R. Ladenstein, U. Pötschger, M. C. Le-deley, J. Whelan, M. Paulussen et al., Primary Disseminated Multifocal Ewing Sarcoma: Results of the Euro-EWING 99 Trial, Journal of Clinical Oncology, vol.28, issue.20, pp.3284-3291, 2010.

L. Mirabello, R. J. Troisi, and S. A. Savage, International osteosarcoma incidence patterns in children and adolescents, middle ages and elderly persons, International Journal of Cancer, vol.125, issue.1, pp.229-234, 2009.

L. Mirabello, R. J. Troisi, and S. A. Savage, Osteosarcoma incidence and survival rates from 1973 to 2004, Cancer, vol.115, issue.7, pp.1531-1543, 2009.

C. Rodríguez-galindo, F. Navid, T. Liu, C. A. Billups, B. N. Rao et al., Prognostic factors for local and distant control in Ewing sarcoma family of tumors, Annals of Oncology, vol.19, issue.4, pp.814-820, 2008.

S. J. Strauss and J. S. Whelan, Current questions in bone sarcomas, Current Opinion in Oncology, vol.30, p.1, 2018.

O. Delattre, J. Zucman, B. Plougastel, C. Desmaze, T. Melot et al., Gene fusion with an ETS DNA-binding domain caused by chromosome translocation in human tumours, Nature, vol.359, issue.6391, pp.162-165, 1992.

O. Delattre, J. Zucman, T. Melot, X. S. Garau, J. M. Zucker et al., The Ewing Family of Tumors -- A Subgroup of Small-Round-Cell Tumors Defined by Specific Chimeric Transcripts, New England Journal of Medicine, vol.331, issue.5, pp.294-299, 1994.

J. P. Ginsberg, E. De-alava, M. Ladanyi, L. H. Wexler, H. Kovar et al., EWS-FLI1 and EWS-ERG Gene Fusions Are Associated With Similar Clinical Phenotypes in Ewing's Sarcoma, Journal of Clinical Oncology, vol.17, issue.6, pp.1809-1809, 1999.

P. Lu, V. M. Weaver, and Z. Werb, The extracellular matrix: A dynamic niche in cancer progression, Journal of Cell Biology, vol.196, issue.4, pp.395-406, 2012.

D. Hanahan and L. M. Coussens, Accessories to the Crime: Functions of Cells Recruited to the Tumor Microenvironment, Cancer Cell, vol.21, issue.3, pp.309-322, 2012.

V. Crenn, K. Biteau, J. Amiaud, C. Dumars, R. Guiho et al., Bone microenvironment has an influence on the histological response of osteosarcoma to chemotherapy: Retrospective analysis and preclinical modeling, Am. J. Cancer Res, vol.7, pp.2333-2349, 2017.
URL : https://hal.archives-ouvertes.fr/inserm-01680800

A. Alfranca, L. Martinez-cruzado, J. Tornin, A. Abarrategi, T. Amaral et al., Bone microenvironment signals in osteosarcoma development, Cellular and Molecular Life Sciences, vol.72, issue.16, pp.3097-3113, 2015.

F. Klemm and J. A. Joyce, Microenvironmental regulation of therapeutic response in cancer, Trends in Cell Biology, vol.25, issue.4, pp.198-213, 2015.

D. F. Quail and J. A. Joyce, Microenvironmental regulation of tumor progression and metastasis, Nature Medicine, vol.19, issue.11, pp.1423-1437, 2013.

H. Jin, J. J. Barrott, M. G. Cable, M. J. Monument, D. M. Lerman et al., The Impact of Microenvironment on the Synovial Sarcoma Transcriptome, Cancer Microenvironment, vol.10, issue.1-3, pp.1-7, 2017.

S. D. Goldstein, M. Hayashi, C. M. Albert, K. W. Jackson, and D. M. Loeb, An orthotopic xenograft model with survival hindlimb amputation allows investigation of the effect of tumor microenvironment on sarcoma metastasis, Clinical & Experimental Metastasis, vol.32, issue.7, pp.703-715, 2015.

A. Riemann, B. Schneider, D. Gündel, C. Stock, M. Gekle et al., Acidosis Promotes Metastasis Formation by Enhancing Tumor Cell Motility, Advances in Experimental Medicine and Biology, vol.876, pp.215-220, 2016.

S. Chattopadhyay, M. Chaklader, R. Chatterjee, A. Law, and S. Law, Differential expression of mitotic regulators and tumor microenvironment influences the regional growth pattern of solid sarcoma along the cranio-caudal axis, Experimental Cell Research, vol.340, issue.1, pp.91-101, 2016.

F. Lamoureux, P. Richard, Y. Wittrant, S. Battaglia, P. Pilet et al., Therapeutic Relevance of Osteoprotegerin Gene Therapy in Osteosarcoma: Blockade of the Vicious Cycle between Tumor Cell Proliferation and Bone Resorption, Cancer Research, vol.67, issue.15, pp.7308-7318, 2007.

G. Picarda, E. Matous, J. Amiaud, C. Charrier, F. Lamoureux et al., Osteoprotegerin inhibits bone resorption and prevents tumor development in a xenogenic model of Ewing's sarcoma by inhibiting RANKL, Journal of Bone Oncology, vol.2, issue.3, pp.95-104, 2013.

R. Taylor, H. J. Knowles, and N. A. Athanasou, Ewing sarcoma cells express RANKL and support osteoclastogenesis, The Journal of Pathology, vol.225, issue.2, pp.195-202, 2011.

C. R. Dass and P. F. Choong, Zoledronic acid inhibits osteosarcoma growth in an orthotopic model, Molecular Cancer Therapeutics, vol.6, issue.12, pp.3263-3270, 2007.

D. Heymann, B. Ory, F. Blanchard, M. Heymann, P. Coipeau et al., Enhanced tumor regression and tissue repair when zoledronic acid is combined with ifosfamide in rat osteosarcoma, Bone, vol.37, issue.1, pp.74-86, 2005.

G. A. Odri, S. Dumoucel, G. Picarda, S. Battaglia, F. Lamoureux et al., Zoledronic Acid as a New Adjuvant Therapeutic Strategy for Ewing's Sarcoma Patients, Cancer Research, vol.70, issue.19, pp.7610-7619, 2010.

B. Ory, M. Heymann, A. Kamijo, F. Gouin, D. Heymann et al., Zoledronic acid suppresses lung metastases and prolongs overall survival of osteosarcoma-bearing mice, Cancer, vol.104, issue.11, pp.2522-2529, 2005.

Y. Han, C. Wu, J. Wang, and N. Liu, CXCR7 maintains osteosarcoma invasion after CXCR4 suppression in bone marrow microenvironment, Tumor Biology, vol.39, issue.5, p.101042831770163, 2017.

Y. Li, Y. Dai, W. Zhang, S. Li, and C. Tu, Clinicopathological and prognostic significance of chemokine receptor CXCR4 in patients with bone and soft tissue sarcoma: a meta-analysis, Clinical and Experimental Medicine, vol.17, issue.1, pp.59-69, 2015.

E. Perissinotto, V. Fonsato, G. Cavalloni, F. Leone, S. Mitola et al., Tumor progression in osteosarcoma (OS): Role of the chemokine receptor CXCR4 and of its ligand stromal-cell derived factor 1 (SDF-1), Journal of Clinical Oncology, vol.22, issue.14_suppl, pp.9021-9021, 2004.

M. Cortini, A. Massa, S. Avnet, G. Bonuccelli, and N. Baldini, Tumor-Activated Mesenchymal Stromal Cells Promote Osteosarcoma Stemness and Migratory Potential via IL-6 Secretion, PLOS ONE, vol.11, issue.11, p.e0166500, 2016.

Y. Zhang, Q. Ma, T. Liu, G. Guan, K. Zhang et al., Interleukin-6 suppression reduces tumour self-seeding by circulating tumour cells in a human osteosarcoma nude mouse model, Oncotarget, vol.7, issue.1, pp.446-458, 2015.

J. Qi, Y. Zhou, Z. Jiao, X. Wang, Y. Zhao et al., Exosomes Derived from Human Bone Marrow Mesenchymal Stem Cells Promote Tumor Growth Through Hedgehog Signaling Pathway, Cellular Physiology and Biochemistry, vol.42, issue.6, pp.2242-2254, 2017.

Y. Wang, Y. Chu, B. Yue, X. Ma, G. Zhang et al., Adipose-derived mesenchymal stem cells promote osteosarcoma proliferation and metastasis by activating the STAT3 pathway, Oncotarget, vol.8, issue.14, pp.23803-23816, 2017.

M. Heymann, F. Lézot, and D. Heymann, The contribution of immune infiltrates and the local microenvironment in the pathogenesis of osteosarcoma, Cellular Immunology, vol.343, p.103711, 2019.
URL : https://hal.archives-ouvertes.fr/inserm-01644725

R. Noy and J. W. Pollard, Tumor-Associated Macrophages: From Mechanisms to Therapy, Immunity, vol.41, issue.1, pp.49-61, 2014.

A. Gomez-brouchet, C. Illac, J. Gilhodes, C. Bouvier, S. Aubert et al., CD163-positive tumor-associated macrophages and CD8-positive cytotoxic lymphocytes are powerful diagnostic markers for the therapeutic stratification of osteosarcoma patients: An immunohistochemical analysis of the biopsies fromthe French OS2006 phase 3 trial, OncoImmunology, vol.6, issue.9, p.e1331193, 2017.

E. P. Buddingh, M. L. Kuijjer, R. A. Duim, H. Burger, K. Agelopoulos et al., Tumor-Infiltrating Macrophages Are Associated with Metastasis Suppression in High-Grade Osteosarcoma: A Rationale for Treatment with Macrophage Activating Agents, Clinical Cancer Research, vol.17, issue.8, pp.2110-2119, 2011.

C. Dumars, J. Ngyuen, A. Gaultier, R. Lanel, N. Corradini et al., Dysregulation of macrophage polarization is associated with the metastatic process in osteosarcoma, Oncotarget, vol.7, issue.48, pp.78343-78354, 2016.
URL : https://hal.archives-ouvertes.fr/inserm-01466103

Q. Zhou, M. Xian, S. Xiang, D. Xiang, X. Shao et al., All-Trans Retinoic Acid Prevents Osteosarcoma Metastasis by Inhibiting M2 Polarization of Tumor-Associated Macrophages, Cancer Immunology Research, vol.5, issue.7, pp.547-559, 2017.

T. Fujiwara, J. Fukushi, S. Yamamoto, Y. Matsumoto, N. Setsu et al., Macrophage Infiltration Predicts a Poor Prognosis for Human Ewing Sarcoma, The American Journal of Pathology, vol.179, issue.3, pp.1157-1170, 2011.

M. Handl, M. Hermanova, S. Hotarkova, J. Jarkovsky, P. Mudry et al., Clinicopathological correlation of tumor-associated macrophages in Ewing sarcoma, Biomedical Papers, vol.162, issue.1, pp.54-60, 2018.

Q. Han, H. Shi, and F. Liu, CD163 + M2-type tumor-associated macrophage support the suppression of tumor-infiltrating T cells in osteosarcoma, International Immunopharmacology, vol.34, pp.101-106, 2016.

C. Chang, J. Qiu, D. O?sullivan, M. D. Buck, T. Noguchi et al., Metabolic Competition in the Tumor Microenvironment Is a Driver of Cancer Progression, Cell, vol.162, issue.6, pp.1229-1241, 2015.

D. M. Lewis, H. Pruitt, N. Jain, M. Ciccaglione, J. M. Mccaffery et al., A Feedback Loop between Hypoxia and Matrix Stress Relaxation Increases Oxygen-Axis Migration and Metastasis in Sarcoma, Cancer Research, vol.79, issue.8, pp.1981-1995, 2019.

H. Itoh, T. Kadomatsu, H. Tanoue, M. Yugami, K. Miyata et al., TET2-dependent IL-6 induction mediated by the tumor microenvironment promotes tumor metastasis in osteosarcoma, Oncogene, vol.37, issue.22, pp.2903-2920, 2018.

A. G. Hawkins, V. Basrur, F. Da-veiga-leprevost, E. Pedersen, C. Sperring et al., The Ewing Sarcoma Secretome and Its Response to Activation of Wnt/beta-catenin Signaling, Molecular & Cellular Proteomics, vol.17, issue.5, pp.901-912, 2018.

S. L. Volchenboum, J. Andrade, L. Huang, D. A. Barkauskas, M. Krailo et al., Gene expression profiling of Ewing sarcoma tumours reveals the prognostic importance of tumour-stromal interactions: a report from the Children's Oncology Group, The Journal of Pathology: Clinical Research, vol.1, issue.2, pp.83-94, 2015.

L. G. Sand, D. Berghuis, K. Szuhai, and P. C. Hogendoorn, Expression of CCL21 in Ewing sarcoma shows an inverse correlation with metastases and is a candidate target for immunotherapy, Cancer Immunology, Immunotherapy, vol.65, issue.8, pp.995-1002, 2016.

S. Piperno-neumann, M. Le-deley, F. Rédini, H. Pacquement, P. Marec-bérard et al., Zoledronate in combination with chemotherapy and surgery to treat osteosarcoma (OS2006): a randomised, multicentre, open-label, phase 3 trial, The Lancet Oncology, vol.17, issue.8, pp.1070-1080, 2016.
URL : https://hal.archives-ouvertes.fr/inserm-01702092

S. Paydas, E. K. Bagir, M. A. Deveci, and G. Gonlusen, Clinical and prognostic significance of PD-1 and PD-L1 expression in sarcomas, Medical Oncology, vol.33, issue.8, 2016.

D. M. Lussier, L. O?neill, L. M. Nieves, M. S. Mcafee, S. A. Holechek et al., Enhanced T-Cell Immunity to Osteosarcoma Through Antibody Blockade of PD-1/PD-L1 Interactions, Journal of Immunotherapy, vol.38, issue.3, pp.96-106, 2015.

J. K. Shen, G. M. Cote, E. Choy, P. Yang, D. Harmon et al., Programmed Cell Death Ligand 1 Expression in Osteosarcoma, Cancer Immunology Research, vol.2, issue.7, pp.690-698, 2014.

Y. T. Sundara, M. Kostine, A. H. Cleven, J. V. Bovée, M. W. Schilham et al., Increased PD-L1 and T-cell infiltration in the presence of HLA class I expression in metastatic high-grade osteosarcoma: a rationale for T-cell-based immunotherapy, Cancer Immunology, Immunotherapy, vol.66, issue.1, pp.119-128, 2016.

Y. Duchartre, Y. Kim, and M. Kahn, The Wnt signaling pathway in cancer, Critical Reviews in Oncology/Hematology, vol.99, pp.141-149, 2016.

P. Polakis, Wnt Signaling in Cancer, Cold Spring Harbor Perspectives in Biology, vol.4, issue.5, pp.a008052-a008052, 2012.

D. Tai, K. Wells, J. Arcaroli, C. Vanderbilt, D. L. Aisner et al., Targeting the WNT Signaling Pathway in Cancer Therapeutics, The Oncologist, vol.20, issue.10, pp.1189-1198, 2015.

M. B. Major, N. D. Camp, J. D. Berndt, X. Yi, S. J. Goldenberg et al., Wilms Tumor Suppressor WTX Negatively Regulates WNT/ -Catenin Signaling, Science, vol.316, issue.5827, pp.1043-1046, 2007.

L. Azzolin, T. Panciera, S. Soligo, E. Enzo, S. Bicciato et al., YAP/TAZ Incorporation in the ?-Catenin Destruction Complex Orchestrates the Wnt Response, Cell, vol.158, issue.1, pp.157-170, 2014.

S. Kim, H. Huang, M. Zhao, X. Zhang, A. Zhang et al., Wnt Stabilization of -Catenin Reveals Principles for Morphogen Receptor-Scaffold Assemblies, Science, vol.340, issue.6134, pp.867-870, 2013.

C. Liu, Y. Li, M. Semenov, C. Han, G. Baeg et al., Control of ?-Catenin Phosphorylation/Degradation by a Dual-Kinase Mechanism, Cell, vol.108, issue.6, pp.837-847, 2002.

H. Robertson, J. D. Hayes, and C. Sutherland, A partnership with the proteasome; the destructive nature of GSK3, Biochemical Pharmacology, vol.147, pp.77-92, 2018.

J. L. Stamos and W. I. Weis, The -Catenin Destruction Complex, Cold Spring Harbor Perspectives in Biology, vol.5, issue.1, pp.a007898-a007898, 2012.

J. V. Chodaparambil, K. T. Pate, M. R. Hepler, B. P. Tsai, U. M. Muthurajan et al., Molecular functions of the TLE tetramerization domain in Wnt target gene repression, The EMBO Journal, vol.33, issue.7, pp.719-731, 2014.

V. S. Li, S. S. Ng, P. J. Boersema, T. Y. Low, W. R. Karthaus et al., Wnt Signaling through Inhibition of ?-Catenin Degradation in an Intact Axin1 Complex, Cell, vol.149, issue.6, pp.1245-1256, 2012.

W. Lien and E. Fuchs, Wnt some lose some: transcriptional governance of stem cells by Wnt/ -catenin signaling, Genes & Development, vol.28, issue.14, pp.1517-1532, 2014.

B. T. Macdonald, K. Tamai, and X. He, Wnt/?-Catenin Signaling: Components, Mechanisms, and Diseases, Developmental Cell, vol.17, issue.1, pp.9-26, 2009.

R. Baron and M. Kneissel, WNT signaling in bone homeostasis and disease: from human mutations to treatments, Nature Medicine, vol.19, issue.2, pp.179-192, 2013.

N. Ghosh, U. Hossain, A. Mandal, and P. C. Sil, The Wnt signaling pathway: a potential therapeutic target against cancer, Annals of the New York Academy of Sciences, vol.1443, issue.1, pp.54-74, 2019.

T. Zhan, N. Rindtorff, and M. Boutros, Wnt signaling in cancer, Oncogene, vol.36, issue.11, pp.1461-1473, 2016.

M. Ishibashi, Screening for natural products that affect Wnt signaling activity, Journal of Natural Medicines, vol.73, issue.4, pp.697-705, 2019.

P. N. Le, J. D. Mcdermott, and A. Jimeno, Targeting the Wnt pathway in human cancers: Therapeutic targeting with a focus on OMP-54F28, Pharmacology & Therapeutics, vol.146, pp.1-11, 2015.

R. Tabatabai, Y. Linhares, D. Bolos, M. Mita, and A. Mita, Targeting the Wnt Pathway in Cancer: A Review of Novel Therapeutics, Targeted Oncology, vol.12, issue.5, pp.623-641, 2017.

F. H. Tran and J. J. Zheng, Modulating the wnt signaling pathway with small molecules, Protein Science, vol.26, issue.4, pp.650-661, 2017.

X. Zhang and J. Hao, Development of anticancer agents targeting the Wnt/?-catenin signaling, Am. J. Cancer Res, vol.5, pp.2344-2360, 2015.

J. Harb, P. Lin, and J. Hao, Recent Development of Wnt Signaling Pathway Inhibitors for Cancer Therapeutics, Current Oncology Reports, vol.21, issue.2, 2019.

N. Krishnamurthy and R. Kurzrock, Targeting the Wnt/beta-catenin pathway in cancer: Update on effectors and inhibitors, Cancer Treatment Reviews, vol.62, pp.50-60, 2018.

M. Kahn, Can we safely target the WNT pathway?, Nature Reviews Drug Discovery, vol.13, issue.7, pp.513-532, 2014.

C. Chen, M. Zhao, A. Tian, X. Zhang, Z. Yao et al., Aberrant activation of Wnt/?-catenin signaling drives proliferation of bone sarcoma cells, Oncotarget, vol.6, issue.19, pp.17570-17583, 2015.

K. Iwaya, H. Ogawa, M. Kuroda, M. Izumi, T. Ishida et al., Cytoplasmic and/or nuclear staining of beta-catenin is associated with lung metastasis, Clinical and Experimental Metastasis, vol.20, issue.6, pp.525-529, 2003.

W. Liu, Z. Zhao, Y. Wang, W. Li, Q. Su et al., Dioscin inhibits stem-cell-like properties and tumor growth of osteosarcoma through Akt/GSK3/?-catenin signaling pathway, Cell Death & Disease, vol.9, issue.3, p.343, 2018.

Y. Lu, G. Guan, J. Chen, B. Hu, C. Sun et al., Aberrant CXCR4 and ?-catenin expression in osteosarcoma correlates with patient survival, Oncology Letters, vol.10, issue.4, pp.2123-2129, 2015.

Y. Cai, A. B. Mohseny, M. Karperien, P. C. Hogendoorn, G. Zhou et al., Inactive Wnt/β-catenin pathway in conventional high-grade osteosarcoma, The Journal of Pathology, vol.220, issue.1, pp.24-33, 2010.

A. Cleton-jansen, J. K. Anninga, I. H. Briaire-de-bruijn, S. Romeo, J. Oosting et al., Profiling of high-grade central osteosarcoma and its putative progenitor cells identifies tumourigenic pathways, British Journal of Cancer, vol.101, issue.11, pp.1909-1918, 2009.

X. Du, J. Yang, D. Yang, W. Tian, and Z. Zhu, The genetic basis for inactivation of Wnt pathway in human osteosarcoma, BMC Cancer, vol.14, issue.1, 2014.

S. Shimozaki, N. Yamamoto, T. Domoto, H. Nishida, K. Hayashi et al., Efficacy of glycogen synthase kinase-3? targeting against osteosarcoma via activation of ?-catenin, Oncotarget, vol.7, issue.47, pp.77038-77051, 2016.

X. Jie, X. Zhang, and C. Xu, Epithelial-to-mesenchymal transition, circulating tumor cells and cancer metastasis: Mechanisms and clinical applications, Oncotarget, vol.8, issue.46, pp.81558-81571, 2017.

P. Lei, D. Ding, J. Xie, L. Wang, Q. Liao et al., Expression profile of Twist, vascular endothelial growth factor and CD34 in patients with different phases of osteosarcoma, Oncology Letters, vol.10, issue.1, pp.417-421, 2015.

A. Sharili, S. Allen, K. Smith, J. Hargreaves, J. Price et al., Expression of Snail2 in long bone osteosarcomas correlates with tumour malignancy, Tumor Biology, vol.32, issue.3, pp.515-526, 2011.

A. Shen, Y. Zhang, H. Yang, R. Xu, and G. Huang, Overexpression of ZEB1 relates to metastasis and invasion in osteosarcoma, Journal of Surgical Oncology, vol.105, issue.8, pp.830-834, 2011.

G. Yang, J. Yuan, and K. Li, EMT transcription factors: implication in osteosarcoma, Medical Oncology, vol.30, issue.4, 2013.

F. Verrecchia and F. Rédini, Transforming Growth Factor-? Signaling Plays a Pivotal Role in the Interplay Between Osteosarcoma Cells and Their Microenvironment, Frontiers in Oncology, vol.8, p.133, 2018.
URL : https://hal.archives-ouvertes.fr/inserm-01814333

J. Fuxe, T. Vincent, and A. Garcia-de-herreros, Transcriptional crosstalk between TGF? and stem cell pathways in tumor cell invasion: Role of EMT promoting Smad complexes, Cell Cycle, vol.9, issue.12, pp.2363-2374, 2010.

H. Tian, T. Zhou, H. Chen, C. Li, Z. Jiang et al., Bone morphogenetic protein?2 promotes osteosarcoma growth by promoting epithelial?mesenchymal transition (EMT) through the Wnt/??catenin signaling pathway, Journal of Orthopaedic Research, vol.37, issue.7, pp.1638-1648, 2019.

S. Wang, D. Zhang, S. Han, P. Gao, C. Liu et al., Fibulin-3 promotes osteosarcoma invasion and metastasis by inducing epithelial to mesenchymal transition and activating the Wnt/?-catenin signaling pathway, Scientific Reports, vol.7, issue.1, 2017.

S. Fan, X. Gao, P. Chen, and X. Li, Carboxypeptidase E-?N promotes migration, invasiveness, and epithelial?mesenchymal transition of human osteosarcoma cells via the Wnt??-catenin pathway, Biochemistry and Cell Biology, vol.97, issue.4, pp.446-453, 2019.

Q. Zeng, Z. Li, X. Zhao, L. Guo, C. Yu et al., Ubiquitin?specific protease 7 promotes osteosarcoma cell metastasis by inducing epithelial?mesenchymal transition, Oncology Reports, vol.41, pp.543-551, 2018.

Z. Cai, Y. Cao, Y. Luo, H. Hu, and H. Ling, Signalling mechanism(s) of epithelial?mesenchymal transition and cancer stem cells in tumour therapeutic resistance, Clinica Chimica Acta, vol.483, pp.156-163, 2018.

N. Takebe, L. Miele, P. J. Harris, W. Jeong, H. Bando et al., Targeting Notch, Hedgehog, and Wnt pathways in cancer stem cells: clinical update, Nature Reviews Clinical Oncology, vol.12, issue.8, pp.445-464, 2015.

A. S. Adhikari, N. Agarwal, B. M. Wood, C. Porretta, B. Ruiz et al., CD117 and Stro-1 Identify Osteosarcoma Tumor-Initiating Cells Associated with Metastasis and Drug Resistance, Cancer Research, vol.70, issue.11, pp.4602-4612, 2010.

V. A. Siclari and L. Qin, Targeting the osteosarcoma cancer stem cell, Journal of Orthopaedic Surgery and Research, vol.5, issue.1, p.78, 2010.

S. R. Martins-neves, W. E. Corver, D. I. Paiva-oliveira, B. E. Van-den-akker, I. H. Briaire-de-bruijn et al., Osteosarcoma Stem Cells Have Active Wnt/?-catenin and Overexpress SOX2 and KLF4, Journal of Cellular Physiology, vol.231, issue.4, pp.876-886, 2015.

W. Cai, Y. Xu, J. Yin, W. Zuo, and Z. Su, miR?552?5p facilitates osteosarcoma cell proliferation and metastasis by targeting WIF1, Experimental and Therapeutic Medicine, vol.17, pp.3781-3788, 2019.

Y. Liu, Y. Wang, H. Yang, L. Zhao, R. Song et al., MicroRNA?873 targets HOXA9 to inhibit the aggressive phenotype of osteosarcoma by deactivating the Wnt/??catenin pathway, International Journal of Oncology, vol.54, pp.1809-1820, 2019.

Y. Liu, Z. Bao, W. Tian, and G. Huang, miR?885?5p suppresses osteosarcoma proliferation, migration and invasion through regulation of ??catenin, Oncology Letters, vol.17, 2018.

J. Ren, M. Yang, F. Xu, and J. Chen, microRNA-758 inhibits the malignant phenotype of osteosarcoma cells by directly targeting HMGA1 and deactivating the Wnt/?-catenin pathway, Am. J. Cancer Res, vol.9, pp.36-52, 2019.

P. Xia, R. Gu, W. Zhang, L. Shao, F. Li et al., MicroRNA?377 exerts a potent suppressive role in osteosarcoma through the involvement of the histone acetyltransferase 1?mediated Wnt axis, Journal of Cellular Physiology, vol.234, issue.12, pp.22787-22798, 2019.

C. Li, F. Wang, B. Wei, L. Wang, and D. Kong, LncRNA AWPPH promotes osteosarcoma progression via activation of Wnt/?-catenin pathway through modulating miR-93-3p/FZD7 axis, Biochemical and Biophysical Research Communications, vol.514, issue.3, pp.1017-1022, 2019.

C. H. Lin, T. Ji, C. Chen, and B. H. Hoang, Wnt Signaling in Osteosarcoma, Advances in Experimental Medicine and Biology, vol.804, pp.33-45, 2014.

M. G. Pridgeon, P. J. Grohar, M. R. Steensma, and B. O. Williams, Wnt Signaling in Ewing Sarcoma, Osteosarcoma, and Malignant Peripheral Nerve Sheath Tumors, Current Osteoporosis Reports, vol.15, issue.4, pp.239-246, 2017.

E. A. Pedersen, R. Menon, K. M. Bailey, D. G. Thomas, R. A. Van-noord et al., Activation of Wnt/ -Catenin in Ewing Sarcoma Cells Antagonizes EWS/ETS Function and Promotes Phenotypic Transition to More Metastatic Cell States, Cancer Research, vol.76, issue.17, pp.5040-5053, 2016.

C. A. Scannell, E. A. Pedersen, J. T. Mosher, M. A. Krook, L. A. Nicholls et al., LGR5 is Expressed by Ewing Sarcoma and Potentiates Wnt/?-Catenin Signaling, Frontiers in Oncology, vol.3, 2013.

A. Uren, V. Wolf, Y. Sun, A. Azari, J. S. Rubin et al., Wnt/Frizzled signaling in Ewing sarcoma, Pediatr. Blood Cancer, vol.43, pp.243-249, 2004.

Y. Endo, E. Beauchamp, D. Woods, W. G. Taylor, J. A. Toretsky et al., Wnt-3a and Dickkopf-1 Stimulate Neurite Outgrowth in Ewing Tumor Cells via a Frizzled3- and c-Jun N-Terminal Kinase-Dependent Mechanism, Molecular and Cellular Biology, vol.28, issue.7, pp.2368-2379, 2008.

D. Navarro, N. Agra, Á. Pestaña, J. Alonso, and J. M. González-sancho, The EWS/FLI1 oncogenic protein inhibits expression of the Wnt inhibitor DICKKOPF-1 gene and antagonizes ?-catenin/TCF-mediated transcription, Carcinogenesis, vol.31, issue.3, pp.394-401, 2009.

M. Hayashi, A. Baker, S. D. Goldstein, C. M. Albert, K. W. Jackson et al., Inhibition of porcupine prolongs metastasis free survival in a mouse xenograft model of Ewing sarcoma, Oncotarget, vol.8, issue.45, pp.78265-78276, 2017.

H. K. Brown, K. Schiavone, F. Gouin, M. Heymann, and D. Heymann, Biology of Bone Sarcomas and New Therapeutic Developments, Calcified Tissue International, vol.102, issue.2, pp.174-195, 2017.
URL : https://hal.archives-ouvertes.fr/inserm-01653600

L. Pederson, M. Ruan, J. J. Westendorf, S. Khosla, and M. J. Oursler, Regulation of bone formation by osteoclasts involves Wnt/BMP signaling and the chemokine sphingosine-1-phosphate, Proceedings of the National Academy of Sciences, vol.105, issue.52, pp.20764-20769, 2008.

J. J. Westendorf, R. A. Kahler, and T. M. Schroeder, Wnt signaling in osteoblasts and bone diseases, Gene, vol.341, pp.19-39, 2004.

Z. Zhong, C. R. Zylstra-diegel, C. A. Schumacher, J. J. Baker, A. C. Carpenter et al., Wntless functions in mature osteoblasts to regulate bone mass, Proceedings of the National Academy of Sciences, vol.109, issue.33, pp.E2197-E2204, 2012.

M. M. Weivoda, M. Ruan, C. M. Hachfeld, L. Pederson, A. Howe et al., Wnt Signaling Inhibits Osteoclast Differentiation by Activating Canonical and Noncanonical cAMP/PKA Pathways, Journal of Bone and Mineral Research, vol.31, issue.1, pp.65-75, 2015.

A. Sadanandam, M. Futakuchi, C. A. Lyssiotis, W. J. Gibb, and R. K. Singh, A Cross-Species Analysis of a Mouse Model of Breast Cancer-Specific Osteolysis and Human Bone Metastases Using Gene Expression Profiling, BMC Cancer, vol.11, issue.1, 2011.

G. Bu, W. Lu, C. Liu, K. Selander, T. Yoneda et al., Breast cancer?derived Dickkopf1 inhibits osteoblast differentiation and osteoprotegerin expression: Implication for breast cancer osteolytic bone metastases, International Journal of Cancer, vol.123, issue.5, pp.1034-1042, 2008.

K. Bjørnland, K. Flatmark, S. Pettersen, A. O. Aaasen, Ø. Fodstad et al., Matrix Metalloproteinases Participate in Osteosarcoma Invasion, Journal of Surgical Research, vol.127, issue.2, pp.151-156, 2005.

P. Kunz, H. Sähr, B. Lehner, C. Fischer, E. Seebach et al., Elevated ratio of MMP2/MMP9 activity is associated with poor response to chemotherapy in osteosarcoma, BMC Cancer, vol.16, issue.1, 2016.

M. Zhang and X. Zhang, Association of MMP-2 expression and prognosis in osteosarcoma patients, Int. J. Clin. Exp. Pathol, vol.8, pp.14965-14970, 2015.

J. Zhou, T. Liu, and W. Wang, Prognostic significance of matrix metalloproteinase 9 expression in osteosarcoma, Medicine, vol.97, issue.44, p.e13051, 2018.

E. C. Mateo, F. J. Motta, R. G. De-paula-queiroz, C. A. Scrideli, and L. G. Tone, Protein expression of matrix metalloproteinase (MMP-1, -2, -3, -9 and -14) in Ewing family tumors and medulloblastomas of pediatric patients, J. Pediatr. Genet, vol.1, pp.181-187, 2012.

C. Ye, X. Yu, X. Liu, P. Zhan, T. Nie et al., Beclin-1 knockdown decreases proliferation, invasion and migration of Ewing sarcoma SK-ES-1 cells via inhibition of MMP-9, Oncology Letters, vol.15, pp.3221-3225, 2017.

Y. Guo, X. Zi, Z. Koontz, A. Kim, J. Xie et al., Blocking Wnt/LRP5 signaling by a soluble receptor modulates the epithelial to mesenchymal transition and suppresses met and metalloproteinases in osteosarcoma Saos-2 cells, Journal of Orthopaedic Research, vol.25, issue.7, pp.964-971, 2007.

B. Liu, G. Li, X. Wang, and Y. Liu, A furin inhibitor downregulates osteosarcoma cell migration by downregulating the expression levels of MT1-MMP via the Wnt signaling pathway, Oncology Letters, vol.7, issue.4, pp.1033-1038, 2014.

F. Zhang, A. Chen, J. Chen, T. Yu, and F. Guo, Influence of ?-catenin small interfering RNA on human osteosarcoma cells, Journal of Huazhong University of Science and Technology [Medical Sciences], vol.31, issue.3, pp.353-358, 2011.

F. Zhang, A. Chen, J. Chen, T. Yu, and F. Guo, SiRNA-mediated silencing of beta-catenin suppresses invasion and chemosensitivity to doxorubicin in MG-63 osteosarcoma cells. Asian Pac, J. Cancer Prev, vol.12, pp.239-245, 2011.

C. M. Lowy and T. Oskarsson, Tenascin C in metastasis: A view from the invasive front, Cell Adhesion & Migration, vol.9, issue.1-2, pp.112-124, 2015.

J. J. Olsen, S. Ö. Pohl, .. Deshmukh, A. Visweswaran, M. Ward et al., The Role of Wnt Signalling in Angiogenesis, Clin. Biochem. Rev, vol.38, pp.131-142, 2017.

P. Carmeliet and R. K. Jain, Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases, Nature Reviews Drug Discovery, vol.10, issue.6, pp.417-427, 2011.

A. F. Mavrogenis, C. T. Vottis, P. D. Megaloikonomos, G. D. Agrogiannis, and S. Theocharis, Neovascularization in Ewing?s sarcoma, Neoplasma, vol.65, issue.03, pp.317-325, 2018.

D. Chen, Y. Zhang, K. Zhu, and W. Wang, A systematic review of vascular endothelial growth factor expression as a biomarker of prognosis in patients with osteosarcoma, Tumor Biology, vol.34, issue.3, pp.1895-1899, 2013.

J. Yang, D. Yang, Y. Sun, B. Sun, G. Wang et al., Genetic amplification of the vascular endothelial growth factor (VEGF) pathway genes, includingVEGFA, in human osteosarcoma, Cancer, vol.117, issue.21, pp.4925-4938, 2011.

B. Fuchs, C. Y. Inwards, and R. Janknecht, Vascular Endothelial Growth Factor Expression is Up-Regulated by EWS-ETS Oncoproteins and Sp1 and May Represent an Independent Predictor of Survival in Ewing's Sarcoma, Clinical Cancer Research, vol.10, issue.4, pp.1344-1353, 2004.

D. W. Van-der-schaft, F. Hillen, P. Pauwels, D. A. Kirschmann, K. Castermans et al., Tumor Cell Plasticity in Ewing Sarcoma, an Alternative Circulatory System Stimulated by Hypoxia, Cancer Research, vol.65, issue.24, pp.11520-11528, 2005.

K. Reddy, Z. Zhou, K. Schadler, S. Jia, and E. S. Kleinerman, Bone Marrow Subsets Differentiate into Endothelial Cells and Pericytes Contributing to Ewing's Tumor Vessels, Molecular Cancer Research, vol.6, issue.6, pp.929-936, 2008.

K. Reddy, Y. Cao, Z. Zhou, L. Yu, S. Jia et al., VEGF165 expression in the tumor microenvironment influences the differentiation of bone marrow-derived pericytes that contribute to the Ewing?s sarcoma vasculature, Angiogenesis, vol.11, issue.3, pp.257-267, 2008.

V. Easwaran, S. H. Lee, L. Inge, L. Guo, C. Goldbeck et al., beta-Catenin regulates vascular endothelial growth factor expression in colon cancer, Cancer Res, vol.63, pp.3145-3153, 2003.

X. Zhang, J. P. Gaspard, and D. C. Chung, VEGF is regulated by the WNT pathway in colon cancer, Gastroenterology, vol.120, issue.5, pp.A4-A4, 2001.

Y. Kawano and R. Kypta, Secreted antagonists of the Wnt signalling pathway, Journal of Cell Science, vol.116, issue.13, pp.2627-2634, 2003.

P. Dufourcq, L. Leroux, J. Ezan, B. Descamps, J. D. Lamazière et al., Regulation of Endothelial Cell Cytoskeletal Reorganization by a Secreted Frizzled-Related Protein-1 and Frizzled 4- and Frizzled 7-Dependent Pathway, The American Journal of Pathology, vol.172, issue.1, pp.37-49, 2008.
URL : https://hal.archives-ouvertes.fr/inserm-00508525

C. Duplàa, B. Jaspard, C. Moreau, and P. A. D'amore, Identification and cloning of a secreted protein related to the cysteine-rich domain of frizzled. Evidence for a role in endothelial cell growth control, Circ. Res, vol.84, pp.1433-1445, 1999.

A. Muley, S. Majumder, G. K. Kolluru, S. Parkinson, H. Viola et al., Secreted Frizzled-Related Protein 4, The American Journal of Pathology, vol.176, issue.3, pp.1505-1516, 2010.

S. Zhao, L. Kurenbekova, Y. Gao, A. Roos, C. J. Creighton et al., NKD2, a negative regulator of Wnt signaling, suppresses tumor growth and metastasis in osteosarcoma, Oncogene, vol.34, issue.39, pp.5069-5079, 2015.

D. Liao and R. S. Johnson, Hypoxia: A key regulator of angiogenesis in cancer, Cancer and Metastasis Reviews, vol.26, issue.2, pp.281-290, 2007.

J. A. Forsythe, B. H. Jiang, N. V. Iyer, F. Agani, S. W. Leung et al., Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1., Molecular and Cellular Biology, vol.16, issue.9, pp.4604-4613, 1996.

B. L. Krock, N. Skuli, and M. C. Simon, Hypoxia-Induced Angiogenesis: Good and Evil, Genes & Cancer, vol.2, issue.12, pp.1117-1133, 2011.

W. Zeng, R. Wan, Y. Zheng, S. R. Singh, and Y. Wei, Hypoxia, stem cells and bone tumor, Cancer Letters, vol.313, issue.2, pp.129-136, 2011.

X. Zhang, Q. Wu, and S. Yang, Effects of siRNA-mediated HIF-1? gene silencing on angiogenesis in osteosarcoma, Pakistan Journal of Medical Sciences, vol.33, issue.2, pp.341-346, 2017.

D. N. Aryee, S. Niedan, M. Kauer, R. Schwentner, I. M. Bennani-baiti et al., Hypoxia Modulates EWS-FLI1 Transcriptional Signature and Enhances the Malignant Properties of Ewing's Sarcoma Cells In vitro, Cancer Research, vol.70, issue.10, pp.4015-4023, 2010.

D. Zhang, G. Cui, C. Sun, L. Lei, L. Lei et al., Hypoxia promotes osteosarcoma cell proliferation and migration through enhancing platelet-derived growth factor-BB/platelet-derived growth factor receptor-? axis, Biochemical and Biophysical Research Communications, vol.512, issue.2, pp.360-366, 2019.

B. Zhang, Y. Li, J. Zhao, O. Zhen, C. Yu et al., Hypoxia-inducible factor-1 promotes cancer progression through activating AKT/Cyclin D1 signaling pathway in osteosarcoma, Biomedicine & Pharmacotherapy, vol.105, pp.1-9, 2018.

Y. Li, W. Zhang, S. Li, and C. Tu, Prognosis value of Hypoxia-inducible factor-1? expression in patients with bone and soft tissue sarcoma: a meta-analysis, SpringerPlus, vol.5, issue.1, 2016.

S. Wang, T. Ren, Y. Huang, X. Bao, K. Sun et al., BMPR2 and HIF1-? overexpression in resected osteosarcoma correlates with distant metastasis and patient survival, Chinese Journal of Cancer Research, vol.29, issue.5, pp.447-454, 2017.

H. Ren, H. Y. Li, T. Xie, L. L. Sun, T. Zhu et al., Prognostic role of hypoxia-inducible factor-1 alpha expression in osteosarcoma: a meta-analysis, OncoTargets and Therapy, vol.9, p.1477, 2016.

R. Demir, A. Dimmler, E. Naschberger, I. Demir, T. Papadopoulos et al., Malignant progression of invasive tumour cells seen in hypoxia present an accumulation of ?-catenin in the nucleus at the tumour front, Experimental and Molecular Pathology, vol.87, issue.2, pp.109-116, 2009.

A. Kaidi, A. C. Williams, and C. Paraskeva, Interaction between ?-catenin and HIF-1 promotes cellular adaptation to hypoxia, Nature Cell Biology, vol.9, issue.2, pp.210-217, 2007.

D. J. Scholten, C. M. Timmer, J. D. Peacock, D. W. Pelle, B. O. Williams et al., Down Regulation of Wnt Signaling Mitigates Hypoxia-Induced Chemoresistance in Human Osteosarcoma Cells, PLoS ONE, vol.9, issue.10, p.e111431, 2014.

D. L. Casey, T. Lin, and N. V. Cheung, Exploiting Signaling Pathways and Immune Targets Beyond the Standard of Care for Ewing Sarcoma, Frontiers in Oncology, vol.9, 2019.

B. Qian and J. W. Pollard, Macrophage Diversity Enhances Tumor Progression and Metastasis, Cell, vol.141, issue.1, pp.39-51, 2010.

Y. Yang, Y. Ye, Y. Chen, J. Zhao, C. Gao et al., Crosstalk between hepatic tumor cells and macrophages via Wnt/?-catenin signaling promotes M2-like macrophage polarization and reinforces tumor malignant behaviors, Cell Death & Disease, vol.9, issue.8, p.793, 2018.

T. Liu, X. Fang, Z. Ding, Z. Sun, L. Sun et al., Pre-operative lymphocyte-to-monocyte ratio as a predictor of overall survival in patients suffering from osteosarcoma, FEBS Open Bio, vol.5, issue.1, pp.682-687, 2015.

A. Assal, J. Kaner, G. Pendurti, and X. Zang, Emerging targets in cancer immunotherapy: beyond CTLA-4 and PD-1, Immunotherapy, vol.7, issue.11, pp.1169-1186, 2015.

P. Koirala, M. E. Roth, J. Gill, J. M. Chinai, M. R. Ewart et al., HHLA2, a member of the B7 family, is expressed in human osteosarcoma and is associated with metastases and worse survival, Scientific Reports, vol.6, issue.1, 2016.

P. Koirala, M. E. Roth, J. Gill, S. Piperdi, J. M. Chinai et al., Immune infiltration and PD-L1 expression in the tumor microenvironment are prognostic in osteosarcoma, Scientific Reports, vol.6, issue.1, 2016.

C. Spurny, S. Kailayangiri, S. Jamitzky, B. Altvater, E. Wardelmann et al., Programmed cell death ligand 1 (PD-L1) expression is not a predominant feature in Ewing sarcomas, Pediatric Blood & Cancer, vol.65, issue.1, p.e26719, 2017.

G. J. Mccaughan, M. J. Fulham, A. Mahar, J. Soper, A. M. Hong et al., Programmed cell death-1 blockade in recurrent disseminated Ewing sarcoma, Journal of Hematology & Oncology, vol.9, issue.1, p.48, 2016.

L. Wang, Q. Zhang, W. Chen, B. Shan, Y. Ding et al., B7-H3 is Overexpressed in Patients Suffering Osteosarcoma and Associated with Tumor Aggressiveness and Metastasis, PLoS ONE, vol.8, issue.8, p.e70689, 2013.

S. J. Yin, W. J. Wang, and J. Y. Zhang, Expression of B7-H3 in cancer tissue during osteosarcoma progression in nude mice, Genetics and Molecular Research, vol.14, issue.4, pp.14253-14261, 2015.

W. N. Goldsberry, A. Londoño, T. D. Randall, L. A. Norian, and R. C. Arend, A Review of the Role of Wnt in Cancer Immunomodulation, Cancers, vol.11, issue.6, p.771, 2019.

J. J. Luke, R. Bao, R. F. Sweis, S. Spranger, and T. F. Gajewski, WNT/?-catenin Pathway Activation Correlates with Immune Exclusion across Human Cancers, Clinical Cancer Research, vol.25, issue.10, pp.3074-3083, 2019.

S. Spranger, R. Bao, and T. F. Gajewski, Melanoma-intrinsic ?-catenin signalling prevents anti-tumour immunity, Nature, vol.523, issue.7559, pp.231-235, 2015.

M. Ruiz-de-galarreta, E. Bresnahan, P. Molina-sánchez, K. E. Lindblad, B. Maier et al., ?-Catenin Activation Promotes Immune Escape and Resistance to Anti?PD-1 Therapy in Hepatocellular Carcinoma, Cancer Discovery, vol.9, issue.8, pp.1124-1141, 2019.

P. Dhupkar, N. Gordon, J. Stewart, and E. S. Kleinerman, Anti-PD-1 therapy redirects macrophages from an M2 to an M1 phenotype inducing regression of OS lung metastases, Cancer Medicine, vol.7, issue.6, pp.2654-2664, 2018.

L. Galluzzi, S. Spranger, E. Fuchs, and A. López-soto, WNT Signaling in Cancer Immunosurveillance, Trends in Cell Biology, vol.29, issue.1, pp.44-65, 2019.

, Figure 2?figure supplement 1. Representative images used in the experiment, sampled from http://commons.wikimedia.org/wiki/Main_Page under the Creative Commons Attribution 4.0 International Public License https://creativecommons.org/licenses/by/4.0/., © 2019 by the authors. Licensee MDPI