P. Correa and J. Houghton, Carcinogenesis of Helicobacter pylori, Gastroenterology, vol.133, issue.2, pp.659-672, 2007.

F. Bray, A. Jemal, N. Grey, J. Ferlay, and D. Forman, Global cancer transitions according to the Human Development Index (2008?2030): a population-based study, The Lancet Oncology, vol.13, issue.8, pp.790-801, 2012.

S. Backert and M. Selbach, Role of type IV secretion inHelicobacter pyloripathogenesis, Cellular Microbiology, vol.10, issue.8, pp.1573-1581, 2008.

F. Mégraud, E. Bessède, and C. Varon, Helicobacter pylori infection and gastric carcinoma, Clinical Microbiology and Infection, vol.21, issue.11, pp.984-990, 2015.

H. Mimuro, T. Suzuki, S. Nagai, G. Rieder, M. Suzuki et al., Helicobacter pylori Dampens Gut Epithelial Self-Renewal by Inhibiting Apoptosis, a Bacterial Strategy to Enhance Colonization of the Stomach, Cell Host & Microbe, vol.2, issue.4, pp.250-263, 2007.

M. Hatakeyama, Helicobacter pylori and gastric carcinogenesis, Journal of Gastroenterology, vol.44, issue.4, pp.239-248, 2009.

C. Belair, J. Baud, S. Chabas, C. M. Sharma, J. Vogel et al., Helicobacter pylori interferes with an embryonic stem cell micro RNA cluster to block cell cycle progression, Silence, vol.2, issue.1, p.7, 2011.
URL : https://hal.archives-ouvertes.fr/inserm-00639316

J. Baud, C. Varon, S. Chabas, L. Chambonnier, F. Darfeuille et al., Helicobacter pylori Initiates a Mesenchymal Transition through ZEB1 in Gastric Epithelial Cells, PLoS ONE, vol.8, issue.4, p.e60315, 2013.

E. Bessède, C. Staedel, L. A. Acuña-amador, P. H. Nguyen, L. H. Chambonnier et al., Helicobacter pylori generates cells with cancer stem cell properties via epithelial?mesenchymal transition-like changes, Oncogene, vol.33, issue.32, pp.4123-4131, 2013.

J. P. Thiery, H. Acloque, R. Y. Huang, and M. A. Nieto, Epithelial-Mesenchymal Transitions in Development and Disease, Cell, vol.139, issue.5, pp.871-890, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02912716

F. X. Yu, B. Zhao, and K. L. Guan, Hippo Pathway in Organ Size Control, Tissue Homeostasis, and Cancer, Cell, vol.163, issue.4, pp.811-828, 2015.

S. Piccolo, S. Dupont, and M. Cordenonsi, The Biology of YAP/TAZ: Hippo Signaling and Beyond, Physiological Reviews, vol.94, issue.4, pp.1287-1312, 2014.

C. G. Hansen, T. Moroishi, and K. L. Guan, YAP and TAZ: a nexus for Hippo signaling and beyond, Trends in Cell Biology, vol.25, issue.9, pp.499-513, 2015.

F. Zanconato, M. Cordenonsi, and S. Piccolo, YAP/TAZ at the Roots of Cancer, Cancer Cell, vol.29, issue.6, pp.783-803, 2016.

W. Kang, J. H. Tong, A. W. Chan, T. L. Lee, R. W. Lung et al., Yes-Associated Protein 1 Exhibits Oncogenic Property in Gastric Cancer and Its Nuclear Accumulation Associates with Poor Prognosis, Clinical Cancer Research, vol.17, issue.8, pp.2130-2139, 2011.

M. Song, J. H. Cheong, H. Kim, S. H. Noh, and H. Kim, Nuclear expression of Yes-associated protein 1 correlates with poor prognosis in intestinal type gastric cancer, Anticancer Res, vol.32, pp.3827-3834, 2012.

L. Yu, C. Gao, B. Feng, L. Wang, X. Tian et al., Distinct prognostic values of YAP1 in gastric cancer, Tumor Biology, vol.39, issue.4, p.101042831769592, 2017.

E. Bessède, P. Dubus, F. Mégraud, and C. Varon, Helicobacter pylori infection and stem cells at the origin of gastric cancer, Oncogene, vol.34, issue.20, pp.2547-2555, 2014.

C. Varon, P. Dubus, F. Mazurier, C. Asencio, L. Chambonnier et al., Helicobacter pylori Infection Recruits Bone Marrow?Derived Cells That Participate in Gastric Preneoplasia in Mice, Gastroenterology, vol.142, issue.2, pp.281-291, 2012.

E. Bessède, S. Molina, L. A. Amador, P. Dubus, C. Staedel et al., Deletion of IQGAP1 promotes Helicobacter pylori-induced gastric dysplasia in mice and acquisition of cancer stem cell properties in vitro, Oncotarget, vol.7, issue.49, pp.80688-80699, 2016.

S. Jiao, C. Li, Q. Hao, H. Miao, L. Zhang et al., VGLL4 targets a TCF4?TEAD4 complex to coregulate Wnt and Hippo signalling in colorectal cancer, Nature Communications, vol.8, issue.1, p.14058, 2017.

A. D. Szymaniak, J. E. Mahoney, W. V. Cardoso, and X. Varelas, Crumbs3-Mediated Polarity Directs Airway Epithelial Cell Fate through the Hippo Pathway Effector Yap, Developmental Cell, vol.34, issue.3, pp.283-296, 2015.

I. Tanaka, H. Osada, M. Fujii, A. Fukatsu, T. Hida et al., LIM-domain protein AJUBA suppresses malignant mesothelioma cell proliferation via Hippo signaling cascade, Oncogene, vol.34, issue.1, pp.73-83, 2013.

C. Philippe, B. Pinson, J. Dompierre, V. Pantesco, B. Viollet et al., AICAR Antiproliferative Properties Involve the AMPK-Independent Activation of the Tumor Suppressors LATS 1 and 2, Neoplasia, vol.20, issue.6, pp.555-562, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02346897

S. A. Mani, W. Guo, M. J. Liao, E. N. Eaton, A. Ayyanan et al., The Epithelial-Mesenchymal Transition Generates Cells with Properties of Stem Cells, Cell, vol.133, issue.4, pp.704-715, 2008.

B. Von-eyss, L. A. Jaenicke, R. M. Kortlever, N. Royla, K. E. Wiese et al., A MYC-Driven Change in Mitochondrial Dynamics Limits YAP/TAZ Function in Mammary Epithelial Cells and Breast Cancer, Cancer Cell, vol.28, issue.6, pp.743-757, 2015.

R. Barros, J. N. Freund, L. David, and R. Almeida, Gastric intestinal metaplasia revisited: function and regulation of CDX2, Trends in Molecular Medicine, vol.18, issue.9, pp.555-563, 2012.

H. Yamamoto, Y. Q. Bai, and Y. Yuasa, Homeodomain protein CDX2 regulates goblet-specific MUC2 gene expression, Biochemical and Biophysical Research Communications, vol.300, issue.4, pp.813-818, 2003.

R. F. Goldberg, W. G. Austen, X. Zhang, G. Munene, G. Mostafa et al., Intestinal alkaline phosphatase is a gut mucosal defense factor maintained by enteral nutrition, Proceedings of the National Academy of Sciences, vol.105, issue.9, pp.3551-3556, 2008.

X. Zhang, D. Shi, Y. P. Liu, W. J. Chen, and D. Wu, Erratum to ?Effects of the Helicobacter pylori Virulence Factor CagA and Ammonium Ion on Mucins in AGS Cells? by Zhang X, et al. (Yonsei Med J 2018;59(5):633?642.), Yonsei Medical Journal, vol.61, issue.6, p.556, 2020.

T. Serizawa, Y. Hirata, Y. Hayakawa, N. Suzuki, K. Sakitani et al., Gastric Metaplasia Induced by Helicobacter pylori Is Associated with Enhanced SOX9 Expression via Interleukin-1 Signaling, Infection and Immunity, vol.84, issue.2, pp.562-572, 2015.

J. Yi, L. Lu, K. Yanger, W. Wang, B. H. Sohn et al., Large tumor suppressor homologs 1 and 2 regulate mouse liver progenitor cell proliferation and maturation through antagonism of the coactivators YAP and TAZ, Hepatology, vol.64, issue.5, pp.1757-1772, 2016.

G. S. Park, H. Oh, M. Kim, T. Kim, R. L. Johnson et al., An evolutionarily conserved negative feedback mechanism in the Hippo pathway reflects functional difference between LATS1 and LATS2, Oncotarget, vol.7, issue.17, pp.24063-24075, 2016.

E. R. Barry and F. D. Camargo, The Hippo superhighway: signaling crossroads converging on the Hippo/Yap pathway in stem cells and development, Current Opinion in Cell Biology, vol.25, issue.2, pp.247-253, 2013.

A. Ramos and F. D. Camargo, The Hippo signaling pathway and stem cell biology, Trends in Cell Biology, vol.22, issue.7, pp.339-346, 2012.

N. Furth and Y. Aylon, The LATS1 and LATS2 tumor suppressors: beyond the Hippo pathway, Cell Death & Differentiation, vol.24, issue.9, pp.1488-1501, 2017.

T. Moroishi, H. W. Park, B. Qin, Q. Chen, Z. Meng et al., A YAP/TAZ-induced feedback mechanism regulates Hippo pathway homeostasis, Genes & Development, vol.29, issue.12, pp.1271-1284, 2015.

M. Kulkarni, T. Z. Tan, N. B. Syed-sulaiman, J. M. Lamar, P. Bansal et al., RUNX1 and RUNX3 protect against YAP-mediated EMT, stem-ness and shorter survival outcomes in breast cancer, Oncotarget, vol.9, issue.18, pp.14175-14192, 2018.

Y. Qiao, S. J. Lin, Y. Chen, N. C. Voon, F. Zhu et al., RUNX3 is a novel negative regulator of oncogenic TEAD?YAP complex in gastric cancer, Oncogene, vol.35, issue.20, pp.2664-2674, 2015.

D. Levy, Y. Adamovich, N. Reuven, and Y. Shaul, The Yes-associated protein 1 stabilizes p73 by preventing Itch-mediated ubiquitination of p73, Cell Death & Differentiation, vol.14, issue.4, pp.743-751, 2006.

B. Zhao, X. Wei, W. Li, R. S. Udan, Q. Yang et al., Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control, Genes & Development, vol.21, issue.21, pp.2747-2761, 2007.

W. Li, J. Cooper, L. Zhou, C. Yang, H. Erdjument-bromage et al., Merlin/NF2 Loss-Driven Tumorigenesis Linked to CRL4DCAF1-Mediated Inhibition of the Hippo Pathway Kinases Lats1 and 2 in the Nucleus, Cancer Cell, vol.26, issue.1, pp.48-60, 2014.

W. Li, J. Cooper, L. Zhou, C. Yang, H. Erdjument-bromage et al., Merlin/NF2 Loss-Driven Tumorigenesis Linked to CRL4DCAF1-Mediated Inhibition of the Hippo Pathway Kinases Lats1 and 2 in the Nucleus, Cancer Cell, vol.26, issue.1, pp.48-60, 2014.

L. Enderle and H. Mcneill, Hippo Gains Weight: Added Insights and Complexity to Pathway Control, Science Signaling, vol.6, issue.296, pp.re7-re7, 2013.

N. Murata-kamiya, Y. Kurashima, Y. Teishikata, Y. Yamahashi, Y. Saito et al., Helicobacter pylori CagA interacts with E-cadherin and deregulates the ?-catenin signal that promotes intestinal transdifferentiation in gastric epithelial cells, Oncogene, vol.26, issue.32, pp.4617-4626, 2007.

M. R. Amieva, R. Vogelmann, A. Covacci, L. S. Tompkins, W. J. Nelson et al., Disruption of the Epithelial Apical-Junctional Complex by Helicobacter pylori CagA, Science, vol.300, issue.5624, pp.1430-1434, 2003.

M. Hatakeyama, Helicobacter pylori CagA and Gastric Cancer: A Paradigm for Hit-and-Run Carcinogenesis, Cell Host & Microbe, vol.15, issue.3, pp.306-316, 2014.

G. Coulombe and N. Rivard, New and Unexpected Biological Functions for the Src-Homology 2 Domain-Containing Phosphatase SHP-2 in the Gastrointestinal Tract, Cellular and Molecular Gastroenterology and Hepatology, vol.2, issue.1, pp.11-21, 2016.

R. Tsutsumi, M. Masoudi, A. Takahashi, Y. Fujii, T. Hayashi et al., YAP and TAZ, Hippo Signaling Targets, Act as a Rheostat for Nuclear SHP2 Function, Developmental Cell, vol.26, issue.6, pp.658-665, 2013.

S. Yamazaki, A. Yamakawa, Y. Ito, M. Ohtani, H. Higashi et al., The CagA Protein ofHelicobacter pyloriIs Translocated into Epithelial Cells and Binds to SHP?2 in Human Gastric Mucosa, The Journal of Infectious Diseases, vol.187, issue.2, pp.334-337, 2003.

W. Lehmann, D. Mossmann, J. Kleemann, K. Mock, C. Meisinger et al., ZEB1 turns into a transcriptional activator by interacting with YAP1 in aggressive cancer types, Nature Communications, vol.7, issue.1, 2016.

M. P. Stemmler and T. Brabletz, ZEB1 turns into a transcriptional activator by interacting with YAP1 in aggressive cancer types, Nat Commun, vol.7, p.10498, 2016.

F. Yao, H. Liu, Z. Li, C. Zhong, and W. Fang, Down-regulation of LATS2 in non-small cell lung cancer promoted the growth and motility of cancer cells, Tumor Biology, vol.36, issue.3, pp.2049-2057, 2014.

N. Furth, N. Bossel-ben-moshe, Y. Pozniak, Z. Porat, T. Geiger et al., Down-regulation of LATS kinases alters p53 to promote cell migration, Genes & Development, vol.29, issue.22, pp.2325-2330, 2015.

L. Cobler, M. Pera, M. Garrido, M. Iglesias, and C. De-bolós, CDX2 can be regulated through the signalling pathways activated by IL-6 in gastric cells, Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, vol.1839, issue.9, pp.785-792, 2014.

V. Camilo, R. Barros, S. Sousa, A. M. Magalhaes, T. Lopes et al., Helicobacter pylori and the BMP pathway regulate CDX2 and SOX2 expression in gastric cells, Carcinogenesis, vol.33, issue.10, pp.1985-1992, 2012.

M. Naumann, O. Sokolova, N. Tegtmeyer, and S. Backert, Helicobacter pylori: A Paradigm Pathogen for Subverting Host Cell Signal Transmission, Trends in Microbiology, vol.25, issue.4, pp.316-328, 2017.

C. Wolf, A mathematical model for the propagation of a hantavirus in structured populations, Discrete & Continuous Dynamical Systems - B, vol.4, issue.4, pp.1065-1089, 2004.