R. W. Justice, O. Zilian, D. F. Woods, M. Noll, and P. J. Bryant, The Drosophila tumor suppressor gene warts encodes a homolog of human myotonic dystrophy kinase and is required for the control of cell shape and proliferation., Genes & Development, vol.9, issue.5, pp.534-546, 1995.

T. Xu, W. Wang, S. Zhang, R. A. Stewart, and W. Yu, Identifying tumor suppressors in genetic mosaics: The Drosophila lats gene encodes a putative protein kinase, Development, vol.121, pp.1053-1063, 1995.

D. Pan, The Hippo Signaling Pathway in Development and Cancer, Developmental Cell, vol.19, issue.4, pp.491-505, 2010.

K. F. Harvey and I. K. Hariharan, The Hippo Pathway, Cold Spring Harbor Perspectives in Biology, vol.4, issue.8, pp.a011288-a011288, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02989075

A. Genevet and N. Tapon, The Hippo pathway and apico?basal cell polarity, Biochemical Journal, vol.436, issue.2, pp.213-224, 2011.

N. Tapon, K. F. Harvey, D. W. Bell, D. C. Wahrer, T. A. Schiripo et al., salvador Promotes Both Cell Cycle Exit and Apoptosis in Drosophila and Is Mutated in Human Cancer Cell Lines, Cell, vol.110, issue.4, pp.467-478, 2002.

M. Kango-singh, R. Nolo, C. Tao, P. Verstreken, P. R. Hiesinger et al., Shar-pei mediates cell proliferation arrest during imaginal disc growth in Drosophila, Development, vol.129, issue.24, pp.5719-5730, 2002.

J. Huang, S. Wu, J. Barrera, K. Matthews, and D. Pan, The Hippo Signaling Pathway Coordinately Regulates Cell Proliferation and Apoptosis by Inactivating Yorkie, the Drosophila Homolog of YAP, Cell, vol.122, issue.3, pp.421-434, 2005.

S. Wu, Y. Liu, Y. Zheng, J. Dong, and D. Pan, The TEAD/TEF Family Protein Scalloped Mediates Transcriptional Output of the Hippo Growth-Regulatory Pathway, Developmental Cell, vol.14, issue.3, pp.388-398, 2008.

L. Zhang, F. Ren, Q. Zhang, Y. Chen, B. Wang et al., The TEAD/TEF Family of Transcription Factor Scalloped Mediates Hippo Signaling in Organ Size Control, Developmental Cell, vol.14, issue.3, pp.377-387, 2008.

M. Sudol, Yes-associated protein (YAP65) is a proline-rich phosphoprotein that binds to the SH3 domain of the Yes proto-oncogene product, Oncogene, vol.9, pp.2145-2152, 1994.

J. Dong, G. Feldmann, J. Huang, S. Wu, N. Zhang et al., Elucidation of a Universal Size-Control Mechanism in Drosophila and Mammals, Cell, vol.130, issue.6, pp.1120-1133, 2007.

N. Nishioka, K. Inoue, K. Adachi, H. Kiyonari, M. Ota et al., The Hippo Signaling Pathway Components Lats and Yap Pattern Tead4 Activity to Distinguish Mouse Trophectoderm from Inner Cell Mass, Developmental Cell, vol.16, issue.3, pp.398-410, 2009.

J. P. Mcpherson, L. Tamblyn, A. Elia, E. Migon, A. Shehabeldin et al., Lats2/Kpm is required for embryonic development, proliferation control and genomic integrity, The EMBO Journal, vol.23, issue.18, pp.3677-3688, 2004.

M. A. St-john, W. Tao, X. Fei, R. Fukumoto, M. L. Carcangiu et al., Mice deficient of Lats1 develop soft-tissue sarcomas, ovarian tumours and pituitary dysfunction, Nature Genetics, vol.21, issue.2, pp.182-186, 1999.

B. Zhao, X. Ye, J. Yu, L. Li, W. Li et al., TEAD mediates YAP-dependent gene induction and growth control, Genes & Development, vol.22, issue.14, pp.1962-1971, 2008.

J. C. Boggiano, P. J. Vanderzalm, and R. G. Fehon, Tao-1 Phosphorylates Hippo/MST Kinases to Regulate the Hippo-Salvador-Warts Tumor Suppressor Pathway, Developmental Cell, vol.21, issue.5, pp.888-895, 2011.

C. L. Poon, J. I. Lin, X. Zhang, and K. F. Harvey, The Sterile 20-like Kinase Tao-1 Controls Tissue Growth by Regulating the Salvador-Warts-Hippo Pathway, Developmental Cell, vol.21, issue.5, pp.896-906, 2011.

K. F. Harvey, C. M. Pfleger, and I. K. Hariharan, The Drosophila Mst Ortholog, hippo, Restricts Growth and Cell Proliferation and Promotes Apoptosis, Cell, vol.114, issue.4, pp.457-467, 2003.

J. Jia, W. Zhang, B. Wang, R. Trinko, and J. Jiang, The Drosophila Ste20 family kinase dMST functions as a tumor suppressor by restricting cell proliferation and promoting apoptosis, Genes & Development, vol.17, issue.20, pp.2514-2519, 2003.

S. Piccolo, S. Dupont, and M. Cordenonsi, The Biology of YAP/TAZ: Hippo Signaling and Beyond, Physiological Reviews, vol.94, issue.4, pp.1287-1312, 2014.

S. Moon, S. Yeon-park, and H. Woo-park, Regulation of the Hippo pathway in cancer biology, Cellular and Molecular Life Sciences, vol.75, issue.13, pp.2303-2319, 2018.

B. S. Robinson, J. Huang, Y. Hong, and K. H. Moberg, Crumbs Regulates Salvador/Warts/Hippo Signaling in Drosophila via the FERM-Domain Protein Expanded, Current Biology, vol.20, issue.7, pp.582-590, 2010.

B. M. Mccartney, R. M. Kulikauskas, D. R. Lajeunesse, and R. G. Fehon, The neurofibromatosis-2 homologue, Merlin, and the tumor suppressor expanded function together in Drosophila to regulate cell proliferation and differentiation, vol.127, pp.1315-1324, 2000.

F. Sanchez-vega, M. Mina, J. Armenia, W. K. Chatila, A. Luna et al., Oncogenic Signaling Pathways in The Cancer Genome Atlas, Cell, vol.173, issue.2, pp.321-337.e10, 2018.

C. Kim, S. Choi, and J. Mo, Role of the Hippo Pathway in Fibrosis and Cancer, Cells, vol.8, issue.5, p.468, 2019.

F. Zanconato, M. Cordenonsi, and S. Piccolo, YAP/TAZ at the Roots of Cancer, Cancer Cell, vol.29, issue.6, pp.783-803, 2016.

S. V. Saladi, K. Ross, M. Karaayvaz, P. R. Tata, H. Mou et al., ACTL6A Is Co-Amplified with p63 in Squamous Cell Carcinoma to Drive YAP Activation, Regenerative Proliferation, and Poor Prognosis, Cancer Cell, vol.31, issue.1, pp.35-49, 2017.

H. Murakami, T. Mizuno, T. Taniguchi, M. Fujii, F. Ishiguro et al., LATS2 Is a Tumor Suppressor Gene of Malignant Mesothelioma, Cancer Research, vol.71, issue.3, pp.873-883, 2011.

Y. Sekido, Inactivation of Merlin in malignant mesothelioma cells and the Hippo signaling cascade dysregulation, Pathology International, vol.61, issue.6, pp.331-344, 2011.

M. R. Tanas, A. Sboner, A. M. Oliveira, M. R. Erickson-johnson, J. Hespelt et al., Identification of a Disease-Defining Gene Fusion in Epithelioid Hemangioendothelioma, Science Translational Medicine, vol.3, issue.98, pp.98ra82-98ra82, 2011.

H. D. Huh, D. H. Kim, H. Jeong, and H. W. Park, Regulation of TEAD Transcription Factors in Cancer Biology, Cells, vol.8, issue.6, p.600, 2019.

F. Yu, B. Zhao, and K. Guan, Hippo Pathway in Organ Size Control, Tissue Homeostasis, and Cancer, Cell, vol.163, issue.4, pp.811-828, 2015.

E. Dejana, E. Tournier-lasserve, and B. M. Weinstein, The Control of Vascular Integrity by Endothelial Cell Junctions: Molecular Basis and Pathological Implications, Developmental Cell, vol.16, issue.2, pp.209-221, 2009.

C. Viallard and B. Larrivée, Tumor angiogenesis and vascular normalization: alternative therapeutic targets, Angiogenesis, vol.20, issue.4, pp.409-426, 2017.

J. L. Arbiser, M. A. Moses, C. A. Fernandez, N. Ghiso, Y. Cao et al., Oncogenic H-ras stimulates tumor angiogenesis by two distinct pathways, Proceedings of the National Academy of Sciences, vol.94, issue.3, pp.861-866, 1997.

J. Glienke, A. O. Schmitt, C. Pilarsky, B. Hinzmann, B. Weiß et al., Differential gene expression by endothelial cells in distinct angiogenic states, European Journal of Biochemistry, vol.267, issue.9, pp.2820-2830, 2000.

B. Zhao, L. Li, Q. Lu, L. H. Wang, C. Liu et al., Angiomotin is a novel Hippo pathway component that inhibits YAP oncoprotein, Genes & Development, vol.25, issue.1, pp.51-63, 2011.

T. Azad, M. Ghahremani, and X. Yang, The Role of YAP and TAZ in Angiogenesis and Vascular Mimicry, Cells, vol.8, issue.5, p.407, 2019.

V. Djonov, O. Baum, and P. H. Burri, Vascular remodeling by intussusceptive angiogenesis, Cell and Tissue Research, vol.314, issue.1, pp.107-117, 2003.

K. Aase, M. Ernkvist, L. Ebarasi, L. Jakobsson, A. Majumdar et al., Angiomotin regulates endothelial cell migration during embryonic angiogenesis, Genes & Development, vol.21, issue.16, pp.2055-2068, 2007.

K. Skouloudaki and G. Walz, YAP1 Recruits c-Abl to Protect Angiomotin-Like 1 from Nedd4-Mediated Degradation, PLoS ONE, vol.7, issue.4, p.e35735, 2012.

P. A. Singleton, R. Salgia, L. Moreno-vinasco, J. Moitra, S. Sammani et al., CD44 Regulates Hepatocyte Growth Factor-mediated Vascular Integrity, Journal of Biological Chemistry, vol.282, issue.42, pp.30643-30657, 2007.

I. Stamenkovic and Q. Yu, Merlin, a “Magic” Linker Between the Extracellular Cues and Intracellular Signaling Pathways that Regulate Cell Motility, Proliferation, and Survival, Current Protein & Peptide Science, vol.11, issue.6, pp.471-484, 2010.

J. Seo and J. Kim, Regulation of Hippo signaling by actin remodeling, BMB Reports, vol.51, issue.3, pp.151-156, 2018.

S. Dupont, Regulation of YAP/TAZ Activity by Mechanical Cues: An Experimental Overview, Methods in Molecular Biology, vol.1893, pp.183-202, 2018.

S. Dupont, L. Morsut, M. Aragona, E. Enzo, S. Giulitti et al., Role of YAP/TAZ in mechanotransduction, Nature, vol.474, issue.7350, pp.179-183, 2011.

H. Nakajima, K. Yamamoto, S. Agarwala, K. Terai, H. Fukui et al., Flow-Dependent Endothelial YAP Regulation Contributes to Vessel Maintenance, Developmental Cell, vol.40, issue.6, pp.523-536.e6, 2017.

M. C. Dickson, J. S. Martin, F. M. Cousins, A. B. Kulkarni, S. Karlsson et al., Defective haematopoiesis and vasculogenesis in transforming growth factor-beta 1 knock out mice, vol.121, pp.1845-1854, 1995.

M. Oshima, H. Oshima, and M. M. Taketo, TGF-? Receptor Type II Deficiency Results in Defects of Yolk Sac Hematopoiesis and Vasculogenesis, Developmental Biology, vol.179, issue.1, pp.297-302, 1996.

J. Larsson, M. J. Goumans, L. J. Sjöstrand, M. A. Van-rooijen, D. Ward et al., Abnormal angiogenesis but intact hematopoietic potential in TGF-beta type I receptor-deficient mice, The EMBO Journal, vol.20, issue.7, pp.1663-1673, 2001.

D. Pefani, D. Pankova, A. G. Abraham, A. M. Grawenda, N. Vlahov et al., TGF-? Targets the Hippo Pathway Scaffold RASSF1A to Facilitate YAP/SMAD2 Nuclear Translocation, Molecular Cell, vol.63, issue.1, pp.156-166, 2016.

B. Ma, H. Cheng, R. Gao, C. Mu, L. Chen et al., Zyxin-Siah2?Lats2 axis mediates cooperation between Hippo and TGF-? signalling pathways, Nature Communications, vol.7, issue.1, 2016.

W. Li and Y. Kang, Probing the Fifty Shades of EMT in Metastasis, Trends in Cancer, vol.2, issue.2, pp.65-67, 2016.

M. Yilmaz and G. Christofori, EMT, the cytoskeleton, and cancer cell invasion, Cancer and Metastasis Reviews, vol.28, issue.1-2, pp.15-33, 2009.

Z. Li, Y. Wang, Y. Zhu, C. Yuan, D. Wang et al., The Hippo transducer TAZ promotes epithelial to mesenchymal transition and cancer stem cell maintenance in oral cancer, Molecular Oncology, vol.9, issue.6, pp.1091-1105, 2015.

M. Overholtzer, J. Zhang, G. A. Smolen, B. Muir, W. Li et al., Transforming properties of YAP, a candidate oncogene on the chromosome 11q22 amplicon, Proceedings of the National Academy of Sciences, vol.103, issue.33, pp.12405-12410, 2006.

Q. Lei, H. Zhang, B. Zhao, Z. Zha, F. Bai et al., TAZ Promotes Cell Proliferation and Epithelial-Mesenchymal Transition and Is Inhibited by the Hippo Pathway, Molecular and Cellular Biology, vol.28, issue.7, pp.2426-2436, 2008.

Y. Tang, T. Feinberg, E. T. Keller, X. Li, and S. J. Weiss, Snail/Slug binding interactions with YAP/TAZ control skeletal stem cell self-renewal and differentiation, Nature Cell Biology, vol.18, issue.9, pp.917-929, 2016.

D. D. Shao, W. Xue, E. B. Krall, A. Bhutkar, F. Piccioni et al., KRAS and YAP1 Converge to Regulate EMT and Tumor Survival, Cell, vol.158, issue.1, pp.171-184, 2014.

J. Park, D. Kim, S. R. Shah, H. Kim, . Kshitiz et al., Switch-like enhancement of epithelial-mesenchymal transition by YAP through feedback regulation of WT1 and Rho-family GTPases, Nature Communications, vol.10, issue.1, pp.1-15, 2019.

Y. Qu, L. Zhang, J. Wang, P. Chen, Y. Jia et al., Yes?associated protein (YAP) predicts poor prognosis and regulates progression of esophageal squamous cell cancer through epithelial?mesenchymal transition, Experimental and Therapeutic Medicine, vol.18, pp.2993-3001, 2019.

Y. Zhang, P. Xie, X. Wang, P. Pan, Y. Wang et al., YAP Promotes Migration and Invasion of Human Glioma Cells, Journal of Molecular Neuroscience, vol.64, issue.2, pp.262-272, 2018.

W. Chen, Y. Bai, C. Patel, and F. Geng, Autophagy promotes triple negative breast cancer metastasis via YAP nuclear localization, Biochemical and Biophysical Research Communications, vol.520, issue.2, pp.263-268, 2019.

H. Ling, C. Kuo, B. Lin, Y. Huang, and C. Lin, Elevation of YAP promotes the epithelial-mesenchymal transition and tumor aggressiveness in colorectal cancer, Experimental Cell Research, vol.350, issue.1, pp.218-225, 2017.

F. Yu, B. Zhao, N. Panupinthu, J. L. Jewell, I. Lian et al., Regulation of the Hippo-YAP Pathway by G-Protein-Coupled Receptor Signaling, Cell, vol.150, issue.4, pp.780-791, 2012.

Y. Liu, K. He, Y. Hu, X. Guo, D. Wang et al., YAP modulates TGF-?1-induced simultaneous apoptosis and EMT through upregulation of the EGF receptor, Scientific Reports, vol.7, issue.1, 2017.

H. Han, R. Qi, J. J. Zhou, A. P. Ta, B. Yang et al., Regulation of the Hippo Pathway by Phosphatidic Acid-Mediated Lipid-Protein Interaction, Molecular Cell, vol.72, issue.2, pp.328-340.e8, 2018.

D. Fujimoto, Y. Ueda, Y. Hirono, T. Goi, and A. Yamaguchi, PAR1 participates in the ability of multidrug resistance and tumorigenesis by controlling Hippo-YAP pathway, Oncotarget, vol.6, issue.33, pp.34788-34799, 2015.

M. Diepenbruck, L. Waldmeier, R. Ivanek, P. Berninger, P. Arnold et al., Tead2 expression levels control the subcellular distribution of Yap and Taz, zyxin expression and epithelial-mesenchymal transition, Journal of Cell Science, vol.127, issue.7, pp.1523-1536, 2014.

M. L. Kireeva, F. E. Mo, G. P. Yang, and L. F. Lau, Cyr61, a product of a growth factor-inducible immediate-early gene, promotes cell proliferation, migration, and adhesion., Molecular and Cellular Biology, vol.16, issue.4, pp.1326-1334, 1996.

C. Chu, C. Chang, E. Prakash, and M. Kuo, Connective tissue growth factor (CTGF) and cancer progression, Journal of Biomedical Science, vol.15, issue.6, pp.675-685, 2008.

X. Feng, M. S. Degese, R. Iglesias-bartolome, J. P. Vaque, A. A. Molinolo et al., Hippo-Independent Activation of YAP by the GNAQ Uveal Melanoma Oncogene through a Trio-Regulated Rho GTPase Signaling Circuitry, Cancer Cell, vol.25, issue.6, pp.831-845, 2014.

N. Y. Huang, O. Urtatiz, and C. D. Van-raamsdonk, Oncogenic G Protein GNAQ Induces Uveal Melanoma and Intravasation in Mice, Cancer Research, vol.75, issue.16, pp.3384-3397, 2015.

R. Wu, H. Yang, J. Wan, X. Deng, L. Chen et al., Knockdown of the Hippo transducer YAP reduces proliferation and promotes apoptosis in the Jurkat leukemia cell, Molecular Medicine Reports, vol.18, pp.5379-5388, 2018.

B. Zhao, L. Li, L. Wang, C. Wang, J. Yu et al., Cell detachment activates the Hippo pathway via cytoskeleton reorganization to induce anoikis, Genes & Development, vol.26, issue.1, pp.54-68, 2012.

G. M. Sharif, M. O. Schmidt, C. Yi, Z. Hu, B. R. Haddad et al., Cell growth density modulates cancer cell vascular invasion via Hippo pathway activity and CXCR2 signaling, Oncogene, vol.34, issue.48, pp.5879-5889, 2015.

S. A. Eccles and D. R. Welch, Metastasis: recent discoveries and novel treatment strategies, The Lancet, vol.369, issue.9574, pp.1742-1757, 2007.

B. Dockhorn-dworniczak, K. L. Schäfer, R. Dantcheva, S. Blasius, W. Böcker et al., Diagnostic value of the molecular genetic detection of the t(11;22) translocation in Ewing's tumours, Virchows Archiv, vol.425, issue.2, pp.107-112, 1994.

A. A. Ahmed, M. Abedalthagafi, A. E. Anwar, and M. M. Bui, Akt and Hippo Pathways in Ewing's Sarcoma Tumors and Their Prognostic Significance, Journal of Cancer, vol.6, issue.10, pp.1005-1010, 2015.

P. Rodríguez?núñez, L. Romero?pérez, A. T. Amaral, P. Puerto?camacho, C. Jordán et al., Hippo pathway effectors YAP1/TAZ induce an EWS?FLI1 ?opposing gene signature and associate with disease progression in Ewing sarcoma, The Journal of Pathology, vol.250, issue.4, pp.374-386, 2020.

S. He, Q. Huang, J. Hu, L. Li, Y. Xiao et al., EWS-FLI1-mediated tenascin-C expression promotes tumour progression by targeting MALAT1 through integrin ?5?1-mediated YAP activation in Ewing sarcoma, British Journal of Cancer, vol.121, issue.11, pp.922-933, 2019.

A. M. Katschnig, M. O. Kauer, R. Schwentner, E. M. Tomazou, C. N. Mutz et al., EWS-FLI1 perturbs MRTFB/YAP-1/TEAD target gene regulation inhibiting cytoskeletal autoregulatory feedback in Ewing sarcoma, Oncogene, vol.36, issue.43, pp.5995-6005, 2017.

J. H. Hsu and E. R. Lawlor, BMI-1 suppresses contact inhibition and stabilizes YAP in Ewing sarcoma, Oncogene, vol.30, issue.17, pp.2077-2085, 2010.

. Esmo and . European, Bone sarcomas: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up, Annals of Oncology, vol.25, pp.iii113-iii123, 2014.

V. Spina, N. Montanari, and R. Romagnoli, Malignant tumors of the osteogenic matrix, European Journal of Radiology, vol.27, pp.S98-S109, 1998.

V. Y. Jo and C. D. Fletcher, WHO classification of soft tissue tumours: an update based on the 2013 (4th) edition, Pathology, vol.46, issue.2, pp.95-104, 2014.

P. G. Casali, S. Bielack, N. Abecassis, H. T. Aro, S. Bauer et al., Bone sarcomas: ESMO?PaedCan?EURACAN Clinical Practice Guidelines for diagnosis, treatment and follow-up, Annals of Oncology, vol.29, pp.iv79-iv95, 2018.

D. D. Moore and H. H. Luu, Osteosarcoma, Cancer Treatment and Research, vol.162, pp.65-92, 2014.

C. Bouvier, N. Macagno, Q. Nguyen, A. Loundou, C. Jiguet-jiglaire et al., Prognostic value of the Hippo pathway transcriptional coactivators YAP/TAZ and ?1-integrin in conventional osteosarcoma, Oncotarget, vol.7, issue.40, pp.64702-64710, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01482390

Y. Zhang, B. Li, L. Shen, Y. Shen, and X. Chen, The Role and Clinical Significance of Yes-Associated Protein 1 in Human Osteosarcoma, International Journal of Immunopathology and Pharmacology, vol.26, issue.1, pp.157-167, 2013.

U. Basu-roy, N. S. Bayin, K. Rattanakorn, E. Han, D. G. Placantonakis et al., Sox2 antagonizes the Hippo pathway to maintain stemness in cancer cells, Nature Communications, vol.6, issue.1, p.6411, 2015.

G. Maurizi, N. Verma, A. Gadi, A. Mansukhani, and C. Basilico, Sox2 is required for tumor development and cancer cell proliferation in osteosarcoma, Oncogene, vol.37, issue.33, pp.4626-4632, 2018.

U. Basu-roy, E. Han, K. Rattanakorn, A. Gadi, N. Verma et al., PPAR? agonists promote differentiation of cancer stem cells by restraining YAP transcriptional activity, Oncotarget, vol.7, issue.38, pp.60954-60970, 2016.

J. Chai, S. Xu, and F. Guo, TEAD1 mediates the oncogenic activities of Hippo-YAP1 signaling in osteosarcoma, Biochemical and Biophysical Research Communications, vol.488, issue.2, pp.297-302, 2017.

M. Fujii, H. Nakanishi, T. Toyoda, I. Tanaka, Y. Kondo et al., Convergent signaling in the regulation of connective tissue growth factor in malignant mesothelioma: TGF? signaling and defects in the Hippo signaling cascade, Cell Cycle, vol.11, issue.18, pp.3373-3379, 2012.

K. Grannas, L. Arngården, P. Lönn, M. Mazurkiewicz, A. Blokzijl et al., Crosstalk between Hippo and TGF?: Subcellular Localization of YAP/TAZ/Smad Complexes, Journal of Molecular Biology, vol.427, issue.21, pp.3407-3415, 2015.

A. Lamora, M. Mullard, J. Amiaud, R. Brion, D. Heymann et al., Anticancer activity of halofuginone in a preclinical model of osteosarcoma: inhibition of tumor growth and lung metastases, Oncotarget, vol.6, issue.16, pp.14413-14427, 2015.
URL : https://hal.archives-ouvertes.fr/inserm-01793498

A. Lamora, J. Talbot, G. Bougras, J. Amiaud, M. Leduc et al., Overexpression of Smad7 Blocks Primary Tumor Growth and Lung Metastasis Development in Osteosarcoma, Clinical Cancer Research, vol.20, issue.19, pp.5097-5112, 2014.

F. Verrecchia and F. Rédini, Transforming Growth Factor-? Signaling Plays a Pivotal Role in the Interplay Between Osteosarcoma Cells and Their Microenvironment, Frontiers in Oncology, vol.8, p.133, 2018.
URL : https://hal.archives-ouvertes.fr/inserm-01814333

G. Liu, K. Huang, Z. Jie, Y. Wu, J. Chen et al., CircFAT1 sponges miR-375 to promote the expression of Yes-associated protein 1 in osteosarcoma cells, Molecular Cancer, vol.17, issue.1, 2018.

Y. Luo, W. Liu, P. Tang, D. Jiang, C. Gu et al., miR-624-5p promoted tumorigenesis and metastasis by suppressing hippo signaling through targeting PTPRB in osteosarcoma cells, Journal of Experimental & Clinical Cancer Research, vol.38, issue.1, 2019.

X. Yi, X. Deng, Y. Zhao, B. Deng, J. Deng et al., Ubiquitin-like protein FAT10 promotes osteosarcoma growth by modifying the ubiquitination and degradation of YAP1, Experimental Cell Research, vol.387, issue.2, p.111804, 2020.

G. M. Elisi, M. Santucci, D. D?arca, A. Lauriola, G. Marverti et al., Repurposing of Drugs Targeting YAP-TEAD Functions, Cancers, vol.10, issue.9, p.329, 2018.

Y. Liu-chittenden, B. Huang, J. S. Shim, Q. Chen, S. Lee et al., Genetic and pharmacological disruption of the TEAD-YAP complex suppresses the oncogenic activity of YAP, Genes & Development, vol.26, issue.12, pp.1300-1305, 2012.

X. Chen, W. Gu, Q. Wang, X. Fu, Y. Wang et al., C-MYC and BCL-2 mediate YAP-regulated tumorigenesis in OSCC, Oncotarget, vol.9, issue.1, pp.668-679, 2017.

L. Sanna, R. Piredda, I. Marchesi, V. Bordoni, S. V. Forcales et al., ?Verteporfin exhibits anti-proliferative activity in embryonal and alveolar rhabdomyosarcoma cell lines?, Chemico-Biological Interactions, vol.312, p.108813, 2019.

K. Brodowska, A. Al-moujahed, A. Marmalidou, M. Meyer-zu-horste, J. Cichy et al., The clinically used photosensitizer Verteporfin (VP) inhibits YAP-TEAD and human retinoblastoma cell growth in vitro without light activation, Experimental Eye Research, vol.124, pp.67-73, 2014.

G. Shi, H. Wang, H. Han, J. Gan, and H. Wang, Verteporfin enhances the sensitivity of LOVO/TAX cells to taxol via YAP inhibition, Experimental and Therapeutic Medicine, vol.16, pp.2751-2755, 2018.

A. Al-moujahed, K. Brodowska, T. P. Stryjewski, N. E. Efstathiou, I. Vasilikos et al., Verteporfin inhibits growth of human glioma in vitro without light activation, Scientific Reports, vol.7, issue.1, 2017.

V. R. Dasari, V. Mazack, W. Feng, J. Nash, D. J. Carey et al., Verteporfin exhibits YAP-independent anti-proliferative and cytotoxic effects in endometrial cancer cells, Oncotarget, vol.8, issue.17, pp.28628-28640, 2017.

H. Zhang, S. K. Ramakrishnan, D. Triner, B. Centofanti, D. Maitra et al., Tumor-selective proteotoxicity of verteporfin inhibits colon cancer progression independently of YAP1, Science Signaling, vol.8, issue.397, pp.ra98-ra98, 2015.

C. Wang, X. Zhu, W. Feng, Y. Yu, K. Jeong et al., Verteporfin inhibits YAP function through up-regulating 14-3-3? sequestering YAP in the cytoplasm, Am. J. Cancer Res, vol.6, pp.27-37, 2016.

C. Zucchini, M. C. Manara, C. Cristalli, M. Carrabotta, S. Greco et al., ROCK2 deprivation leads to the inhibition of tumor growth and metastatic potential in osteosarcoma cells through the modulation of YAP activity, Journal of Experimental & Clinical Cancer Research, vol.38, issue.1, p.503, 2019.

J. Sun, X. Wang, B. Tang, H. Liu, M. Zhang et al., A tightly controlled Src-YAP signaling axis determines therapeutic response to dasatinib in renal cell carcinoma, Theranostics, vol.8, issue.12, pp.3256-3267, 2018.

C. Taccioli, G. Sorrentino, A. Zannini, J. Caroli, D. Beneventano et al., MDP, a database linking drug response data to genomic information, identifies dasatinib and statins as a combinatorial strategy to inhibit YAP/TAZ in cancer cells, Oncotarget, vol.6, issue.36, pp.38854-38865, 2015.

W. Zhao, H. Liu, J. Wang, M. Wang, and R. Shao, Cyclizing-berberine A35 induces G2/M arrest and apoptosis by activating YAP phosphorylation (Ser127), Journal of Experimental & Clinical Cancer Research, vol.37, issue.1, 2018.

F. Zanconato, G. Battilana, M. Forcato, L. Filippi, L. Azzolin et al., Transcriptional addiction in cancer cells is mediated by YAP/TAZ through BRD4, Nature Medicine, vol.24, issue.10, pp.1599-1610, 2018.

F. Lamoureux, M. Baud?huin, L. Rodriguez-calleja, C. Jacques, M. Berreur et al., Selective inhibition of BET bromodomain epigenetic signalling interferes with the bone-associated tumour vicious cycle, Nature Communications, vol.5, issue.1, p.3511, 2014.

. Delou, . Souza, . Souza, and . Borges, Highlights in Resistance Mechanism Pathways for Combination Therapy, Cells, vol.8, issue.9, p.1013, 2019.

M. R. Lackner, T. R. Wilson, and J. Settleman, Mechanisms of acquired resistance to targeted cancer therapies, Future Oncology, vol.8, issue.8, pp.999-1014, 2012.

C. Holohan, S. Van-schaeybroeck, D. B. Longley, and P. G. Johnston, Cancer drug resistance: an evolving paradigm, Nature Reviews Cancer, vol.13, issue.10, pp.714-726, 2013.

D. Wang, Y. Wu, J. Huang, W. Wang, M. Xu et al., Hippo/YAP signaling pathway is involved in osteosarcoma chemoresistance, Chinese Journal of Cancer, vol.35, issue.1, 2016.