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Abstract 17 

Understanding and managing the health effects of ambient temperature (Ta) in a warming, 18 

urbanizing world requires spatially- and temporally-resolved Ta at high resolutions. This is 19 

challenging in a large area like France which includes highly variable topography, rural areas 20 

with few weather stations, and heterogeneous urban areas where Ta can vary at fine spatial 21 

scales. We have modeled daily Ta from 2000 – 2016 at a base resolution of 1 km2 across 22 

continental France and at a 200 x 200 m2 resolution over large urban areas. For each day we 23 

predict three Ta measures: minimum (Tmin), mean (Tmean), and maximum (Tmax). We start by 24 

using linear mixed models to calibrate daily Ta observations from weather stations with 25 

remotely sensed MODIS land surface temperature (LST) and other spatial predictors (e.g. 26 

NDVI, elevation) on a 1 km2 grid. We fill gaps where LST is missing (e.g. due to cloud cover) 27 

with additional mixed models that capture the relationship between predicted Ta at each location 28 

and observed Ta at nearby weather stations. The resulting 1 km Ta models perform very well, 29 

with ten-fold cross-validated R2 of 0.92, 0.97, and 0.95, mean absolute error (MAE) of 1.4 °C, 30 

0.9 °C, and 1.4 °C, and root mean square error (RMSE) of 1.9 °C, 1.3 °C, and 1.8 °C (Tmin, 31 

Tmean, and Tmax, respectively) for the initial calibration stage. To increase the spatial resolution 32 

over large urban areas, we train random forest and extreme gradient boosting models to predict 33 

the residuals (R) of the 1 km Ta predictions on a 200 x 200 m2 grid. In this stage we replace 34 

MODIS LST and NDVI with composited top-of-atmosphere brightness temperature and NDVI 35 

from the Landsat 5, 7, and 8 satellites. We use a generalized additive model to ensemble the 36 

random forest and extreme gradient boosting predictions with weights that vary spatially and 37 

by the magnitude of the predicted residual. The 200 m models also perform well, with ten-fold 38 

cross-validated R2 of 0.79, 0.79, and 0.85, MAE of 0.4, 0.3, and 0.3, and RMSE of 0.6, 0.4, and 39 

0.5 (Rmin, Rmean, and Rmax, respectively). Our model will reduce bias in epidemiological studies 40 

in France by improving Ta exposure assessment in both urban and rural areas, and our 41 

methodology demonstrates that MODIS and Landsat thermal data can be used to generate gap-42 

free timeseries of daily minimum, maximum, and mean Ta at a 200 x 200 m2 spatial resolution. 43 

Keywords 44 

air temperature; land surface temperature; MODIS; Landsat; exposure error 45 
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1. Introduction 47 

Ambient or near-surface air temperature (Ta) is increasingly recognized as an important health 48 

risk. High or low Ta is associated with increased morbidity and mortality across regions and 49 

climates (Gasparrini et al., 2015; Guo et al., 2014; Song et al., 2017), and recent work suggests 50 

that high Ta may exacerbate the effect of exposure to particulate matter (PM), another major 51 

health hazard (Li et al., 2017).  Ta exposure is a growing concern in cities, which are often 52 

warmer than the surrounding countryside due to increased heat accumulation and slower heat 53 

diffusion (Arnfield, 2003). Urban areas are now home to more than half the world’s population, 54 

and this share is projected to increase to almost 70% by 2050 (United Nations, 2018). Health 55 

effects of Ta are also seen in rural populations (Lee et al., 2016), although fewer studies have 56 

examined these due to the difficulty of estimating Ta exposure. Meanwhile climate change is 57 

increasing Ta and the frequency of extreme events such as heat waves in both urban and rural 58 

areas (IPCC, 2013). The health burden of Ta exposure is expected to grow as climate change 59 

and urbanization continue (Gasparrini et al., 2017; Wang et al., 2018). 60 

Understanding, monitoring, and managing Ta health effects requires spatiotemporally-resolved 61 

Ta at high resolutions. Weather station networks measure Ta at high temporal resolution, but 62 

rarely capture spatial variation at the scales needed for epidemiological studies (e.g. across a 63 

region, within a city). Failure to account for spatial variation in Ta can introduce error in 64 

exposure assessment, which tends to bias health effect estimates towards the null (Zeger et al., 65 

2000). Some recent epidemiological studies have addressed this issue by using 66 

spatiotemporally-resolved Ta estimates from numerical weather prediction models such as 67 

WRF (Ha et al., 2017b, 2017a), but computational limitations currently restrict these models to 68 

medium spatial resolutions (e.g. 4 km) or small geographic areas (e.g. a single city). In urban 69 

areas, studies have used weather model Ta estimates or indicators such as sky view factor, 70 

vegetation abundance, and land surface temperature to create indexes that identify warmer and 71 

cooler areas within a city (Goggins et al., 2012; Ho et al., 2017; Laaidi et al., 2012; Milojevic 72 

et al., 2016; Smargiassi et al., 2009). Studies to date have focused on the typical spatial 73 

distribution of Ta during a specific time period (e.g. a single heat wave, the hot season) as the 74 

limited temporal variability of the indicator variables and cost of numerical weather prediction 75 

have precluded consideration of changes in the pattern of warmer and cooler areas over time. 76 

Other recent studies have used Ta estimates from hybrid land use regression models that predict 77 

Ta based on remotely sensed 1 km land surface temperature (LST) and spatial and 78 
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spatiotemporal variables such as elevation and normalized difference vegetation index (NDVI) 79 

(Kloog et al., 2015; Shi et al., 2016b, 2015). This approach takes advantage of the growing 80 

body of satellite earth observation data and the fact that LST is a good indicator of 81 

spatiotemporal variation in Ta (Oyler et al., 2016). In particular, a technique that uses linear 82 

mixed models to calibrate the relationship between daily 1 km LST from the Moderate 83 

Resolution Imaging Spectroradiometer (MODIS) instrument and Ta has been shown to perform 84 

well over large, heterogeneous areas including the northeastern USA (root mean square error 85 

[RMSE] 2.2 °C) (Kloog et al., 2014), the southeastern USA (RMSE 1.4 °C) (Shi et al., 2016a), 86 

France (RMSE 1.7 °C) (Kloog et al., 2017), and Israel (RMSE 1.2 °C) (Rosenfeld et al., 2017). 87 

These models are parsimonious compared to numerical weather prediction, which allows them 88 

to capture both spatial and temporal variation in Ta over large areas and long time periods. Their 89 

spatial resolution suffices for areas where Ta varies little at scales of less than 1 km and for 90 

studies where subjects’ locations are only approximately known. But finer spatial resolution 91 

estimates are needed for studies with address-level location data, particularly in urban areas 92 

where Ta can vary markedly within a square kilometer. Very high spatiotemporal resolutions 93 

would also benefit studies that have time-location data (e.g. GPS tracks). 94 

In this study we extend the mixed modeling approach to predict daily minimum, mean, and 95 

maximum Ta (Tmin, Tmean, Tmax, respectively) at a 1 km resolution across continental France and 96 

at a 200 m resolution across 103 urban areas in continental France. We improve performance 97 

at the 1 km resolution by allowing the daily Ta ~ LST relationship to vary between climatic 98 

regions, and we consider both daytime and nighttime MODIS LST, which allows us to predict 99 

diurnal (Tmax) and nocturnal (Tmin) temperature in addition to Tmean. This is useful both for 100 

studies of urban heat islands, which exhibit different spatial patterns and intensities during day 101 

vs. night (Arnfield, 2003), and for studies of Ta variability, which recent work suggests may 102 

independently affect health (Guo et al., 2016; Molina and Saldarriaga, 2017; Shi et al., 2015). 103 

We also add a local stage that uses an ensemble of machine learning algorithms to predict the 104 

residuals of the 1 km model in urban areas based on higher spatial resolution predictors 105 

including thermal data from the Landsat 5, 7, and 8 satellites. This allows us to predict daily Ta 106 

over 17 years at a 200 m spatial resolution which better captures intra-urban Ta variation across 107 

103 urban areas. 108 
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2. Data and methods 109 

2.1. Study area and period 110 

Our study area is continental France, comprising all French territory in Europe except Corsica. 111 

It covers 542,973 km2 of topographically and climatically diverse terrain with elevations that 112 

range from -10 to 4,809 m. Joly et al. (2010) classify France into eight climatic regions based 113 

on the magnitude, variability, and seasonality of temperature and precipitation (Fig. 1). The 114 

north and west coasts have a wet, temperate oceanic climate, which transitions to a drier, cooler 115 

modified oceanic climate in the north center. The mountainous east, south center, and southwest 116 

have variable montane and semi-continental climates with cold winters. In the southeast, the 117 

Mediterranean coast has hot, dry summers with mild wet winters; the inland southeast and 118 

isolated segments of the west coast are similar but cooler. The southwest basin resembles the 119 

inland southeast but with drier winters. 120 

 121 

Fig. 1. Climatic regions of France according to Joly et al. (2010) and METEO-FRANCE stations used 122 
in the current study. 123 

The estimated population on January 1, 2018 was 64,388,583 (INSEE, 2018). About 80% of 124 

the population is urban, and this share is projected to grow to 88% by 2050 (United Nations, 125 

2018). The largest urban area, Paris, has a population of 12.5 million (20% of the total) and the 126 

six next largest urban areas have a population of one to 2.3 million (combined 14% of total). A 127 
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further 10% of the population lives in cities of one half to one million, and 37% live in urban 128 

areas with fewer than half a million residents (Fig. S1). Our study period is January 1, 2000 129 

through December 31, 2016. 130 

2.2. Meteorological observations 131 

We use daily weather station observations from Météo France, the French national 132 

meteorological service. About 64% of the observations come from stations managed by Météo 133 

France; the remaining stations are managed by other entities. All observations are quality 134 

controlled by Météo France. We exclude stations with no metadata or that do not record hourly 135 

Ta, and for each month during the study period we exclude stations that were active for fewer 136 

than 21 days in the month. This leaves 1710 to 2314 stations on each day. The stations are 137 

distributed over the entire study region, but are denser in populous areas (e.g. Paris, the 138 

southeast) and the Alps (which has many ski resorts, hydroelectric dams, and avalanche 139 

monitors) (Fig. 1). Just 3% of the stations are located within large urban areas (as defined in 140 

section 2.7), 7% are in peri-urban areas (within 5 km of an urban area), and the remaining 90% 141 

are rural. 142 

The stations calculate daily Tmin as the lowest Ta observed from 18 UTC the previous day until 143 

18 UTC on the day; daily Tmax is the highest Ta observed from 6:00 UTC on the day until 6:00 144 

UTC the following day. Most stations calculate Tmean as the mean of all (at least 24) Ta 145 

observations from 0 UTC on the day until 0 UTC the following day. However, about 40% of 146 

the Tmean observations were calculated as the average of Tmin and Tmax. We exclude these 147 

observations, meaning our final dataset has fewer observations for Tmean than for Tmin or Tmax. 148 

Daily Ta at the included stations during the study period ranged from Tmin of -31.2 °C to Tmax 149 

of 44.1 °C; mean Tmean was 11.3 °C with a standard deviation of 7.1 °C (Table S1). 150 

2.3. Land surface temperature and emissivity 151 

We use version 6 of the widely-used MODIS daily 1 km land surface temperature and 152 

emissivity product from the Terra and Aqua satellites (MOD11A1 and MYD11A1, 153 

respectively) (Table 1). These products include daytime and nighttime LST derived using a 154 

split-window algorithm and land use classification-based emissivity and have been masked for 155 

clouds and validated to ± 2 K in clear-sky conditions across 47 sites on all seven continents 156 

(Wan, 2014). We use the quality assessment band to exclude pixels with LST error > 2 K. As 157 

LST retrieval error increases over snow and water, we also exclude pixels with NDVI < 0 or 158 

where the corresponding 1 km grid cell has land cover of > 33% water. 159 



7 

Table 1. Satellite instruments used in this study. 160 

Instrument Satellite Resolution Revisit time Overpass* Time period 

MODIS Terra 1 km 12 hours 10:00 
22:00 2000-02-02 – present 

MODIS Aqua 1 km 12 hours 13:00 
01:00 2002-07-04 – present 

TM Landsat 5 120 m† 16 days 10:00 1984-03-01 – 2011-11-18 
ETM+ Landsat 7 60 m† 16 days 10:00 1999-04-15 – present 
TIRS Landsat 8 100 m† 16 days 10:00 2013-02-11 – present 

*Approximate local solar time; †Resampled to 30 m 161 

2.4. Top-of-atmosphere brightness temperature 162 

For large urban areas, we composite 30 m top-of-atmosphere brightness temperature (Tb) from 163 

the Landsat 5, 7, and 8 satellites (Table 1). Tb is the kinetic temperature a perfect blackbody 164 

would have if it emitted the quantity of thermal radiation measured by the satellite instrument. 165 

Converting Tb to LST requires correcting for atmospheric effects and accounting for the 166 

emissivity of the earth’s surface. This is difficult in the case of the Landsat satellites because 167 

Landsat 5 and 7 have only a single thermal band and the USGS Landsat 8’s second thermal 168 

band is contaminated by stray light, precluding the use of the split-window algorithm (Li et al., 169 

2013). A global Landsat LST product is under development but not yet available (Malakar et 170 

al., 2018), so for this study we use Tb from the USGS Landsat Collection 1 Level-2 surface 171 

reflectance products (USGS, 2018a, 2018b). 172 

The 16-day revisit time of the Landsat satellites means that Tb is unavailable for many locations 173 

on many days. Cloud cover and sensor malfunctions also contribute to these data gaps and can 174 

increase error in Tb retrieval. To reduce error, we discard all scenes with cloud cover > 75%. 175 

We also discard all scenes captured during periods of instrument malfunction, which we 176 

identified by checking summary statistics of each scene for unrealistic values (e.g. mean Tb > 177 

100 °C). We then trim the edges of Landsat 5 scenes by 2.5 km to remove abnormalities 178 

(Robinson et al., 2017) and mask pixels identified as high- or medium-confidence cloud in the 179 

pixel quality assessment band. We mask any remaining pixels where Tb ≤ -25 °C or Tb ≥ 50 °C. 180 

Finally, for each calendar month we composite all Tb retrievals during the entire study period 181 

(e.g. every January in 2000 – 2016). This yields 12 gap-free Tb datasets representing the 17-182 

year mean Tb of each pixel in each calendar month. 183 

2.5. NDVI 184 

We use version 6 of the MODIS monthly composite 1 km NDVI product from the Terra and 185 

Aqua satellites (MOD13A3 and MYD13A3, respectively). For large urban areas we also 186 



8 

composite 30 m NDVI from the Landsat 5, 7, and 8 Collection 1 Level-2 surface reflectance 187 

products. We use a similar quality assurance and compositing procedure as for Tb, first 188 

discarding all scenes with greater than 75% cloud cover or during periods of thermal sensor 189 

malfunction (as this results in unreliable cloud confidence scores in the pixel quality assessment 190 

band). We then trim the edges of Landsat 5 scenes by 2.5 km and adjust NDVI from Landsat 5 191 

and Landsat 7 to match Landsat 8 using equation Eq. 1 (Robinson et al., 2017). 192 

NDVI!" = 0.0235 + 0.9723 × NDVI#$,#& Eq. 1 

Similar to Robinson et al. (2017), for each calendar month we create two 17-year mean 193 

composites, one using pixels marked as clear in the pixel quality assurance band (i.e. not cloud, 194 

cloud shadow, snow, or water) and a second using pixels marked as snow or water. Finally, we 195 

mosaic the two composites preferring the clear pixels composite. 196 

2.6. Elevation, Population, Land Cover, and Climatic Regions 197 

We use version 1.1 of the European Digital Elevation Model (EU-DEM) from the Copernicus 198 

Land Monitoring Service. These data have a 25 m spatial resolution and vertical RMSE of ±7 199 

m (Tøttrup, 2014). We also use 200 m gridded 2010 population from INSEE, the French 200 

national statistics agency (INSEE, 2017). We use the 100 m Corine Land Cover (CLC) 201 

inventory for 2000, 2006, and 2012. The 2000 edition has been validated to better than 85% 202 

thematic accuracy (Bossard et al., 2000). We aggregate the land cover classes into four groups: 203 

artificial, vegetation, bare, and water (Table S2). Finally, we use the eight climatic regions of 204 

Joly et al. (2010), which are based on temperature and precipitation patterns (Fig. 1). 205 

2.7. Model grids 206 

For the 1 km model, we create a grid covering continental France by making a 1 km square 207 

buffer around the centroid of each MODIS 1 km LST pixel in the ETRS89-LAEA Europe 208 

(EPSG:3035) equal-area projection. We associate each 1 km grid cell with the MODIS LST 209 

and NDVI pixel having the same centroid and calculate the mean elevation, total population, 210 

percent area of each land cover group, and climate region with greatest spatial overlap. 211 

For the 200 m model, we create a grid covering large urban areas. Starting from a 200 m grid 212 

in the ETRS89-LAEA Europe (EPSG:3035) equal-area projection, we select all cells in 213 

continental France containing “Urban fabric” or “Industrial or commercial units” in the 2012 214 

CLC inventory. We associate each cell with the corresponding INSEE gridded population and 215 
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select cells with 50 or more inhabitants as well as the eight surrounding cells (i.e. including 216 

diagonal neighbors). We define urban areas as four-wise contiguous (i.e. excluding diagonal 217 

neighbors) groups of cells and sum the population of all cells in each urban area. Finally, we 218 

eliminate urban areas with population < 50,000. This leaves 103 large urban areas ranging from 219 

greater Paris (9.4 million inhabitants) to Armentières (50,260 inhabitants). For each 200 m grid 220 

cell in a large urban area or that contains a weather station we calculate the mean 17-year 221 

composite Landsat Tb and NDVI for each calendar month, mean elevation, and percent area of 222 

each land cover group. 223 

2.8. Statistical methods 224 

We use a four-stage approach to predict Ta: stages 1 and 2 predict daily 1 km Ta across 225 

continental France and stages 3 and 4 predict daily 200 m Ta within large urban areas. We 226 

consider each year during the study period (2000 – 2016) and each Ta measure (Tmin, Tmax, and 227 

Tmean) separately. Stages 1 and 2 are an extension of the method used in (Kloog et al., 2017) 228 

and are detailed in Appendix A. Sections 2.8.1 to 2.8.2 detail stages 3 and 4; the following is a 229 

brief overview of all stages. 230 

In stage 1 we calibrate Ta at each station as a function of daily 1 km LST and emissivity, 231 

monthly 1 km NDVI, and 1 km elevation, population, and land cover. We use a linear mixed 232 

model to allow the Ta ~ LST relationship to vary by day within each climatic region. We use 233 

this calibrated relationship to predict 1 km Ta (Tap_s1) for all cell-days where LST is available. 234 

In stage 2, we fill gaps in Tap_s1 where 1 km LST was not available by calibrating Tap_s1 as a 235 

function of daily 1 km inverse distance weighting interpolated observed Ta (TIDW). We use a 236 

linear mixed model to allow the Tap_s1 ~ TIDW relationship to vary by location. We use this 237 

calibrated relationship to fill gaps in Tap_s1, producing gap-free daily 1 km predicted Ta (Tap_1km). 238 

This is the 1 km Ta model. 239 

In stage 3, we calculate the daily 200 m residuals of the 1 km Ta model (R) and train random 240 

forest (RF) and extreme gradient boosting (GB) models to predict R based on latitude, 241 

longitude, Julian day, climatic region, 200 m composite Tb and NDVI, and 200 m elevation, 242 

population, and land cover. We use each of these models predict the residual for all 200 m cell-243 

days (Rp_rf and Rp_gb, respectively). 244 

In stage 4, we calibrate a generalized additive model that ensembles Rp_rf and Rp_gb. We use a 245 

tensor product smooth with interaction to allow the relative performance of the RF and GB 246 
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models to vary by location and with the magnitude of the predicted residual. Finally, we add 247 

the ensemble predictions to Tap_1km to get daily 200 m predicted Ta for large urban areas 248 

(Tap_200m). This is the 200 m Ta model. 249 

2.8.1. Stage 3: increasing spatial resolution to 200 m across large urban areas 250 

In stage 3 we increase the spatial resolution of our predictions over large urban areas. We start 251 

by associating each 200 m grid cell with Tap_1km (Ta predicted in stage 2 by the final 1 km model) 252 

from the 1 km grid cell that contains the 200 m grid cell. Next, we calculate the residuals (R) 253 

for all 200 m grid cell-days with a weather station Ta observation by subtracting observed Ta 254 

from Tap_1km. The number of cell-days with a weather station observation varies by year; on 255 

average there are about 462 thousand for Tmean and 789 thousand for each of Tmin and Tmax. We 256 

use these cell-days to train a random forest and an extreme gradient boosting (XGBoost) model 257 

with the equation: 258 

R'( = 𝑓 1
T)*_,-.'( , T/'0, NDVI'0, Land	Cover'12 ,
Climate' , Elevation' , Population' , x' , y' , j

I + 𝜀'( Eq. 2 

where Rij is the residual of the 1 km Ta model associated with 200 m grid cell i on day j; f 259 

designates the random forest or extreme gradient boosting function; Tap_1kmij is the 1 km Ta 260 

model prediction associated with 200 m grid cell i on day j; Tbim is the Landsat top-of-261 

atmosphere brightness temperature of cell i for the calendar month m in which day j falls; 262 

NDVIim is the Landsat NDVI of cell i for the calendar month m in which day j falls; Land 263 

Coverily is the fraction of cell i occupied by each land cover group l in the CLC inventory year 264 

y closest to day j; Climatei is the climatic region of cell i; Elevationi is the elevation of cell i; 265 

Populationi is the population of cell i; xi and yi are the geographical coordinates of cell i; j is the 266 

Julian day; and eij is the error for cell i on day j. 267 

We use the R packages ranger (Wright and Ziegler, 2017), XGBoost (Chen and Guestrin, 2016), 268 

and mlr (Bischl et al., 2016) to train the random forest and XGBoost models. We tune the 269 

models using the sequential model-based optimization of package mlrMBO (Bischl et al., 270 

2017). Briefly, mlrMBO estimates optimal hyperparameter values by iteratively training and 271 

evaluating a model using hyperparameter values that are chosen based on the performance of 272 

previous iterations. We use a fixed number of iterations and evaluate performance as the mean 273 

RMSE of two random 80% holdouts (i.e. we train the model on a 20% random sample of the 274 

data, predict and calculate RMSE for the held-out 80%, repeat, and take the mean of the two 275 
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RMSEs). Initial exploration showed that this resampling approach produced stable estimates of 276 

RMSE at a lower computational cost than cross-validation. 277 

For the random forest, we use 400 trees and a minimum of 5 observations per node, and tune 278 

mtry (the number of variables to consider for each split) from 3 to 12 (25% to 100% of the 279 

explanatory variables) using 6 mlrMBO iterations. Initial exploration showed that using more 280 

than 400 trees only marginally increased performance and had a high computational cost. For 281 

the XGBoost model, we use the gbtree booster with 100 rounds and set gamma (the minimum 282 

loss reduction for a split) to 5. We use 24 mlrMBO iterations to tune eta (the learning rate) from 283 

0.1 to 0.3, the maximum tree depth from 5 to 20, the minimum number of observations per node 284 

from 3 to 30, and the fraction of features used in each tree from 0.75 to 1.  285 

We evaluate the performance of the stage 3 models using 5-fold cross-validation with nested 286 

tuning. We use the final stage 3 random forest and XGBoost models to predict the residual of 287 

the 1 km Ta model (Rp_rf and Rp_xgb, respectively) for all 200 m cell-days. 288 

2.8.2. Stage 4: improving 200 m predictions 289 

In stage 4 we improve the stage 3 predictions by ensembling. We use all 200 m grid cell-days 290 

with a weather station Ta observation to calibrate a generalized additive model (GAM) with the 291 

formula: 292 

R'( = 𝑡(x' , y' , ) × R*_34'( + 𝑡(x' , y') × R*_5/'( + 𝜀'( Eq. 3 

where Rij is the residual of the 1 km Ta model associated with 200 m grid cell i on day j; t(xi, 293 

yi) is a tensor product smooth of the x and y coordinates of cell i; Rp_rfij and Rp_gbij are the 294 

predicted residuals of the 1 km Ta model from the stage 3 random forest and XGBoost model, 295 

respectively, for cell i on day j; and eij is the error for cell i on day j. The GAM averages the 296 

random forest and XGBoost predicted residuals using weights that vary both by location and 297 

with the magnitude of each model’s predicted residual. Finally, we add the ensemble-predicted 298 

residuals for all 200 m grid cells to Tap_1km (Ta predicted in stage 2 by the final 1 km model) to 299 

obtain daily 200 m predicted Ta (Tap_200m) across large urban areas. 300 

2.8.3. Performance assessment 301 

We use 10-fold out-of-sample cross-validation to assess the overall performance of the models. 302 

For the random forest and XGBoost model we use nested tuning (i.e. within each cross-303 

validation fold we tune the model as described in section 2.8.1). To evaluate the models’ ability 304 
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to capture both spatial and temporal patterns in Ta, we also calculate the spatial and temporal 305 

components of the errors. The spatial component is the difference at each station between the 306 

annual mean of daily observed Ta (T)), and the annual mean of daily predicted Ta (T)*). The 307 

temporal component is the difference at each station between DTa and DTap where DTa is the 308 

difference between daily observed Ta and T) and DTap is the difference between daily predicted 309 

Ta and T)*. We use Google Earth Engine (Gorelick et al., 2017) to quality assure and composite 310 

Landsat Tb and NDVI and aggregate them to the 200 m grid cells. For all other data processing 311 

and analyses we use R version 3.4.4 (R Core Team, 2018). 312 

3. Results 313 

Table 2 presents the mean 10-fold cross-validated performance of the stage 1 models 314 

(predicting daily 1 km Ta from LST) across all years. The models perform very well, with R2 315 

of 0.92 or higher, RMSE of less than 2 °C, and mean absolute error (MAE) of less than 1.5 °C. 316 

All models have very low bias: the slope of observed vs. predicted Ta is 1.00 while the intercept 317 

ranges from 0.01 to 0.02. The Tmean models perform best overall (MAE 0.94), followed by the 318 

Tmax (MAE 1.35) and Tmin (MAE 1.43) models. The models capture both spatial and temporal 319 

variation in Ta and show little variation in performance between years, although overall Tmean 320 

performance decreases slightly after 2010, possibly reflecting degradation of the Terra MODIS 321 

instrument (Table S4). Consistent with previous studies, nighttime LST is the best predictor of 322 

Tmin and Tmean while daytime LST is the best predictor of Tmax (Oyler et al., 2016; Rosenfeld et 323 

al., 2017; Yoo et al., 2018). Aqua LST is a better predictor of Tmin and Tmax while Terra LST is 324 

a better predictor of Tmean. This is expected as the Aqua overpasses (approximately 1:30 and 325 

13:30 local solar time) are closer to the time at which Tmin and Tmax typically occur in France. 326 

However, Aqua LST is only available since July 2002, so we use Terra LST for all models prior 327 

to 2003. 328 

Table 2. Stage 1 model (predicting daily 1 km Ta from LST): 10-fold cross-validated performance 329 
across all years (2000 – 2016), overall, spatial, and temporal components. 330 

    Overall  Spatial  Temporal 
  N*  R2 RMSE MAE  R2 RMSE MAE  R2 RMSE MAE 
Tmin  354  0.92 1.89 1.43  0.89 1.10 0.80  0.94 1.61 1.19 
Tmean  205  0.97 1.29 0.94  0.95 0.83 0.57  0.97 1.15 0.84 
Tmax  324  0.95 1.81 1.35  0.88 1.23 0.89  0.96 1.52 1.12 

* N = mean thousands of observations used to fit each annual model 331 
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Table 3 presents the 10-fold cross-validated performance of the stage 1 models across all years 332 

by calendar month and season and Table 4 presents the performance by climatic region and 333 

urban vs. rural locations. The Tmin and Tmean models perform slightly less well in winter months, 334 

possibly due to higher LST missingness from more frequent cloud cover. The Tmax model 335 

performs best in late winter, early spring, and fall. The models perform less well in the 336 

mountain, semi-continental, and modified Mediterranean climates. These climates occur in 337 

mountainous areas where large contrasts in topography and land cover make modelling 338 

particularly challenging; other factors not included in the model may also reduce performance 339 

in these areas. The models perform slightly better in peri-urban areas than in urban and rural 340 

areas, possibly due to the higher density of weather stations (peri-urban areas have the most 341 

stations per km2). 342 

Fig. 2 shows the spatial pattern of the daily 1 km Ta predictions of the stage 2 model on selected 343 

winter and summer days. On the cold winter day of Feb 18, 2003, predictions range from Tmin 344 

of -17 °C in parts of the Alps, the Massif Central, and the Pyrenees to Tmax of 11 °C on the 345 

Mediterranean coast. The urban heat island of Paris is faintly visible in the north center of the 346 

Tmin and Tmean maps but disappears on the Tmax map. Spatial contrasts corresponding to terrain 347 

features are well resolved, and the spatial pattern of Tmin vs. Tmean vs. Tmax varies most in the 348 

north, northeast, and southwest. 349 

Table 3. Stage 1 model performance (predicting daily 1 km Ta from LST): 10-fold cross-validated 350 
performance across all years (2000 – 2016), by month and season. 351 

  Tmin  Tmean  Tmax 
  R2 RMSE MAE  R2 RMSE MAE  R2 RMSE MAE 
Jan  0.83 2.16 1.60  0.89 1.54 1.11  0.86 1.87 1.37 
Feb  0.84 2.03 1.51  0.91 1.37 0.99  0.89 1.74 1.28 
Mar  0.80 1.92 1.46  0.91 1.22 0.91  0.89 1.72 1.28 
Apr  0.77 1.82 1.39  0.91 1.17 0.85  0.87 1.75 1.32 
May  0.80 1.75 1.33  0.92 1.20 0.86  0.85 1.85 1.39 
Jun  0.81 1.74 1.32  0.92 1.23 0.90  0.84 1.94 1.46 
Jul  0.79 1.71 1.30  0.92 1.19 0.88  0.84 1.90 1.44 
Aug  0.78 1.77 1.35  0.92 1.18 0.88  0.87 1.89 1.43 
Sep  0.79 1.83 1.40  0.92 1.12 0.84  0.87 1.70 1.29 
Oct  0.83 1.94 1.47  0.91 1.26 0.93  0.88 1.67 1.25 
Nov  0.82 2.02 1.52  0.89 1.42 1.03  0.88 1.69 1.25 
Dec  0.82 2.17 1.61  0.86 1.69 1.21  0.84 1.94 1.39 
Winter  0.83 2.12 1.57  0.89 1.55 1.11  0.86 1.86 1.35 
Spring  0.86 1.83 1.40  0.94 1.20 0.87  0.91 1.77 1.33 
Summer  0.80 1.74 1.32  0.92 1.20 0.89  0.86 1.91 1.44 
Fall  0.87 1.92 1.46  0.95 1.26 0.92  0.93 1.69 1.27 
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Table 4. Stage 1 model performance (predicting daily 1 km Ta from LST): 10-fold cross-validated 352 
performance across all years (2000 – 2016), by climatic region and urban vs. rural locations. 353 

 Tmin  Tmean  Tmax 
 R2 RMSE MAE  R2 RMSE MAE  R2 RMSE MAE 
Mountain 0.90 2.22 1.71  0.95 1.69 1.25  0.93 2.26 1.73 
Semi-continental 0.91 2.11 1.61  0.96 1.44 1.07  0.95 2.00 1.52 
Modified oceanic 0.94 1.53 1.16  0.98 0.98 0.73  0.98 1.33 1.01 
Transitional oceanic 0.92 1.81 1.37  0.97 1.20 0.88  0.95 1.74 1.31 
Oceanic 0.90 1.79 1.33  0.96 1.20 0.88  0.94 1.83 1.36 
Mod. Mediterranean 0.90 2.22 1.71  0.96 1.43 1.07  0.94 2.03 1.55 
Southwest basin 0.94 1.60 1.22  0.98 1.04 0.76  0.97 1.40 1.04 
Mediterranean 0.93 1.81 1.40  0.98 1.11 0.84  0.96 1.62 1.25 
Urban 0.93 1.85 1.35  0.97 1.32 0.96  0.95 1.79 1.35 
Peri-urban* 0.93 1.71 1.29  0.97 1.18 0.87  0.96 1.71 1.27 
Rural 0.92 1.90 1.44  0.97 1.30 0.94  0.95 1.82 1.36 

* non-urban locations within 5 km of a large urban area 354 

On the hot summer day of Aug 10, 2012, predictions ranged from a Tmin of 3 °C in parts of the 355 

Alps to a Tmax of 39 °C in the southeast and southwest. On the Tmin map, the southwestern cities 356 

of Toulouse and Bordeaux stand out as hotspots, while Paris and Rouen are faintly visible as 357 

warm spots in the north. The north is colder than the Vosges mountains in the northeast and the 358 

Pyrenees in the southwest are warmer than the alps. The warmest areas are the southern Rhone 359 

river valley in the southeast and a patch of the southwestern Atlantic coast. On the Tmean map, 360 

Paris and Rouen are still visible, Lyon stands out in the east, and a few northwestern cities 361 

appear. Much of the southwest is as warm as the southeast, and the southwestern cities are 362 

harder to distinguish from the countryside. On the Tmax map, Lyon, Rouen, and some 363 

northwestern cities remain faintly visible, Pau and Tarbes appear in the southwest, and the north 364 

is warmer than the Vosges. 365 
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 366 

Fig. 2. Predicted 1 km Ta from the stage 2 model on selected days: Feb 18, 2003 (top row) and Aug 367 
10, 2012 (bottom row). 368 

Table 5 presents the 10-fold cross-validated performance of the stage 4 models (predicting 369 

daily 200 m residuals of the 1 km model using an ensemble) across all years and by month and 370 

season; Table 6 presents the performance by climatic region and urban vs. rural locations. These 371 

models also perform well, with overall R2 of 0.79 to 0.85, RMSE of 0.41 to 0.63, and MAE of 372 

0.26 to 0.39 (residual scale). As with the stage 1 models, the RTmean predictions are slightly 373 

better than the RTmin or RTmax predictions and the models perform least well in the mountain, 374 

semi-continental, and modified Mediterranean climates. The RTmin model performs slightly 375 

worse in late summer; otherwise performance is quite consistent across months and seasons. 376 

The models have low bias, with a slope of observed vs. predicted of 1.00 and intercept of zero 377 

for every year. Performance is consistent across years except for the RTmin model, which 378 

performs slightly better in 2000 – 2002, and the RTmean model, which performs best in 2004 379 

(Table S6). 380 

 381 
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Table 5. Stage 4 model performance (predicting daily 200 m residuals with an ensemble): 10-fold 382 
cross-validated performance across years (2000 – 2016), overall and by month and season (residual 383 
scale). 384 

  RTmin  RTmean  RTmax 
  R2 RMSE MAE  R2 RMSE MAE  R2 RMSE MAE 
Overall  0.79 0.63 0.39  0.79 0.41 0.26  0.85 0.51 0.31 
             
Jan  0.84 0.56 0.34  0.82 0.40 0.24  0.85 0.48 0.27 
Feb  0.82 0.59 0.36  0.81 0.39 0.24  0.84 0.49 0.28 
Mar  0.80 0.63 0.39  0.79 0.40 0.26  0.83 0.50 0.30 
Apr  0.77 0.63 0.40  0.76 0.39 0.25  0.83 0.51 0.31 
May  0.77 0.60 0.37  0.76 0.38 0.24  0.84 0.51 0.31 
Jun  0.77 0.62 0.40  0.79 0.39 0.25  0.87 0.52 0.33 
Jul  0.76 0.66 0.43  0.77 0.42 0.28  0.86 0.55 0.35 
Aug  0.77 0.67 0.44  0.78 0.41 0.28  0.87 0.54 0.34 
Sep  0.77 0.69 0.46  0.75 0.42 0.29  0.84 0.54 0.34 
Oct  0.78 0.65 0.41  0.76 0.42 0.27  0.82 0.52 0.32 
Nov  0.80 0.61 0.37  0.79 0.41 0.25  0.81 0.50 0.29 
Dec  0.83 0.60 0.37  0.84 0.43 0.27  0.84 0.52 0.31 
             
Winter  0.83 0.58 0.36  0.83 0.41 0.25  0.84 0.50 0.28 
Spring  0.78 0.62 0.39  0.77 0.39 0.25  0.84 0.51 0.31 
Summer  0.76 0.65 0.42  0.78 0.41 0.27  0.86 0.54 0.34 
Fall  0.78 0.65 0.41  0.77 0.42 0.27  0.82 0.52 0.32 

 385 

Table 6. Stage 4 model performance (predicting daily 200 m residuals with an ensemble): 10-fold 386 
cross-validated performance across all years (2000 – 2016), by climatic region and urban vs. rural 387 
locations (residual scale). 388 

  RTmin  RTmean  RTmax 
  R2 RMSE MAE  R2 RMSE MAE  R2 RMSE MAE 
Mountain  0.83 0.67 0.42  0.83 0.46 0.30  0.88 0.58 0.36 
Semi-continental  0.81 0.66 0.42  0.79 0.43 0.28  0.86 0.55 0.34 
Modified oceanic  0.75 0.54 0.33  0.76 0.33 0.21  0.81 0.40 0.23 
Transitional oceanic  0.77 0.62 0.39  0.78 0.39 0.25  0.84 0.50 0.30 
Oceanic  0.75 0.62 0.40  0.77 0.39 0.26  0.83 0.50 0.30 
Mod. Mediterranean  0.82 0.73 0.47  0.78 0.47 0.31  0.84 0.62 0.41 
Southwest basin  0.75 0.59 0.36  0.69 0.38 0.24  0.78 0.48 0.29 
Mediterranean  0.77 0.67 0.44  0.73 0.42 0.28  0.80 0.57 0.39 
             
Urban  0.79 0.53 0.32  0.82 0.37 0.23  0.84 0.46 0.27 
Peri-urban*  0.76 0.58 0.36  0.78 0.37 0.24  0.83 0.47 0.28 
Rural  0.79 0.63 0.40  0.79 0.41 0.26  0.85 0.52 0.32 

* non-urban locations within 5 km of a large urban area 389 

Spatial location and elevation are generally the most important features in the random forest 390 

and XGBoost models (Fig. S2 – S3). Day of year and predicted 1 km Ta were equally or even 391 

more important in some models but less important in others. Landsat Tb and NDVI and 392 
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population also contributed to the models, particularly for RTmean. The land cover and climatic 393 

region variables were the least important. 394 

Fig. 3 shows the spatial pattern of predicted 1 km Tmin from the stage 2 model and predicted 395 

200 m Tmin from the stage 4 model for the Paris metropolitan area (northern France, population 396 

12.5 million), the Toulouse metropolitan area (southwestern France, Population 1.3 million), 397 

and the Nancy metropolitan area (northeastern France, population 250,000) on the cold winter 398 

day of Feb 18, 2003. In the large city of Paris, an urban heat island is clearly visible centered 399 

over the large urban core where Tmin is about 5 °C warmer than the rural surroundings. The 200 400 

m predictions are slightly higher than the 1 km predictions in the peripheral built-up areas and 401 

capture fine details such as the warmer Seine river and cooler parks. In the midsize city of 402 

Toulouse, the 1 km predictions capture an urban heat island over the dense city center and the 403 

suburbs to the northwest and southeast, with Tmin about 3 °C warmer than the rural 404 

surroundings. The 200 m predictions show warm Tmin in the southwestern suburbs where 1 km 405 

Tmin was cool and capture the Garonne river in the center. The northwestern and northeastern 406 

suburbs have greater contrast with some areas slightly cooler than in the 1 km predictions and 407 

others slightly warmer. In the small city of Nancy, at 1 km both the city center and an area of 408 

ponds to the southeast have Tmin about 2 °C warmer than the surroundings. The 200 m 409 

predictions show warmer Tmin throughout most of the built-up area with sharp contrasts between 410 

built and open areas: compared to the 1 km predictions, Tmin is up to 2 °C higher in the center, 411 

north, and west of the built-up area and up to 2 °C lower over parks and over fields abutting the 412 

eastern edges of the city. 413 
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 414 

Fig. 3. Predicted 1 km Tmin from the stage 2 model alone (top row) and with predicted 200 m Tmin from 415 
the stage 4 model overlaid (bottom row) on Feb 18, 2003 over the Paris, Toulouse, and Nancy 416 
metropolitan areas. 417 

4. Discussion 418 

Spatiotemporally-resolved Ta at high resolutions is essential to understanding, monitoring, and 419 

managing the health effects of Ta, a pressing issue in a warming, urbanizing world. We have 420 

developed the longest (2000 – 2016), highest spatial resolution (1 km) model of daily Ta 421 

available for continental France aimed at public health research. Furthermore, our model 422 

provides an unprecedented spatial resolution of 200 m over large urban areas. 423 

A key feature of our model is its ability to capture spatial variation in Ta. Previous 424 

epidemiological research in France linked geographical variation in mortality risk to both 425 

typical (Laaidi et al., 2006) and extreme Ta (Le Tertre et al., 2006) using weather stations. 426 

Recent studies in the USA showed that a daily 1 km Ta dataset similar to ours was needed to 427 

detect associations with low birth weight (Kloog et al., 2015) and mortality (Shi et al., 2015). 428 

Our model will allow future studies in France to include participants in rural areas far from 429 

weather stations and will also improve exposure estimates in urban areas. 430 
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Another key feature is our model’s 200 m spatial resolution over urban areas. Estimating Ta 431 

exposure in cities is particularly challenging due to complex built environments and the scarcity 432 

of representative Ta measurements, as weather stations tend to be located outside cities (e.g. at 433 

airports) or in large parks. Consequently, few epidemiological studies have examined intra-434 

urban variation in Ta. In Milan, Italy, de’Donato et al. (2008) found that on hot summer days 435 

temperature measured at a nearby airport tended to be higher and more strongly associated with 436 

mortality than temperature measured in the city center, but in Turin and Rome there was little 437 

difference in temperature or its association with mortality between the city center and a nearby 438 

airport. In Paris, France, Laaidi et al. (2012) used 1 km LST as a proxy for Ta and found an 439 

association between minimum LST and mortality during the August 2003 heatwave. In 440 

Brisbane, Australia, Guo et al. (2013) found no significant difference in the mortality ~ Ta 441 

relationship when estimating Ta exposure using a central weather station vs. kriging, but noted 442 

that there was little spatial variation in temperature across the city. In Seattle, USA, Ho et al. 443 

(2017) found a significant association between spatial variation in mortality on extremely hot 444 

days and modeled humidex (a measure of both Ta and humidity). Our model will help future 445 

studies clarify the health effects of intra-urban Ta variation. 446 

Our model’s unique combination of lower spatial resolution (1 km) predictions over a large 447 

geographical extent and higher spatial resolution (200 m) predictions over more densely 448 

populated areas will be particularly helpful for epidemiological studies. Broad geographical 449 

coverage is essential to including rural residents which have often been excluded from 450 

epidemiological studies, especially in France where the 103 largest urban areas covered by our 451 

200 m Ta model contain less than half of the population. At the same time, high spatial 452 

resolution is important in dense urban areas where Ta can vary at fine spatial scales and the 453 

effect of spatial Ta variation is less well understood. Limiting the 200 m resolution predictions 454 

to large urban areas reduces computational effort while still covering a large portion of the 455 

population. 456 

A fourth feature of our model is its ability to predict daily Tmin, Tmean, and Tmax. While Tmean 457 

suffices for many health studies (Barnett et al., 2010), certain research questions may benefit 458 

from having Tmin and Tmax. For example, heatwave studies may wish to use heatwave definitions 459 

that refer to Tmin or Tmax (Xu et al., 2016) or explore whether certain populations are sensitive 460 

to Tmin or nighttime Ta (Laaidi et al., 2012; Murage et al., 2017). Tmax might also be of interest 461 

because it tends to occur in the afternoon when people are more likely to be outside and active 462 
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(Guo et al., 2017). Tmin and Tmax also allow calculating diurnal Ta range for studies of Ta 463 

variability and delineating diurnal and nocturnal urban heat islands for urban climate studies. 464 

We demonstrate that allowing the relationship between 1 km LST and Ta to vary by climatic 465 

region as well as by day slightly improves performance: our stage 1 Tmean model achieves 466 

overall R2 of 0.97 with RMSE of 1.29 whereas an initial version achieved R2 of 0.96 with 467 

RMSE of 1.52 (Kloog et al., 2017). We also demonstrate that a GAM ensemble of machine 468 

learning models can use higher spatial resolution predictors including Landsat thermal data to 469 

account for some of the residual error in our daily 1 km Ta predictions. Adding this local stage 470 

both increases the spatial resolution of our model and improves performance. 471 

One limitation of our method is its reliance on historical satellite thermal data. Our model is 472 

restricted to the MODIS period of record, which starts in 2000. Older thermal data is available 473 

from other satellites (e.g. Landsat), but not with a twice-daily revisit time. In the USA, Oyler et 474 

al. (2015) showed that an anomaly-climatology approach could model daily Tmin and Tmax since 475 

1948 from 8-day composite MODIS LST, although their approach may have smoothed 476 

spatiotemporal Ta trends. 477 

Our model can estimate past Ta but, unlike numerical weather prediction models, cannot 478 

forecast future Ta. However, our model is much simpler, which allows us to run it at relatively 479 

high spatial resolutions (1 km and 200 m). In comparison, Météo France’s weather prediction 480 

model has run at a spatial resolution of 1.3 km only since 2015, and the ECMWF’s most recent 481 

ERA5 reanalysis has a spatial resolution of just 30 km. And recent studies suggest that 482 

incorporating LST from geostationary satellites might allow us to estimate close to real-time Ta 483 

(Bechtel et al., 2017; Keramitsoglou et al., 2016), or possibly forecast next-day Ta from present-484 

day MODIS LST (Yoo et al., 2018). 485 

Another limitation of our approach is the temporal misalignment between observations of LST 486 

and Ta in the stage 1 model: the satellite overpass does not always coincide with the time that 487 

Tmin or Tmax occurs. Our model’s low MAE (typically less than 1.5 °C) suggests that it produces 488 

good Ta estimates despite this; incorporating high temporal-resolution (e.g. hourly) LST from 489 

geostationary satellites might improve performance. 490 

A fourth limitation of our model is the need to fill gaps in satellite thermal data. This can 491 

introduce error and may make modelling impossible in some areas or time periods. Landsat 492 

data is particularly challenging due to the satellites’ 16-day revisit time; parts of France have 493 
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no usable Landsat observations during some winters. The few previous studies that used 494 

Landsat thermal data to model Ta limited their analysis to days and locations where Landsat 495 

data was available (Pelta and Chudnovsky, 2017) or used a few scenes that were deemed typical 496 

of hot summer days (Ho et al., 2016, 2014; Wicki et al., 2018). We fill gaps in Landsat Tb by 497 

compositing all scenes for each calendar month across 17 years. This smooths spatial patterns 498 

and means we rely entirely on MODIS to capture short-term temporal variation in LST. 499 

Combining data from Landsat 5, 7, and 8 may also introduce error as the sensors operate at 500 

different wavelengths and spatial resolutions (Table 1). Future studies may benefit from the 501 

forthcoming Landsat Surface Temperature product (Malakar et al., 2018) which might be more 502 

consistent, and would allow using LST as a predictor rather than brightness temperature. 503 

Future studies could also make use of high spatial-resolution LST from forthcoming satellites. 504 

Landsat 9 will have a spatial resolution and revisit time similar to the previous Landsat 505 

satellites, but should offer better LST retrieval thanks to the correction of the stray light 506 

contamination that affects Landsat 8 (Hair et al., 2018). HyspIRI aims to provide a 60 m spatial 507 

resolution with a revisit time of 5 days (Lee et al., 2015), while MISTIGRI aims for 50 m spatial 508 

resolution with a daily revisit, but with coverage only within 15 ground tracks (Lagouarde et 509 

al., 2013). If these satellites improve LST retrieval and reduce missingness then they could 510 

improve our method’s ability to capture Ta over urban areas. 511 

MODIS LST also contains gaps, which we do not fill. Rather, we predict daily 1 km Ta only 512 

where MODIS LST is available and fill gaps in the predictions based on nearby Ta observations. 513 

Li et al. (2018) achieved similar performance (RMSE 2.1 °C Tmin, 1.9 °C Tmax) for urban and 514 

surrounding areas in the USA by first filling gaps in MODIS LST using spatiotemporally nearby 515 

LST observations and then predicting daily Ta using geographically weighted regression. These 516 

approaches both assume that the spatial distribution of Ta or LST is similar on clear and cloudy 517 

days. Zhu et al. (2017) used the MODIS atmospheric profile and cloud cover products to 518 

estimate instantaneous Ta in parts of China and the USA. Their approach had the additional 519 

advantage of not requiring any weather station Ta observations to calibrate the model, but it 520 

produced larger errors (RMSE 3.4 °C China, 2.9, USA). 521 

Despite these limitations, our model provides very good predictions of historical daily Ta for 522 

continental France at a 1 km or finer spatial resolution. These predictions may help compare 523 

rural and urban populations, identify and monitor urban heat islands, and better understand 524 
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health effects. More broadly, our methodology and predictions may be useful in other 525 

geographical areas and for any application where Ta is a key variable. 526 
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