S. Kanoun, C. Rossi, A. Berriolo-riedinger, I. Dygai-cochet, A. Cochet et al., Baseline metabolic tumour volume is an independent prognostic factor in Hodgkin lymphoma, Eur J Nucl Med Mol Imaging, vol.41, pp.1735-1778, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00998569

M. Sasanelli, M. Meignan, C. Haioun, A. Berriolo-riedinger, R. O. Casasnovas et al., Pretherapy metabolic tumour volume is an independent predictor of outcome in patients with diffuse large B-cell lymphoma, Eur J Nucl Med Mol Imaging, vol.41, pp.2017-2039, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01141151

L. Ceriani, M. Martelli, P. L. Zinzani, A. J. Ferreri, B. Botto et al., Utility of baseline 18 FDG-PET/CT functional parameters in defining prognosis of primary mediastinal (thymic) large B-cell lymphoma, Blood, vol.126, pp.950-956, 2015.

M. Meignan, A. S. Cottereau, A. Versari, L. Chartier, J. Dupuis et al., Baseline metabolic tumor volume predicts outcome in high-tumor-burden follicular lymphoma: a pooled analysis of three multicenter studies, J Clin Oncol, vol.34, pp.3618-3644, 2016.

D. Albano, G. Bosio, N. Bianchetti, C. Pagani, A. Re et al., Prognostic role of baseline 18 F-FDG PET/CT metabolic parameters in mantle cell lymphoma, Ann Nucl Med, vol.33, pp.449-58, 2019.

D. Albano, A. Re, A. Tucci, R. Giubbini, and F. Bertagna, Prognostic role of deltaMTV and deltaTLG in Burkitt lymphoma, Ann Nucl Med, vol.33, pp.280-287, 2019.

A. S. Cottereau, T. C. El-galaly, S. Becker, F. Broussais, L. J. Petersen et al., Predictive value of PET response combined with baseline metabolic tumor volume in peripheral T-cell lymphoma patients, J Nucl Med, vol.59, pp.589-95, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01643956

Z. Zhou, L. H. Sehn, A. W. Rademaker, L. I. Gordon, A. S. Lacasce et al., An enhanced International Prognostic Index (NCCN-IPI) for patients with diffuse large B-cell lymphoma treated in the rituximab era, Blood, vol.123, pp.837-879, 2014.

S. F. Barrington and M. Meignan, Time to prepare for risk adaptation in lymphoma by standardizing measurement of metabolic tumor burden, J Nucl Med, vol.60, pp.1096-102, 2019.

P. Decazes, S. Becker, M. N. Toledano, P. Vera, P. Desbordes et al., Tumor fragmentation estimated by volume surface ratio of tumors measured on 18 F-FDG PET/CT is an independent prognostic factor of diffuse large B-cell lymphoma, Eur J Nucl Med Mol Imaging, vol.45, pp.1672-1681, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02329402

H. Ilyas, N. G. Mikhaeel, J. T. Dunn, F. Rahman, H. Moller et al., Is there an optimal method for measuring baseline metabolic tumor volume in diffuse large B cell lymphoma?, Eur J Nucl Med Mol Imaging, vol.46, pp.520-521, 2019.

A. Biggi, A. Gallamini, S. Chauvie, M. Hutchings, L. Kostakoglu et al., International validation study for interim PET in ABVD-treated, advanced-stage hodgkin lymphoma: interpretation criteria and concordance rate among reviewers, J Nucl Med, vol.54, pp.683-90, 2013.

E. Itti, M. Meignan, A. Berriolo-riedinger, A. Biggi, A. F. Cashen et al., An international confirmatory study of the prognostic value of early PET/CT in diffuse large B-cell lymphoma: comparison between Deauville criteria and deltaSUVmax, Eur J Nucl Med Mol Imaging, vol.40, pp.1312-1332, 2013.

N. Capobianco, M. A. Meignan, A. S. Cottereau, L. Vercellino, L. Sibille et al., Deep learning FDG uptake classification enables total metabolic tumor volume estimation in diffuse large Bcell lymphoma, J Nucl Med, 2020.

M. Hatt, J. A. Lee, C. R. Schmidtlein, I. E. Naqa, C. Caldwell et al., Classification and evaluation strategies of autosegmentation approaches for PET

, Med Phys, vol.44, pp.1-42, 2017.

C. Nioche, F. Orlhac, S. Boughdad, S. Reuze, J. Goya-outi et al., LIFEx: a freeware for radiomic feature calculation in multimodality imaging to accelerate advances in the characterization of tumor heterogeneity, Cancer Res, vol.78, pp.4786-4795, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01938545

R. L. Wahl, H. Jacene, Y. Kasamon, and M. A. Lodge, From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors, J Nucl Med, vol.50, issue.1, pp.122-50, 2009.

F. Isensee, P. F. Jäger, S. Kohl, J. Petersen, and K. H. Maier-hein, Automated design of deep learning methods for biomedical image segmentation

W. Mckinney, Data structures for statistical computing in Python, Proceedings of the 9th Python in Science Conference, pp.56-61, 2010.

J. D. Hunter, Matplotlib: a 2D graphics environment, Comput Sci Eng, vol.9, pp.90-95, 2007.

L. Bi, J. Kim, A. Kumar, L. Wen, D. Feng et al., Automatic detection and classification of regions of FDG uptake in wholebody PET-CT lymphoma studies, Comput Med Imaging Graph, vol.60, pp.3-10, 2016.

K. Simonyan and A. Zisserman, Very deep convolutional networks for large-scale image recognition, 2015.

Y. Yu, P. Decazes, J. Lapuyade-lahorgue, I. Gardin, P. Vera et al., Semi-automatic lymphoma detection and segmentation using fully conditional random fields, Comput Med Imaging Graph, vol.70, pp.1-7, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02087877

E. Grossiord, H. Talbot, N. Passat, M. Meignan, and L. Najman, Automated 3D lymphoma lesion segmentation from PET/CT characteristics, IEEE 14 th International Symposium on Biomedical Imaging, pp.174-182, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01616459

H. Li, H. Jiang, S. Li, M. Wang, Z. Wang et al., DenseX-net: an end-to-end model for lymphoma segmentation in whole-body PET/ CT images, IEEE Access, vol.8, pp.8004-8022, 2020.

L. Sibille, R. Seifert, N. Avramovic, T. Vehren, B. Spottiswoode et al., )F-FDG PET/CT uptake classification in lymphoma and lung cancer by using deep convolutional neural networks, Radiology, vol.294, issue.18, pp.445-52, 2020.

E. Pfaehler, C. Burggraaff, G. Kramer, J. Zijlstra, O. S. Hoekstra et al., PET segmentation of bulky tumors: strategies and workflows to improve inter-observer variability, PLoS One, vol.15, p.230901, 2020.

M. Meignan, M. Sasanelli, R. O. Casasnovas, S. Luminari, F. Fioroni et al., Metabolic tumour volumes measured at staging in lymphoma: methodological evaluation on phantom experiments and patients, Eur J Nucl Med Mol Imaging, vol.41, pp.1113-1135, 2014.

J. Mettler, H. Muller, C. A. Voltin, C. Baues, B. Klaeser et al., Metabolic tumour volume for response prediction in advanced-stage Hodgkin lymphoma, J Nucl Med, 2018.

R. Boellaard, M. J. O'doherty, W. A. Weber, F. M. Mottaghy, M. N. Lonsdale et al., EANM procedure guidelines for tumour PET imaging: version 1.0, Eur J Nucl Med Mol Imaging, vol.37, pp.181-200, 2010.

, 10 & Françoise Kraeber-Bodéré 2,9,10 & Thomas Carlier 2,9,10 & Steven Le Gouill 2,11 & René-Olivier Casasnovas 2,12 & Michel Meignan 2 & Emmanuel Itti 1,2,3 1 Department of Nuclear Medicine

F. Owkin and . Paris,