D. T. Le, J. N. Uram, H. Wang, B. R. Bartlett, H. Kemberling et al., PD-1 Blockade in Tumors with Mismatch-Repair Deficiency, New England Journal of Medicine, vol.372, issue.26, pp.2509-2520, 2015.

N. A. Rizvi, M. D. Hellmann, A. Snyder, P. Kvistborg, V. Makarov et al., Mutational landscape determines sensitivity to PD-1 blockade in non?small cell lung cancer, Science, vol.348, issue.6230, pp.124-128, 2015.

P. C. Tumeh, C. L. Harview, J. H. Yearley, I. P. Shintaku, E. J. Taylor et al., PD-1 blockade induces responses by inhibiting adaptive immune resistance, Nature, vol.515, issue.7528, pp.568-571, 2014.

, J Immunother Cancer, 2020.

A. Ribas, D. S. Shin, J. Zaretsky, J. Frederiksen, A. Cornish et al., PD-1 Blockade Expands Intratumoral Memory T Cells, Cancer Immunology Research, vol.4, issue.3, pp.194-203, 2016.

M. W. Teng, S. F. Ngiow, A. Ribas, and M. J. Smyth, Classifying Cancers Based on T-cell Infiltration and PD-L1, Cancer Research, vol.75, issue.11, pp.2139-2145, 2015.

J. R. Brahmer, C. G. Drake, I. Wollner, J. D. Powderly, J. Picus et al., Phase I Study of Single-Agent Anti?Programmed Death-1 (MDX-1106) in Refractory Solid Tumors: Safety, Clinical Activity, Pharmacodynamics, and Immunologic Correlates, Journal of Clinical Oncology, vol.28, issue.19, pp.3167-3175, 2010.

S. L. Topalian, M. Sznol, D. F. Mcdermott, H. M. Kluger, R. D. Carvajal et al., Survival, Durable Tumor Remission, and Long-Term Safety in Patients With Advanced Melanoma Receiving Nivolumab, Journal of Clinical Oncology, vol.32, issue.10, pp.1020-1030, 2014.

J. M. Taube, R. A. Anders, G. D. Young, H. Xu, R. Sharma et al., Colocalization of Inflammatory Response with B7-H1 Expression in Human Melanocytic Lesions Supports an Adaptive Resistance Mechanism of Immune Escape, Science Translational Medicine, vol.4, issue.127, pp.127ra37-127ra37, 2012.

S. L. Topalian, F. S. Hodi, J. R. Brahmer, S. N. Gettinger, D. C. Smith et al., Safety, Activity, and Immune Correlates of Anti?PD-1 Antibody in Cancer, New England Journal of Medicine, vol.366, issue.26, pp.2443-2454, 2012.

S. Gandini, D. Massi, and M. Mandalà, PD-L1 expression in cancer patients receiving anti PD-1/PD-L1 antibodies: A systematic review and meta-analysis, Critical Reviews in Oncology/Hematology, vol.100, pp.88-98, 2016.

A. Sivan, L. Corrales, N. Hubert, J. B. Williams, K. Aquino-michaels et al., Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy, Science, vol.350, issue.6264, pp.1084-1089, 2015.

L. Zitvogel, L. Galluzzi, S. Viaud, M. Vétizou, R. Daillère et al., Cancer and the gut microbiota: An unexpected link, Science Translational Medicine, vol.7, issue.271, pp.271ps1-271ps1, 2015.

B. C. Miller, D. R. Sen, R. Al-abosy, K. Bi, Y. V. Virkud et al., Subsets of exhausted CD8+ T cells differentially mediate tumor control and respond to checkpoint blockade, Nature Immunology, vol.20, issue.3, pp.326-336, 2019.

H. Li, A. M. Van-der-leun, I. Yofe, Y. Lubling, D. Gelbard-solodkin et al., Dysfunctional CD8 T Cells Form a Proliferative, Dynamically Regulated Compartment within Human Melanoma, Cell, vol.176, issue.4, pp.775-789.e18, 2019.

D. S. Thommen, V. H. Koelzer, P. Herzig, A. Roller, M. Trefny et al., A transcriptionally and functionally distinct PD-1+ CD8+ T cell pool with predictive potential in non-small-cell lung cancer treated with PD-1 blockade, Nature Medicine, vol.24, issue.7, pp.994-1004, 2018.

P. Chen, W. Roh, A. Reuben, Z. A. Cooper, C. N. Spencer et al., Analysis of Immune Signatures in Longitudinal Tumor Samples Yields Insight into Biomarkers of Response and Mechanisms of Resistance to Immune Checkpoint Blockade, Cancer Discovery, vol.6, issue.8, pp.827-837, 2016.

A. C. Huang, M. A. Postow, R. J. Orlowski, R. Mick, B. Bengsch et al., T-cell invigoration to tumour burden ratio associated with anti-PD-1 response, Nature, vol.545, issue.7652, pp.60-65, 2017.

A. C. Huang, R. J. Orlowski, X. Xu, R. Mick, S. M. George et al., A single dose of neoadjuvant PD-1 blockade predicts clinical outcomes in resectable melanoma, Nature Medicine, vol.25, issue.3, pp.454-461, 2019.

A. C. Anderson, N. Joller, and V. K. Kuchroo, Lag-3, Tim-3, and TIGIT: Co-inhibitory Receptors with Specialized Functions in Immune Regulation, Immunity, vol.44, issue.5, pp.989-1004, 2016.

S. Simon, V. Vignard, E. Varey, T. Parrot, A. Knol et al., Emergence of High-Avidity Melan-A?Specific Clonotypes as a Reflection of Anti?PD-1 Clinical Efficacy, Cancer Research, vol.77, issue.24, pp.7083-7093, 2017.
URL : https://hal.archives-ouvertes.fr/inserm-01636933

J. Chauvin, O. Pagliano, J. Fourcade, Z. Sun, H. Wang et al., TIGIT and PD-1 impair tumor antigen?specific CD8+ T cells in melanoma patients, Journal of Clinical Investigation, vol.125, issue.5, pp.2046-2058, 2015.

T. Inozume, T. Yaguchi, J. Furuta, K. Harada, Y. Kawakami et al., Melanoma Cells Control Antimelanoma CTL Responses via Interaction between TIGIT and CD155 in the Effector Phase, Journal of Investigative Dermatology, vol.136, issue.1, pp.255-263, 2016.

W. C. Dougall, S. Kurtulus, M. J. Smyth, and A. C. Anderson, TIGIT and CD96: new checkpoint receptor targets for cancer immunotherapy, Immunological Reviews, vol.276, issue.1, pp.112-120, 2017.

M. Allard, B. Couturaud, L. Carretero-iglesia, M. N. Duong, J. Schmidt et al., TCR-ligand dissociation rate is a robust and stable biomarker of CD8+ T cell potency, JCI Insight, vol.2, issue.14, 2017.

D. T. Utzschneider, M. Charmoy, V. Chennupati, L. Pousse, D. P. Ferreira et al., T Cell Factor 1-Expressing Memory-like CD8+ T Cells Sustain the Immune Response to Chronic Viral Infections, Immunity, vol.45, issue.2, pp.415-427, 2016.

. Sj-i, M. Hashimoto, and M. Y. Gerner, Defining CD8+ T cells that provide the proliferative burst after PD-1 therapy, Nature, vol.537, pp.417-438, 2016.

R. He, S. Hou, C. Liu, A. Zhang, Q. Bai et al., Follicular CXCR5-expressing CD8+ T cells curtail chronic viral infection, Nature, vol.537, issue.7620, pp.412-416, 2016.

Y. A. Leong, Y. Chen, H. S. Ong, D. Wu, K. Man et al., CXCR5+ follicular cytotoxic T cells control viral infection in B cell follicles, Nature Immunology, vol.17, issue.10, pp.1187-1196, 2016.

J. Brummelman, E. M. Mazza, G. Alvisi, F. S. Colombo, A. Grilli et al., High-dimensional single cell analysis identifies stem-like cytotoxic CD8+ T cells infiltrating human tumors, Journal of Experimental Medicine, vol.215, issue.10, pp.2520-2535, 2018.

I. Siddiqui, K. Schaeuble, V. Chennupati, S. A. Fuertes-marraco, S. Calderon-copete et al., Intratumoral Tcf1+PD-1+CD8+ T Cells with Stem-like Properties Promote Tumor Control in Response to Vaccination and Checkpoint Blockade Immunotherapy, Immunity, vol.50, issue.1, pp.195-211.e10, 2019.

+. Cd8-+-t, Cells with Stem-like Properties Promote Tumor Control in Response to Vaccination and Checkpoint Blockade Immunotherapy, Immunity, vol.50, pp.195-211, 2019.

D. Yu and L. Ye, A Portrait of CXCR5+ Follicular Cytotoxic CD8+ T cells, Trends in Immunology, vol.39, issue.12, pp.965-979, 2018.

P. Nghiem, S. Bhatia, E. J. Lipson, W. H. Sharfman, R. R. Kudchadkar et al., Durable Tumor Regression and Overall Survival in Patients With Advanced Merkel Cell Carcinoma Receiving Pembrolizumab as First-Line Therapy, Journal of Clinical Oncology, vol.37, issue.9, pp.693-702, 2019.

N. J. Miller, C. D. Church, S. P. Fling, R. Kulikauskas, N. Ramchurren et al., Merkel cell polyomavirus-specific immune responses in patients with Merkel cell carcinoma receiving anti-PD-1 therapy, Journal for ImmunoTherapy of Cancer, vol.6, issue.1, p.131, 2018.

A. O. Kamphorst, R. N. Pillai, S. Yang, T. H. Nasti, R. S. Akondy et al., Proliferation of PD-1+ CD8 T cells in peripheral blood after PD-1?targeted therapy in lung cancer patients, Proceedings of the National Academy of Sciences, vol.114, issue.19, pp.4993-4998, 2017.

N. Labarriere, A. Fortun, A. Bellec, A. Khammari, B. Dreno et al., A Full GMP Process to Select and Amplify Epitope-Specific T Lymphocytes for Adoptive Immunotherapy of Metastatic Melanoma, Clinical and Developmental Immunology, vol.2013, pp.1-11, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-01727317

M. D. Robinson and A. Oshlack, A scaling normalization method for differential expression analysis of RNA-seq data, Genome Biology, vol.11, issue.3, p.R25, 2010.

C. W. Law, Y. Chen, W. Shi, and G. K. Smyth, voom: precision weights unlock linear model analysis tools for RNA-seq read counts, Genome Biology, vol.15, issue.2, p.R29, 2014.

M. E. Ritchie, B. Phipson, D. Wu, Y. Hu, C. W. Law et al., limma powers differential expression analyses for RNA-sequencing and microarray studies, Nucleic Acids Research, vol.43, issue.7, pp.e47-e47, 2015.

G. K. Smyth, Linear Models and Empirical Bayes Methods for Assessing Differential Expression in Microarray Experiments, Statistical Applications in Genetics and Molecular Biology, vol.3, issue.1, pp.1-25, 2004.

G. K. Smyth, J. Michaud, and H. S. Scott, Use of within-array replicate spots for assessing differential expression in microarray experiments, Bioinformatics, vol.21, issue.9, pp.2067-2075, 2005.

D. Wu and G. K. Smyth, Camera: a competitive gene set test accounting for inter-gene correlation, Nucleic Acids Research, vol.40, issue.17, pp.e133-e133, 2012.

A. Liberzon, A. Subramanian, R. Pinchback, H. Thorvaldsdottir, P. Tamayo et al., Molecular signatures database (MSigDB) 3.0, Bioinformatics, vol.27, issue.12, pp.1739-1740, 2011.

L. Jerby-arnon, P. Shah, M. S. Cuoco, C. Rodman, M. Su et al., A Cancer Cell Program Promotes T Cell Exclusion and Resistance to Checkpoint Blockade, Cell, vol.175, issue.4, pp.984-997.e24, 2018.

S. Simon, Z. Wu, J. Cruard, V. Vignard, A. Fortun et al., TCR Analyses of Two Vast and Shared Melanoma Antigen-Specific T Cell Repertoires: Common and Specific Features, Frontiers in Immunology, vol.9, p.9, 2018.
URL : https://hal.archives-ouvertes.fr/inserm-01885141

R. J. Johnston, L. Comps-agrar, J. Hackney, X. Yu, M. Huseni et al., The Immunoreceptor TIGIT Regulates Antitumor and Antiviral CD8 + T Cell Effector Function, Cancer Cell, vol.26, issue.6, pp.923-937, 2014.

A. O. Kamphorst, A. Wieland, T. Nasti, S. Yang, R. Zhang et al., Rescue of exhausted CD8 T cells by PD-1?targeted therapies is CD28-dependent, Science, vol.355, issue.6332, pp.1423-1427, 2017.

J. D. Miller, R. G. Van-der-most, R. S. Akondy, J. T. Glidewell, S. Albott et al., Human Effector and Memory CD8+ T Cell Responses to Smallpox and Yellow Fever Vaccines, Immunity, vol.28, issue.5, pp.710-722, 2008.

E. Hui, J. Cheung, J. Zhu, X. Su, M. J. Taylor et al., T cell costimulatory receptor CD28 is a primary target for PD-1?mediated inhibition, Science, vol.355, issue.6332, pp.1428-1433, 2017.

J. A. Fraietta, S. F. Lacey, E. J. Orlando, I. Pruteanu-malinici, M. Gohil et al., Determinants of response and resistance to CD19 chimeric antigen receptor (CAR) T cell therapy of chronic lymphocytic leukemia, Nature Medicine, vol.24, issue.5, pp.563-571, 2018.

Q. Ye, D. Song, M. Poussin, T. Yamamoto, A. Best et al., CD137 Accurately Identifies and Enriches for Naturally Occurring Tumor-Reactive T Cells in Tumor, Clinical Cancer Research, vol.20, issue.1, pp.44-55, 2013.

A. Gros, P. F. Robbins, X. Yao, Y. F. Li, S. Turcotte et al., PD-1 identifies the patient-specific CD8+ tumor-reactive repertoire infiltrating human tumors, Journal of Clinical Investigation, vol.124, issue.5, pp.2246-2259, 2014.

A. Pasetto, A. Gros, P. F. Robbins, D. C. Deniger, T. D. Prickett et al., Tumor- and Neoantigen-Reactive T-cell Receptors Can Be Identified Based on Their Frequency in Fresh Tumor, Cancer Immunology Research, vol.4, issue.9, pp.734-743, 2016.

T. Duhen, R. Duhen, R. Montler, J. Moses, T. Moudgil et al., Co-expression of CD39 and CD103 identifies tumor-reactive CD8 T cells in human solid tumors, Nature Communications, vol.9, issue.1, pp.2724-2737, 2018.

Y. Simoni, E. Becht, M. Fehlings, C. Y. Loh, S. Koo et al., Bystander CD8+ T cells are abundant and phenotypically distinct in human tumour infiltrates, Nature, vol.557, issue.7706, pp.575-579, 2018.

K. Chamoto, P. S. Chowdhury, A. Kumar, K. Sonomura, F. Matsuda et al., Mitochondrial activation chemicals synergize with surface receptor PD-1 blockade for T cell-dependent antitumor activity, Proceedings of the National Academy of Sciences, vol.114, issue.5, pp.E761-E770, 2017.

M. T. Chow, A. J. Ozga, R. L. Servis, D. T. Frederick, J. A. Lo et al., Intratumoral Activity of the CXCR3 Chemokine System Is Required for the Efficacy of Anti-PD-1 Therapy, Immunity, vol.50, issue.6, pp.1498-1512.e5, 2019.

, J Immunother Cancer, 2020.

F. Alfei, K. Kanev, M. Hofmann, M. Wu, H. E. Ghoneim et al., TOX reinforces the phenotype and longevity of exhausted T cells in chronic viral infection, Nature, vol.571, issue.7764, pp.265-269, 2019.

O. Khan, J. R. Giles, S. Mcdonald, S. Manne, S. F. Ngiow et al., TOX transcriptionally and epigenetically programs CD8+ T cell exhaustion, Nature, vol.571, issue.7764, pp.211-218, 2019.

A. C. Scott, F. Dündar, P. Zumbo, S. S. Chandran, C. A. Klebanoff et al., TOX is a critical regulator of tumour-specific T cell differentiation, Nature, vol.571, issue.7764, pp.270-274, 2019.

P. Kvistborg, D. Philips, S. Kelderman, L. Hageman, C. Ottensmeier et al., Anti-CTLA-4 therapy broadens the melanoma-reactive CD8+ T cell response, Science Translational Medicine, vol.6, issue.254, pp.254ra128-254ra128, 2014.

C. U. Blank, E. A. Rozeman, L. F. Fanchi, K. Sikorska, B. Van-de-wiel et al., Neoadjuvant versus adjuvant ipilimumab plus nivolumab in macroscopic stage III melanoma, Nature Medicine, vol.24, issue.11, pp.1655-1661, 2018.

S. Kurtulus, A. Madi, G. Escobar, M. Klapholz, J. Nyman et al., Checkpoint Blockade Immunotherapy Induces Dynamic Changes in PD-1?CD8+ Tumor-Infiltrating T Cells, Immunity, vol.50, issue.1, pp.181-194.e6, 2019.

K. E. Yost, A. T. Satpathy, D. K. Wells, Y. Qi, C. Wang et al., Clonal replacement of tumor-specific T cells following PD-1 blockade, Nature Medicine, vol.25, issue.8, pp.1251-1259, 2019.

N. Joller, J. P. Hafler, B. Brynedal, N. Kassam, S. Spoerl et al., Cutting Edge: TIGIT Has T Cell-Intrinsic Inhibitory Functions, The Journal of Immunology, vol.186, issue.3, pp.1338-1342, 2011.

Y. Kong, L. Zhu, T. D. Schell, J. Zhang, D. F. Claxton et al., T-Cell Immunoglobulin and ITIM Domain (TIGIT) Associates with CD8+ T-Cell Exhaustion and Poor Clinical Outcome in AML Patients, Clinical Cancer Research, vol.22, issue.12, pp.3057-3066, 2016.

J. R. Brahmer, S. S. Tykodi, L. Q. Chow, W. Hwu, S. L. Topalian et al., Safety and Activity of Anti?PD-L1 Antibody in Patients with Advanced Cancer, New England Journal of Medicine, vol.366, issue.26, pp.2455-2465, 2012.

P. Jiang, S. Gu, D. Pan, J. Fu, A. Sahu et al., Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response, Nature Medicine, vol.24, issue.10, pp.1550-1558, 2018.

S. Wang, Z. He, X. Wang, H. Li, and X. Liu, Antigen presentation and tumor immunogenicity in cancer immunotherapy response prediction, eLife, vol.8, p.2930, 2019.

. Heeke, . Benzaquen, . Long-mira, . Audelan, . Lespinet et al., In-house Implementation of Tumor Mutational Burden Testing to Predict Durable Clinical Benefit in Non-small Cell Lung Cancer and Melanoma Patients, Cancers, vol.11, issue.9, p.1271, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02381188

P. T. Nghiem, S. Bhatia, E. J. Lipson, R. R. Kudchadkar, N. J. Miller et al., PD-1 Blockade with Pembrolizumab in Advanced Merkel-Cell Carcinoma, New England Journal of Medicine, vol.374, issue.26, pp.2542-2552, 2016.

N. Riaz, J. J. Havel, V. Makarov, A. Desrichard, W. J. Urba et al., Tumor and Microenvironment Evolution during Immunotherapy with Nivolumab, Cell, vol.171, issue.4, pp.934-949.e16, 2017.

S. A. Hogan, A. Courtier, P. F. Cheng, N. F. Jaberg-bentele, S. M. Goldinger et al., Peripheral Blood TCR Repertoire Profiling May Facilitate Patient Stratification for Immunotherapy against Melanoma, Cancer Immunology Research, vol.7, issue.1, pp.77-85, 2018.

A. Wieland, A. O. Kamphorst, N. V. Adsay, J. J. Masor, J. Sarmiento et al., T cell receptor sequencing of activated CD8 T cells in the blood identifies tumor-infiltrating clones that expand after PD-1 therapy and radiation in a melanoma patient, Cancer Immunology, Immunotherapy, vol.67, issue.11, pp.1767-1776, 2018.

H. Inoue, J. Park, K. Kiyotani, M. Zewde, A. Miyashita et al., Intratumoral expression levels of PD-L1, GZMA, and HLA-A along with oligoclonal T cell expansion associate with response to nivolumab in metastatic melanoma, OncoImmunology, vol.5, issue.9, p.e1204507, 2016.

M. F. Fransen, M. Schoonderwoerd, P. Knopf, M. G. Camps, L. J. Hawinkels et al., Tumor-draining lymph nodes are pivotal in PD-1/PD-L1 checkpoint therapy, JCI Insight, vol.3, issue.23, p.5838, 2018.

A. M. Heeren, J. Rotman, A. G. Stam, N. Pocorni, A. A. Gassama et al., Efficacy of PD-1 blockade in cervical cancer is related to a CD8+FoxP3+CD25+ T-cell subset with operational effector functions despite high immune checkpoint levels, Journal for ImmunoTherapy of Cancer, vol.7, issue.1, p.43, 2019.

S. C. Wei, C. R. Duffy, and J. P. Allison, Fundamental Mechanisms of Immune Checkpoint Blockade Therapy, Cancer Discovery, vol.8, issue.9, pp.1069-1086, 2018.

B. P. Fairfax, C. A. Taylor, R. A. Watson, I. Nassiri, S. Danielli et al., Peripheral CD8+ T cell characteristics associated with durable responses to immune checkpoint blockade in patients with metastatic melanoma, Nature Medicine, vol.26, issue.2, pp.193-199, 2020.

T. D. Wu, S. Madireddi, P. E. De-almeida, R. Banchereau, Y. Chen et al., Peripheral T cell expansion predicts tumour infiltration and clinical response, Nature, vol.579, issue.7798, pp.274-278, 2020.

S. Valpione, E. Galvani, J. Tweedy, P. A. Mundra, A. Banyard et al., Immune awakening revealed by peripheral T cell dynamics after one cycle of immunotherapy, Nature Cancer, vol.1, issue.2, pp.210-221, 2020.