of prediction 
during the cross-validation process (Tibshirani, 1996)) optimized for 
prediction. Elastic-Net (Friedman et al., 2010), which was designed to 
improve the performance of LASSO when predictors are correlated, 
could have been tested here. However, Agier et al. (Agier et al., 2016) 
already showed that DSA provided better performance than Elastic-Net 
in the context of a realistic exposome. 

4.3. Consistency between our structural causal modelling analysis and 
experimental simulation-based 

Although basic in its design, our analysis based on DAGs yield results 
consistent with the more elaborate simulation study, which considered 
an exposome of dimension 173 and an intermediate layer of dimension 
2284. In particular, in the causal structure of reverse causality (Y 
influencing E and M) without link between E and M (structure D), the 
oMITM method provided no hit (Fig. 6), as predicted by the analyses of 
DAGs (Supplementary Table 4). Similarly, in structure B, we observed a 
non-null sensitivity of oMITM when the variabilities in Y explained by 
both E and M were above a certain level in the simulation, coherent with 
the prediction of the DAGs. 

Moreover, the behavior of oMITM in a structure of reverse causality 
is consistent with the results of a previous study using oMITM-ExWAS to 
relate the exposome and child BMI in Helix data using methylome 
(Cadiou et al., 2020). Indeed, as detailed in Cadiou et al (2020), an 
agnostic ExWAS applied on the same data resulted in 20 significant 
associations, with the majority likely to be due to reverse causality: most 

of these hits corresponded to lipophilic substances (such as poly
chlorobiphenyls (PCB)), measured in blood at the same time as the 
outcome. They were negatively associated with BMI, whereas toxico
logical studies based on a prospective design suggested obesogenic effect 
of such components (Heindel and vom Saal, 2009; Thayer et al., 2012). 
As they are stored in fat, a plausible explanation is that these associa
tions are due to increased fat levels in obese subjects, entailing a higher 
amount of PCBs stored in fat and, conversely, a lowering of circulating 
PCB levels in blood (Cadiou et al., 2020). The reduced exposome ob
tained with oMITM-ExWAS (denominated “Meet-in-the-Middle” in 
(Cadiou et al., 2020)), which consisted of 4 exposures, did not contain 
any of these hits of the agnostic analysis suspected to be due to reverse 
causality, except PFOS level. Thus, we can hypothesize that for these 
exposures, this situation corresponded to one of the cases of reverse 
causality situations discussed above, in which the oMITM design is not 
expected to identify exposures influenced by the outcome. This high
lights that the benefit of oMITM may come from the dimension reduc
tion performed in the two first steps. The fact that blood postnatal level 
of PFOS, another compound suspected of reverse causality, was selected 
by the oMITM-ExWAS approach may be a consequence of the fact that 
oMITM is not expected to avoid all situations of reverse causality (as 
shown by our causal discovery analysis (Supplementary Table 4)). 

4.4. Which dimension reduction methods should be used in exposome 
studies? 

The main motivation of this work was related to the previously 
identified challenges of low specificity and low statistical power of 

Fig. 3. (continued). 
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exposome studies (Agier et al., 2016; Chung et al., 2019; Slama and 
Vrijheid, 2015). As we detailed in the introduction, reducing the 
dimension of the exposome may be a way to address them. Dimension 
reductions techniques can also be useful to visualize high dimensional 
data and thus better understand the model, or for computational rea
sons, to reduce algorithmic costs (Van Der Maaten et al., 2009). All these 
objectives are relevant in environmental epidemiology depending on the 
aim of the study and the layers considered. Different methods can be 
used depending on the objectives: in particular, we illustrated that the 
dimension reduction can be done using a priori knowledge on the 
structuration of the data but it can also be done without a priori 
knowledge (e.g. with agnostic variable selection algorithms used as a 
preprocessing step before relating the exposome to health; see for 
example (Braun et al., 2014; Coull et al., 2015)). 

With our oMITM design, we chose to rely on the information coming 
from an intermediary layer of high dimension to perform this dimension 
reduction of the exposome, and thus we first had to perform dimension 
reduction on this intermediary layer. This was the role of the first step 
(step a)) of the oMITM design, which allowed to select relevant 

intermediate features, defined as the variables of the intermediary layer 
significantly associated with the outcome. Other methods can be used to 
reduce the intermediate layer dimension: for example, in our applied 
study (Cadiou et al., 2020) we performed a preliminary step of selection 
of CpGs relevant for the outcome considered according to the literature 
to reduce methylome dimension. In fact, the aim of the dimension 
reduction of the intermediary layer is the concentration of a diluted 
information, used in the following step b), to reduce the exposome 
dimension, and not the selection of interpretable features. Actually, all 
methods reducing dimension could be used for this step as soon as they 
are not too specific, i.e. if they do not restrict too much the quantity of 
information; even extraction methods, (Guyon and Elisseeff, 2003) 
which create a set of new variables, usually smaller and with null or low 
correlation (for example PCA (Van Der Maaten et al., 2009) or sPLS 
(Chun and Keleş, 2010)) could be considered. In other words, for the 
dimension reduction of the intermediary layer, the interpretability is not 
necessary and the compromise between sensitivity and specificity (here 
in the sense of detection of available information) should be done to 
favor sensitivity, as it is a pre-processing step. As soon as the dimension 

Fig. 4. Under causal structure B (see Fig. 1) A. 1- FDP; B. sensitivity for all methods (color). Performances were averaged across scenarios according to categories of 
variabilities of Y explained by E (x-axis) and by M. Values were smoothed to give the average trend by method according to the variability of Y explained by E for 
every category of variability of Y explained by M. (colored curve). 
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is reduced enough to make the information usable, the presence of 
redundant variables is not a problem, justifying the use of ExWAS-type 
method (MWAS) for methylome dimension reduction in our proposed 
oMITM. On the other hand, when reducing the dimension of the expo
some (steps b) and c)), the aim is to select (or preselect for step b) bio
logically relevant variables. Thus, variable selections techniques are 
more appropriate than extraction methods. 

Our work clearly illustrated the benefits of dimension reduction for 
the exposome: ExWAS on a reduced exposome systematically provided 
lower FDP than ExWAS on a full exposome (see Supplementary Figs. 1, 2 
and 3). Moreover, compared to a random dimension reduction, dimen
sion reduction based on the biologically relevant intermediate layer 
with oMITM provided an increased sensitivity (see Fig. 3A and C, 
comparison between oMITM-ExWAS and ExWAS on a random sub
sample of the same size as the reduced exposome). In situations where 
an intermediate layer is involved in the causal path from the exposome 
to a health outcome, informed dimension reduction is a relevant 
approach to improve specificity and sensitivity when looking for expo
sures associated with the outcome. 

4.5. The need to rely on causal knowledge 

We also illustrated under which causal structures the results from 
previous exposome-health simulations (Agier et al., 2016) are expected 
to be true, and that methods always imply underlying causal assump
tions which are difficult to verify in an exposome setting. Prospective 
designs should thus be preferred. We showed that the use of additional 
information through the use of methylome layer can help to deal with 
reverse causality and thus decrease the false positive findings not only in 
situations where the methylome mediates the effect of the exposome on 
health. Our use of intermediary data to remove some false positives 
linked to reverse causality illustrates the affirmation of Hernán et al. 
(2019) that “causal analyses typically require not only good data and al
gorithms, but also domain expert knowledge.” In our case, the use of an 
intermediate layer and our design, which itself relies on the assumption 
of three distinctive biological layers, added some a priori information. 
However, oMITM is still expected to lead to false positive findings in 
several causal structures corresponding to reverse causality. Further 
knowledge, for example on the causal link between the exposome and 
the intermediate layer, could help discarding these non-causal associa
tions. Our work also illustrates that classical designs, such as mediation 
and classical Meet-in-the-Middle procedure, are not robust to violations 

Fig. 5. Under causal structure C (see Fig. 1) A. 1- 
FDP; B. Sensitivity for all compared methods 
(color); performances were averaged across sce
narios according to categories of variabilities of Y 
explained by E (x-axis) and by M and categories 
of mean variability explained by E for a covariate 
from M affected by E (shape). Values were 
smoothed to give the average trend by method 
according to the variability of Y explained by E 
for every category of variability of Y explained by 
M (colored curve).   
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of the strong assumptions they make about the underlying causal 
structure. Especially, a significant mediation or classical Meet-in-the- 
Middle result should not be interpreted as a causal clue supplementing 
the association between a factor or an outcome, unless strong knowledge 
about the intermediary variables a priori makes their mediating role 
very likely: as we demonstrated, in the causal structure D, which 
featured (reverse) causal links from the outcome to the potential me
diators and to the exposure, both mediation test and basic association 
test can result in significant associations. Similarly (see theoretical re
sults for structure D), a classical Meet-in-the-Middle framework without 
adjustment on the outcome at the second step would also lead to sig
nificant associations. Interestingly, in such a situation, even a longitu
dinal design may not be sufficient to get rid of reverse causality (see the 
DAG provided in Supplementary Fig. 5 for an example). Thus, the 
statement about the Meet-in-the-Middle procedure that “If the same set of 
markers is robustly associated with both ends of the exposure-to-disease 
continuum, this is a validation of a causal hypothesis according to the 
pathway perturbation paradigm. » (Vineis et al., 2020) must be interpreted 
cautiously: associations rising from an epidemiological study should be 
supplemented by toxicological and biological knowledge. Overall, our 
work confirms that the uncertainty about the causal framework deserves 

to be taken in consideration when applying statistical methods to 
exposome and health data: first, it is of course crucial to understand the 
underlying causal assumptions behind the statistical model, and to take 
them into account when interpreting epidemiologic results; secondly, 
multilayer approaches such as our oMITM design can be more robust 
than agnostic approaches when the causal model is uncertain. 

From a practical point of view, in an exposome-health study where 
intermediary data are available, if strong prior knowledge about the 
outcome or the nature of the intermediary layer makes one specific 
causal structure very likely, one may choose the method(s) with a design 
adapted to this causal structure according to a comparative causal 
analysis such as the one we performed. The oMITM should in particular 
be preferred if there are reasons to expect associations due to reverse 
causality (e.g. in the case of a cross-sectional design) while agnostic 
designs must be preferred if there is no identified biological layer 
plausibly expected to act as an intermediary layer for at least some of the 
exposures considered. In studies aiming at identifying likely causal 
predictors, a multilayer design should be preferred to an agnostic one if 
both are adapted to the hypothesized underlying structure as the first 
one could help increase the specificity. Once the design is chosen, the 
statistical methods (e.g. DSA, ExWAS) for the implementation of this 

Fig. 6. A. Proportion of exposures influenced by Y wrongly identified, and B. number of hits under causal structure D. Values were averaged across scenarios ac
cording to categories of variabilities of one exposure explained by Y (x-axis) and one element of M explained by Y (color). 
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design should be chosen according to the dimensions of the considered 
layer(s), relying on simulations studies. For example, in an exposome 
settings and with an intermediary layer of intermediate dimension, our 
own simulations showed that respectively DSA and ExWAS may be 
adapted for the implementation of the different steps of an oMITM 
design. 

If little a priori knowledge is available about the underlying causal 
structure, one could use either an agnostic approach (if one tends to 
favor sensitivity over specificity, e.g. in a rather exploratory study) or 
oMITM, which proved to be robust, if one tends to favor specificity, 
which would be the case in most current epidemiological studies, where 
findings are interpreted as likely causal predictors. 
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Alpes for collaborations with Catalunya. 

Contributions 

SC and RS designed the analytical and statistical methods and 
interpreted the results. SC ran the simulations, analyzed the results and 
wrote the paper. All authors contributed to the manuscript and approved 
the manuscript. 

Appendix A. Supplementary material 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.envint.2021.106509. 

References 

Agier, L., Basagaña, X., Maitre, L., Granum, B., Bird, P.K., Casas, M., Oftedal, B., 
Wright, J., Andrusaityte, S., de Castro, M., Cequier, E., Chatzi, L., Donaire- 
Gonzalez, D., Grazuleviciene, R., Haug, L.S., Sakhi, A.K., Leventakou, V., 
McEachan, R., Nieuwenhuijsen, M., Petraviciene, I., Robinson, O., Roumeliotaki, T., 
Sunyer, J., Tamayo-Uria, I., Thomsen, C., Urquiza, J., Valentin, A., Slama, R., 
Vrijheid, M., Siroux, V., 2019. Early-life exposome and lung function in children in 
Europe: an analysis of data from the longitudinal, population-based HELIX cohort. 
Lancet Planet. Heal. 3, e81–e92. https://doi.org/10.1016/S2542-5196(19)30010-5. 

Agier, L., Portengen, L., Chadeau-Hyam, M., Basagaña, X., Giorgis-Allemand, L., 
Siroux, V., Robinson, O., Vlaanderen, J., González, J.R., Nieuwenhuijsen, M.J., 
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