M. J. Schleiden, Beiträge zur Kenntniss der Sassaparille;, Archiv der Pharmazie, vol.102, issue.1, pp.25-64, 1847.

J. Talbot, M. Dupuy, S. Morice, F. Rédini, and F. Verrecchia, Antagonistic Functions of Connexin 43 during the Development of Primary or Secondary Bone Tumors, Biomolecules, vol.10, issue.9, p.1240, 2020.
URL : https://hal.archives-ouvertes.fr/inserm-03004043

R. Höber, The permeability of red blood corpuscles to organic anions, Journal of Cellular and Comparative Physiology, vol.7, issue.3, pp.367-391, 1936.

S. Weidmann, The electrical constants of Purkinje fibres, The Journal of Physiology, vol.118, issue.3, pp.348-360, 1952.

Y. Kanno and W. R. Loewenstein, Intercellular Diffusion, Science, vol.143, issue.3609, pp.959-960, 1964.

W. R. Loewenstein and Y. Kanno, Intercellular Communication and the Control of Tissue Growth: Lack of Communication between Cancer Cells, Nature, vol.209, issue.5029, pp.1248-1249, 1966.

J. P. Revel and M. J. Karnovsky, HEXAGONAL ARRAY OF SUBUNITS IN INTERCELLULAR JUNCTIONS OF THE MOUSE HEART AND LIVER, Journal of Cell Biology, vol.33, issue.3, pp.C7-12, 1967.

M. Simionescu, N. Simionescu, and G. E. Palade, Segmental differentiations of cell junctions in the vascular endothelium. The microvasculature., Journal of Cell Biology, vol.67, issue.3, pp.863-885, 1975.

L. Makowski, D. L. Caspar, W. C. Phillips, and D. A. Goodenough, Gap junction structures: Analysis of the x-ray diffraction data, Journal of Cell Biology, vol.74, issue.2, pp.629-645, 1977.

A. Gupta, H. Anderson, A. M. Buo, M. C. Moorer, M. Ren et al., Communication of cAMP by connexin43 gap junctions regulates osteoblast signaling and gene expression, Cellular Signalling, vol.28, issue.8, pp.1048-1057, 2016.

D. B. Alexander and G. S. Goldberg, Transfer of Biologically Important Molecules Between Cells Through Gap Junction Channels, Current Medicinal Chemistry, vol.10, issue.19, pp.2045-2058, 2003.

D. W. Laird and P. D. Lampe, Therapeutic strategies targeting connexins, Nature Reviews Drug Discovery, vol.17, issue.12, pp.905-921, 2018.

T. Aasen, M. Mesnil, C. C. Naus, P. D. Lampe, and D. W. Laird, Gap junctions and cancer: communicating for 50 years, Nature Reviews Cancer, vol.16, issue.12, pp.775-788, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01437427

L. Garcia-rodriguez, S. Perez-torras, M. Carrio, A. Cascante, I. Garcia-ribas et al., Connexin-26 Is a Key Factor Mediating Gemcitabine Bystander Effect, Molecular Cancer Therapeutics, vol.10, issue.3, pp.505-517, 2011.

G. A. Perkins, D. A. Goodenough, and G. E. Sosinsky, Formation of the gap junction intercellular channel requires a 30° rotation for interdigitating two apposing connexons, Journal of Molecular Biology, vol.277, issue.2, pp.171-177, 1998.

V. M. Unger, N. M. Kumar, N. B. Gilula, and M. Yeager, Three-Dimensional Structure of a Recombinant Gap Junction Membrane Channel, Science, vol.283, issue.5405, pp.1176-1180, 1999.

J. Hervé and M. Derangeon, Gap-junction-mediated cell-to-cell communication, Cell and Tissue Research, vol.352, issue.1, pp.21-31, 2012.

N. Naser-al-deen, M. Abouhaidar, and R. Talhouk, Connexin43 as a Tumor Suppressor: Proposed Connexin43 mRNA-circularRNAs-microRNAs Axis Towards Prevention and Early Detection in Breast Cancer, Frontiers in Medicine, vol.6, 2019.

M. R. Umrani, M. V. Joglekar, E. Somerville-glover, W. Wong, and A. A. Hardikar, Connexins and microRNAs: Interlinked players in regulating islet function?, Islets, vol.9, issue.5, pp.99-108, 2017.

X. Hong, W. C. Sin, A. L. Harris, and C. C. Naus, Gap junctions modulate glioma invasion by direct transfer of microRNA, Oncotarget, vol.6, issue.17, pp.15566-15577, 2015.

Y. Peng, X. Wang, Y. Guo, F. Peng, N. Zheng et al., Pattern of cell?to?cell transfer of micro RNA by gap junction and its effect on the proliferation of glioma cells, Cancer Science, vol.110, issue.6, pp.1947-1958, 2019.

J. C. Saez, V. M. Berthoud, M. C. Branes, A. D. Martinez, and E. C. Beyer, Plasma membrane channels formed by connexins: Their regulation and functions, Physiol. Rev, vol.83, pp.1359-1400, 2003.

J. C. Sáez, M. A. Retamal, D. Basilio, F. F. Bukauskas, and M. V. Bennett, Connexin-based gap junction hemichannels: Gating mechanisms, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1711, issue.2, pp.215-224, 2005.

S. Penuela, R. Bhalla, X. Gong, K. N. Cowan, S. J. Celetti et al., Pannexin 1 and pannexin 3 are glycoproteins that exhibit many distinct characteristics from the connexin family of gap junction proteins, Journal of Cell Science, vol.120, issue.21, pp.3772-3783, 2007.

F. B. Chekeni, M. R. Elliott, J. K. Sandilos, S. F. Walk, J. M. Kinchen et al., Pannexin 1 channels mediate ?find-me? signal release and membrane permeability during apoptosis, Nature, vol.467, issue.7317, pp.863-867, 2010.

K. A. Schalper, D. Carvajal-hausdorf, and M. P. Oyarzo, Possible role of hemichannels in cancer, Frontiers in Physiology, vol.5, 2014.

G. Söhl and K. Willecke, Gap junctions and the connexin protein family, Cardiovasc. Res, vol.62, pp.228-232, 2004.

J. Willebrords, M. Maes, I. V. Pereira, T. C. Da-silva, V. M. Govoni et al., Protective effect of genetic deletion of pannexin1 in experimental mouse models of acute and chronic liver disease, Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, vol.1864, issue.3, pp.819-830, 2018.

G. Söhl and K. Willecke, An Update on Connexin Genes and their Nomenclature in Mouse and Man, Cell Communication & Adhesion, vol.10, issue.4-6, pp.173-180, 2003.

D. Bosco, J. Haefliger, and P. Meda, Connexins: Key Mediators of Endocrine Function, Physiological Reviews, vol.91, issue.4, pp.1393-1445, 2011.

D. B. Zimmer, C. R. Green, W. H. Evans, and N. B. Gilula, Topological analysis of the major protein in isolated intact rat liver gap junctions and gap junction-derived single membrane structures, J. Biol. Chem, vol.262, pp.7751-7763, 1987.

D. W. Laird, K. L. Puranam, and J. P. Revel, Turnover and phosphorylation dynamics of connexin43 gap junction protein in cultured cardiac myocytes, Biochemical Journal, vol.273, issue.1, pp.67-72, 1991.

J. Kronengold, M. Srinivas, and V. K. Verselis, The N-Terminal Half of the Connexin Protein Contains the Core Elements of the Pore and Voltage Gates, The Journal of Membrane Biology, vol.245, issue.8, pp.453-463, 2012.

A. Oshima, Structure and closure of connexin gap junction channels, FEBS Letters, vol.588, issue.8, pp.1230-1237, 2014.

G. Me?e, G. Richard, and T. W. White, Gap Junctions: Basic Structure and Function, Journal of Investigative Dermatology, vol.127, issue.11, pp.2516-2524, 2007.

V. Krutovskikh and H. Yamasaki, Connexin gene mutations in human genetic diseases, Mutation Research/Reviews in Mutation Research, vol.462, issue.2-3, pp.197-207, 2000.

S. R. Johnstone, M. Billaud, A. W. Lohman, E. P. Taddeo, and B. E. Isakson, Posttranslational Modifications in Connexins and Pannexins, The Journal of Membrane Biology, vol.245, issue.5-6, pp.319-332, 2012.

S. R. Alaei, C. K. Abrams, J. C. Bulinski, E. L. Hertzberg, and M. M. Freidin, Acetylation of C-terminal lysines modulates protein turnover and stability of Connexin-32, BMC Cell Biology, vol.19, issue.1, 2018.

J. Sun, Q. Hu, H. Peng, C. Peng, L. Zhou et al., The ubiquitin-specific protease USP8 deubiquitinates and stabilizes Cx43, Journal of Biological Chemistry, vol.293, issue.21, pp.8275-8284, 2018.

M. Z. Totland, N. L. Rasmussen, L. M. Knudsen, and E. Leithe, Regulation of gap junction intercellular communication by connexin ubiquitination: physiological and pathophysiological implications, Cellular and Molecular Life Sciences, vol.77, issue.4, pp.573-591, 2019.

K. Pogoda, P. Kameritsch, M. A. Retamal, and J. L. Vega, Regulation of gap junction channels and hemichannels by phosphorylation and redox changes: a revision, BMC Cell Biology, vol.17, issue.S1, 2016.

K. A. Schalper, M. A. Riquelme, M. C. Brañes, A. D. Martínez, J. L. Vega et al., Modulation of gap junction channels and hemichannels by growth factors, Molecular BioSystems, vol.8, issue.3, p.685, 2012.

T. Aasen, S. Johnstone, L. Vidal-brime, K. S. Lynn, and M. Koval, Connexins: Synthesis, Post-Translational Modifications, and Trafficking in Health and Disease, International Journal of Molecular Sciences, vol.19, issue.5, p.1296, 2018.

R. Fernandes, H. Girão, and P. Pereira, High Glucose Down-regulates Intercellular Communication in Retinal Endothelial Cells by Enhancing Degradation of Connexin 43 by a Proteasome-dependent Mechanism, Journal of Biological Chemistry, vol.279, issue.26, pp.27219-27224, 2004.

D. W. Laird, Connexin phosphorylation as a regulatory event linked to gap junction internalization and degradation, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1711, issue.2, pp.172-182, 2005.

W. R. Loewenstein and Y. Kanno, INTERCELLULAR COMMUNICATION AND TISSUE GROWTH, Journal of Cell Biology, vol.33, issue.2, pp.225-234, 1967.

M. Sinyuk, E. E. Mulkearns-hubert, O. Reizes, and J. Lathia, Cancer Connectors: Connexins, Gap Junctions, and Communication, Frontiers in Oncology, vol.8, p.646, 2018.

A. Beckmann, N. Hainz, T. Tschernig, and C. Meier, Facets of Communication: Gap Junction Ultrastructure and Function in Cancer Stem Cells and Tumor Cells, Cancers, vol.11, issue.3, p.288, 2019.

E. E. Bonacquisti and J. Nguyen, Connexin 43 (Cx43) in cancer: Implications for therapeutic approaches via gap junctions, Cancer Letters, vol.442, pp.439-444, 2019.

. Zefferino, . Piccoli, . Gioia, . Capitanio, and . Conese, Gap Junction Intercellular Communication in the Carcinogenesis Hallmarks: Is This a Phenomenon or Epiphenomenon?, Cells, vol.8, issue.8, p.896, 2019.

T. Tschernig, Connexins and Gap Junctions in Cancer of the Urinary Tract, Cancers, vol.11, issue.5, p.704, 2019.

T. Aasen, E. Leithe, S. V. Graham, P. Kameritsch, M. D. Mayán et al., Connexins in cancer: bridging the gap to the clinic, Oncogene, vol.38, issue.23, pp.4429-4451, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02129342

L. S. Stein, J. Boonstra, and R. C. Burghardt, Reduced cell-cell communication between mitotic and nonmitotic coupled cells, Experimental Cell Research, vol.198, issue.1, pp.1-7, 1992.

M. Vinken, T. Vanhaecke, P. Papeleu, S. Snykers, T. Henkens et al., Connexins and their channels in cell growth and cell death, Cellular Signalling, vol.18, issue.5, pp.592-600, 2006.

T. Aasen, Connexins: junctional and non-junctional modulators of proliferation, Cell and Tissue Research, vol.360, issue.3, pp.685-699, 2014.

D. W. Laird, P. Fistouris, G. Batist, L. Alpert, H. T. Huynh et al., Deficiency of connexin43 gap junctions is an independent marker for breast tumors, Cancer Res, vol.59, pp.4104-4110, 1999.

D. Banerjee, Connexin?s Connection in Breast Cancer Growth and Progression, International Journal of Cell Biology, vol.2016, pp.1-11, 2016.

K. C. Alaga, M. Crawford, L. Dagnino, and D. W. Laird, Aberrant Cx43 Expression and Mislocalization in Metastatic Human Melanomas, Journal of Cancer, vol.8, issue.7, pp.1123-1128, 2017.

B. Tang, Z. Peng, P. Yu, G. Yu, and F. Qian, Expression and significance of Cx43 and E-cadherin in gastric cancer and metastatic lymph nodes, Medical Oncology, vol.28, issue.2, pp.502-508, 2010.

C. Li, M. Hao, Y. Sun, Z. Wang, and J. Li, Ultrastructure of gap junction and Cx43 expression in gastric cancer tissues of the patients, Archives of Medical Science, vol.16, issue.2, pp.352-358, 2020.

Q. Liang, B. Wang, G. Chen, G. Li, and Y. Xu, Clinical significance of vascular endothelial growth factor and connexin43 for predicting pancreatic cancer clinicopathologic parameters, Medical Oncology, vol.27, issue.4, pp.1164-1170, 2009.

C. Georgikou, L. Yin, J. Gladkich, X. Xiao, C. Sticht et al., Inhibition of miR30a-3p by sulforaphane enhances gap junction intercellular communication in pancreatic cancer, Cancer Letters, vol.469, pp.238-245, 2020.

L. Ka?czuga-koda, M. Sulkowska, M. Koda, J. Resze?, W. Famulski et al., Expression of connexin 43 in breast cancer in comparison with mammary dysplasia and the normal mammary gland, Folia Morphol, vol.62, pp.439-442, 2003.

J. M. Kazan, J. El-saghir, J. Saliba, A. Shaito, N. Jalaleddine et al., Cx43 Expression Correlates with Breast Cancer Metastasis in MDA-MB-231 Cells In Vitro, In a Mouse Xenograft Model and in Human Breast Cancer Tissues, Cancers, vol.11, issue.4, p.460, 2019.

G. Sinha, A. I. Ferrer, C. A. Moore, Y. Naaldijk, and P. Rameshwar, Gap Junctions and Breast Cancer Dormancy, Trends in Cancer, vol.6, issue.4, pp.348-357, 2020.

J. L. Avanzo, M. Mesnil, F. J. Hernandez-blazquez, I. I. Mackowiak, C. M. Mori et al., Increased susceptibility to urethane-induced lung tumors in mice with decreased expression of connexin43, Carcinogenesis, vol.25, issue.10, pp.1973-1982, 2004.

M. J. Ableser, S. Penuela, J. Lee, Q. Shao, and D. W. Laird, Connexin43 Reduces Melanoma Growth within a Keratinocyte Microenvironment and during Tumorigenesisin Vivo, Journal of Biological Chemistry, vol.289, issue.3, pp.1592-1603, 2013.

A. Tittarelli, I. Guerrero, F. Tempio, M. A. Gleisner, I. Avalos et al., Overexpression of connexin 43 reduces melanoma proliferative and metastatic capacity, British Journal of Cancer, vol.113, issue.2, pp.259-267, 2015.

S. V. Graham, J. X. Jiang, and M. Mesnil, Connexins and Pannexins: Important Players in Tumorigenesis, Metastasis and Potential Therapeutics, International Journal of Molecular Sciences, vol.19, issue.6, p.1645, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02129346

L. P. Yotti, C. C. Chang, and J. E. Trosko, Elimination of metabolic cooperation in Chinese hamster cells by a tumor promoter, Science, vol.206, issue.4422, pp.1089-1091, 1979.

A. W. Murray and D. J. Fitzgerald, Tumor promoters inhibit metabolic cooperation in cocultures of epidermal and 3T3 cells, Biochemical and Biophysical Research Communications, vol.91, issue.2, pp.395-401, 1979.

J. X. Jiang and S. Penuela, Connexin and pannexin channels in cancer, BMC Cell Biology, vol.17, issue.S1, 2016.

Z. Suzhi, T. Liang, P. Yuexia, L. Lucy, H. Xiaoting et al., Gap Junctions Enhance the Antiproliferative Effect of MicroRNA-124-3p in Glioblastoma Cells, Journal of Cellular Physiology, vol.230, issue.10, pp.2476-2488, 2015.

B. J. Warn-cramer, G. T. Cottrell, J. M. Burt, and A. F. Lau, Regulation of Connexin-43 Gap Junctional Intercellular Communication by Mitogen-activated Protein Kinase, Journal of Biological Chemistry, vol.273, issue.15, pp.9188-9196, 1998.

A. F. Lau, M. Y. Kanemitsu, W. E. Kurata, S. Danesh, and A. L. Boynton, Epidermal growth factor disrupts gap-junctional communication and induces phosphorylation of connexin43 on serine., Molecular Biology of the Cell, vol.3, issue.8, pp.865-874, 1992.

P. D. Lampe and A. F. Lau, The effects of connexin phosphorylation on gap junctional communication, The International Journal of Biochemistry & Cell Biology, vol.36, issue.7, pp.1171-1186, 2004.

M. Z. Hossain, P. Ao, and A. L. Boynton, Platelet-derived growth factor-induced disruption of gap junctional communication and phosphorylation of connexin43 involves protein kinase C and mitogen-activated protein kinase, J. Cell Physiol, vol.176, pp.332-341, 1998.

M. Y. Kanemitsu, L. W. Loo, S. Simon, A. F. Lau, and W. Eckhart, Tyrosine Phosphorylation of Connexin 43 by v-Src Is Mediated by SH2 and SH3 Domain Interactions, Journal of Biological Chemistry, vol.272, issue.36, pp.22824-22831, 1997.

L. W. Loo, M. Y. Kanemitsu, and A. F. Lau, In vivo association of pp60v-src and the gap-junction protein connexin 43 in v-src-transformed fibroblasts, Mol. Carcinog, vol.25, pp.187-195, 1999.

M. Pahujaa, M. Anikin, and G. S. Goldberg, Phosphorylation of connexin43 induced by Src: Regulation of gap junctional communication between transformed cells, Experimental Cell Research, vol.313, issue.20, pp.4083-4090, 2007.

L. Zhou, E. M. Kasperek, and B. J. Nicholson, Dissection of the Molecular Basis of pp60v-src Induced Gating of Connexin 43 Gap Junction Channels, Journal of Cell Biology, vol.144, issue.5, pp.1033-1045, 1999.

B. N. Giepmans, Gap junctions and connexin-interacting proteins, Cardiovascular Research, vol.62, issue.2, pp.233-245, 2004.

E. Leithe, M. Mesnil, and T. Aasen, The connexin 43 C-terminus: A tail of many tales, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1860, issue.1, pp.48-64, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02129358

J. Hervé, M. Derangeon, D. Sarrouilhe, B. N. Giepmans, and N. Bourmeyster, Gap junctional channels are parts of multiprotein complexes, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1818, issue.8, pp.1844-1865, 2012.

G. Spagnol, A. J. Trease, L. Zheng, M. Gutierrez, I. Basu et al., Connexin43 Carboxyl-Terminal Domain Directly Interacts with ?-Catenin, International Journal of Molecular Sciences, vol.19, issue.6, p.1562, 2018.

S. F. Fostok, M. El-sibai, M. El-sabban, and R. S. Talhouk, Gap Junctions and Wnt Signaling in the Mammary Gland: a Cross-Talk?, Journal of Mammary Gland Biology and Neoplasia, vol.24, issue.1, pp.17-38, 2018.

M. C. Moorer, C. Hebert, R. E. Tomlinson, S. R. Iyer, M. Chason et al., Defective signaling, osteoblastogenesis and bone remodeling in a mouse model of connexin 43 C-terminal truncation, Journal of Cell Science, vol.130, issue.3, pp.531-540, 2017.

A. Gellhaus, X. Dong, S. Propson, K. Maass, L. Klein-hitpass et al., Connexin43 Interacts with NOV, Journal of Biological Chemistry, vol.279, issue.35, pp.36931-36942, 2004.

C. T. Fu, J. F. Bechberger, M. A. Ozog, B. Perbal, and C. C. Naus, CCN3 (NOV) Interacts with Connexin43 in C6 Glioma Cells, Journal of Biological Chemistry, vol.279, issue.35, pp.36943-36950, 2004.

A. González-sánchez, M. Jaraíz-rodríguez, M. Domínguez-prieto, S. Herrero-gonzález, J. M. Medina et al., Connexin43 recruits PTEN and Csk to inhibit c-Src activity in glioma cells and astrocytes, Oncotarget, vol.7, issue.31, pp.49819-49833, 2016.

X. Jie, X. Zhang, and C. Xu, Epithelial-to-mesenchymal transition, circulating tumor cells and cancer metastasis: Mechanisms and clinical applications, Oncotarget, vol.8, issue.46, pp.81558-81571, 2017.

R. Derynck, B. P. Muthusamy, and K. Y. Saeteurn, Signaling pathway cooperation in TGF-?-induced epithelial?mesenchymal transition, Current Opinion in Cell Biology, vol.31, pp.56-66, 2014.

F. Verrecchia and F. Rédini, Transforming Growth Factor-? Signaling Plays a Pivotal Role in the Interplay Between Osteosarcoma Cells and Their Microenvironment, Frontiers in Oncology, vol.8, p.133, 2018.
URL : https://hal.archives-ouvertes.fr/inserm-01814333

X. Mao, Q. Li, Y. Gao, H. Zhou, Z. Liu et al., Gap junction as an intercellular glue: Emerging roles in cancer EMT and metastasis, Cancer Letters, vol.381, issue.1, pp.133-137, 2016.

M. Yu, C. Zhang, L. I. Li, S. Dong, N. Zhang et al., Cx43 reverses the resistance of A549 lung adenocarcinoma cells to cisplatin by inhibiting EMT, Oncology Reports, vol.31, issue.6, pp.2751-2758, 2014.

D. Ryszawy, M. Sarna, M. Rak, K. Szpak, S. K?dracka-krok et al., Functional links between Snail-1 and Cx43 account for the recruitment of Cx43-positive cells into the invasive front of prostate cancer, Carcinogenesis, vol.35, issue.9, pp.1920-1930, 2014.

C. E. Hills, E. Siamantouras, S. W. Smith, P. Cockwell, K. Liu et al., TGF? modulates cell-to-cell communication in early epithelial-to-mesenchymal transition, Diabetologia, vol.55, issue.3, pp.812-824, 2012.

Y. Yang, N. Zhang, J. Zhu, X. Hong, H. Liu et al., Downregulated connexin32 promotes EMT through the Wnt/?-catenin pathway by targeting Snail expression in hepatocellular carcinoma, International Journal of Oncology, vol.50, issue.6, pp.1977-1988, 2017.

N. Reymond, B. B. D'água, and A. J. Ridley, Crossing the endothelial barrier during metastasis, Nature Reviews Cancer, vol.13, issue.12, pp.858-870, 2013.

E. Oviedo?orta, P. Gasque, and W. Howard-evans, Immunoglobulin and cytokine expression in mixed lymphocyte cultures is reduced by disruption of gap junction intercellular communication, The FASEB Journal, vol.15, issue.3, pp.768-774, 2001.

M. Pollmann, Q. Shao, D. W. Laird, and M. Sandig, Connexin 43 mediated gap junctional communication enhances breast tumor cell diapedesis in culture, Breast Cancer Research, vol.7, issue.4, pp.522-534, 2005.

M. K. Elzarrad, A. Haroon, K. Willecke, R. Dobrowolski, M. N. Gillespie et al., Connexin-43 upregulation in micrometastases and tumor vasculature and its role in tumor cell attachment to pulmonary endothelium, BMC Medicine, vol.6, issue.1, 2008.

K. Stoletov, J. Strnadel, E. Zardouzian, M. Momiyama, F. D. Park et al., Role of connexins in metastatic breast cancer and melanoma brain colonization, Journal of Cell Science, vol.126, issue.4, pp.904-913, 2013.

B. Ladoux and R. Mège, Mechanobiology of collective cell behaviours, Nature Reviews Molecular Cell Biology, vol.18, issue.12, pp.743-757, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02348644

N. Vicario, A. Zappalà, G. Calabrese, R. Gulino, C. Parenti et al., Connexins in the Central Nervous System: Physiological Traits and Neuroprotective Targets, Frontiers in Physiology, vol.8, 2017.

A. Alvarez, R. Lagos-cabré, M. Kong, A. Cárdenas, F. Burgos-bravo et al., Integrin-mediated transactivation of P2X7R via hemichannel-dependent ATP release stimulates astrocyte migration, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1863, issue.9, pp.2175-2188, 2016.

R. Lagos-cabré, A. Alvarez, M. Kong, F. Burgos-bravo, A. Cárdenas et al., ?V?3 Integrin regulates astrocyte reactivity, Journal of Neuroinflammation, vol.14, issue.1, 2017.

R. Lagos-cabré, F. Burgos-bravo, A. M. Avalos, and L. Leyton, Connexins in Astrocyte Migration, Frontiers in Pharmacology, vol.10, 2020.

P. Kameritsch, K. Pogoda, and U. Pohl, Channel-independent influence of connexin 43 on cell migration, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1818, issue.8, pp.1993-2001, 2012.

G. Qi, Q. Chen, L. Chen, Y. Shu, L. Bu et al., Phosphorylation of Connexin 43 by Cdk5 Modulates Neuronal Migration During Embryonic Brain Development, Molecular Neurobiology, vol.53, issue.5, pp.2969-2982, 2015.

S. Laguesse, P. Close, L. Van-hees, A. Chariot, B. Malgrange et al., Loss of Elp3 Impairs the Acetylation and Distribution of Connexin-43 in the Developing Cerebral Cortex, Frontiers in Cellular Neuroscience, vol.11, 2017.

M. Jaraíz-rodríguez, M. D. Tabernero, M. González-tablas, A. Otero, A. Orfao et al., A Short Region of Connexin43 Reduces Human Glioma Stem Cell Migration, Invasion, and Survival through Src, PTEN, and FAK, Stem Cell Reports, vol.9, issue.2, pp.451-463, 2017.

T. Okamoto, H. Usuda, T. Tanaka, K. Wada, and M. Shimaoka, The Functional Implications of Endothelial Gap Junctions and Cellular Mechanics in Vascular Angiogenesis, Cancers, vol.11, issue.2, p.237, 2019.

J. Jin, T. Wang, Y. Wang, S. Chen, Z. Li et al., SRC3 expressed in BMSCs promotes growth and migration of multiple myeloma cells by regulating the expression of Cx43, International Journal of Oncology, vol.51, issue.6, pp.1694-1704, 2017.

S. H. Graeber and D. F. Hülser, Connexin Transfection Induces Invasive Properties in HeLa Cells, Experimental Cell Research, vol.243, issue.1, pp.142-149, 1998.

K. J. Simpson, L. M. Selfors, J. Bui, A. Reynolds, D. Leake et al., Identification of genes that regulate epithelial cell migration using an siRNA screening approach, Nature Cell Biology, vol.10, issue.9, pp.1027-1038, 2008.

K. Ogawa, P. Pitchakarn, S. Suzuki, T. Chewonarin, M. Tang et al., Silencing of connexin 43 suppresses invasion, migration and lung metastasis of rat hepatocellular carcinoma cells, Cancer Science, vol.103, issue.5, pp.860-867, 2012.

D. C. Bates, W. C. Sin, Q. Aftab, and C. C. Naus, Connexin43 enhances glioma invasion by a mechanism involving the carboxy terminus, Glia, vol.55, issue.15, pp.1554-1564, 2007.

W. Sin, S. Crespin, and M. Mesnil, Opposing roles of connexin43 in glioma progression, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1818, issue.8, pp.2058-2067, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00993056

S. Crespin, J. Bechberger, M. Mesnil, C. C. Naus, and W. Sin, The carboxy-terminal tail of connexin43 gap junction protein is sufficient to mediate cytoskeleton changes in human glioma cells, Journal of Cellular Biochemistry, vol.110, issue.3, pp.589-597, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02430987

N. C. Lin, T. Takano, M. L. Cotrina, G. Arcuino, J. Kang et al., Connexin 43 Enhances the Adhesivity and Mediates the Invasion of Malignant Glioma Cells, The Journal of Neuroscience, vol.22, issue.11, pp.4302-4311, 2002.

W. Zhang, C. Nwagwu, D. M. Le, V. W. Yong, H. Song et al., Increased invasive capacity of connexin43-overexpressing malignant glioma cells, Journal of Neurosurgery, vol.99, issue.6, pp.1039-1046, 2003.

S. Machtaler, K. Choi, M. Dang-lawson, L. Falk, F. Pournia et al., The role of the gap junction protein connexin43 in B lymphocyte motility and migration, FEBS Letters, vol.588, issue.8, pp.1249-1258, 2014.

M. Colombo, G. Raposo, and C. Théry, Biogenesis, Secretion, and Intercellular Interactions of Exosomes and Other Extracellular Vesicles, Annual Review of Cell and Developmental Biology, vol.30, issue.1, pp.255-289, 2014.
URL : https://hal.archives-ouvertes.fr/inserm-02452769

J. Elzanowska, C. Semira, and B. Costa?silva, DNA in extracellular vesicles: biological and clinical aspects, Molecular Oncology, 2020.

C. Giordano, G. La-camera, L. Gelsomino, I. Barone, D. Bonofiglio et al., The Biology of Exosomes in Breast Cancer Progression: Dissemination, Immune Evasion and Metastatic Colonization, Cancers, vol.12, issue.8, p.2179, 2020.

K. Menck, S. Sivaloganathan, A. Bleckmann, and C. Binder, Microvesicles in Cancer: Small Size, Large Potential, International Journal of Molecular Sciences, vol.21, issue.15, p.5373, 2020.

T. M. Ribeiro-rodrigues, T. Martins-marques, S. Morel, B. R. Kwak, and H. Girão, Role of connexin 43 in different forms of intercellular communication ? gap junctions, extracellular vesicles and tunnelling nanotubes, Journal of Cell Science, vol.130, issue.21, pp.3619-3630, 2017.

A. R. Soares, T. Martins-marques, T. Ribeiro-rodrigues, J. V. Ferreira, S. Catarino et al., Gap junctional protein Cx43 is involved in the communication between extracellular vesicles and mammalian cells, Scientific Reports, vol.5, issue.1, 2015.

T. Martins-marques, T. Ribeiro-rodrigues, D. Batista-almeida, T. Aasen, B. R. Kwak et al., Biological Functions of Connexin43 Beyond Intercellular Communication, Trends in Cell Biology, vol.29, issue.10, pp.835-847, 2019.

T. Martins-marques, M. J. Pinho, M. Zuzarte, C. Oliveira, P. Pereira et al., Presence of Cx43 in extracellular vesicles reduces the cardiotoxicity of the anti-tumour therapeutic approach with doxorubicin, Journal of Extracellular Vesicles, vol.5, issue.1, p.32538, 2016.

L. Zhang and D. Yu, Exosomes in cancer development, metastasis, and immunity, Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, vol.1871, issue.2, pp.455-468, 2019.

M. Varela-eirin, A. Varela-vazquez, M. Rodríguez-candela-mateos, A. Vila-sanjurjo, E. Fonseca et al., Recruitment of RNA molecules by connexin RNA-binding motifs: Implication in RNA and DNA transport through microvesicles and exosomes, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1864, issue.4, pp.728-736, 2017.

A. Lamora, J. Talbot, M. Mullard, B. Brounais-le-royer, F. Redini et al., TGF-? Signaling in Bone Remodeling and Osteosarcoma Progression, Journal of Clinical Medicine, vol.5, issue.11, p.96, 2016.
URL : https://hal.archives-ouvertes.fr/inserm-01701177

I. Corre, F. Verrecchia, V. Crenn, F. Redini, and V. Trichet, The Osteosarcoma Microenvironment: A Complex but Targetable Ecosystem, Cells, vol.9, issue.4, p.976, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02996147

M. Owen, Marrow stromal stem cells, Journal of Cell Science, vol.1988, issue.Supplement 10, pp.63-76, 1988.

C. K. Chan, G. S. Gulati, R. Sinha, J. V. Tompkins, M. Lopez et al., Identification of the Human Skeletal Stem Cell, Cell, vol.175, issue.1, pp.43-56.e21, 2018.

P. J. Marie, Transcription factors controlling osteoblastogenesis, Archives of Biochemistry and Biophysics, vol.473, issue.2, pp.98-105, 2008.

S. Vimalraj, B. Arumugam, P. J. Miranda, and N. Selvamurugan, Runx2: Structure, function, and phosphorylation in osteoblast differentiation, International Journal of Biological Macromolecules, vol.78, pp.202-208, 2015.

T. Takarada, E. Hinoi, R. Nakazato, H. Ochi, C. Xu et al., An analysis of skeletal development in osteoblast-specific and chondrocyte-specific runt-related transcription factor-2 (Runx2) knockout mice, Journal of Bone and Mineral Research, vol.28, issue.10, pp.2064-2069, 2013.

T. Koga, Y. Matsui, M. Asagiri, T. Kodama, B. De-crombrugghe et al., NFAT and Osterix cooperatively regulate bone formation, Nature Medicine, vol.11, issue.8, pp.880-885, 2005.

T. J. Chambers, The Regulation of Osteoclastic Development and Function, Ciba Foundation Symposium 136 - Cell and Molecular Biology of Vertebrate Hard Tissues, vol.136, pp.92-107, 2007.

P. Wu, J. Tang, and K. Li, RANK pathway in giant cell tumor of bone: pathogenesis and therapeutic aspects, Tumor Biology, vol.36, issue.2, pp.495-501, 2015.

M. C. Moorer and J. P. Stains, Connexin43 and the Intercellular Signaling Network Regulating Skeletal Remodeling, Current Osteoporosis Reports, vol.15, issue.1, pp.24-31, 2017.

J. P. Stains and R. Civitelli, Connexins in the skeleton, Seminars in Cell & Developmental Biology, vol.50, pp.31-39, 2016.

L. I. Plotkin, D. W. Laird, and J. Amedee, Role of connexins and pannexins during ontogeny, regeneration, and pathologies of bone, BMC Cell Biology, vol.17, issue.S1, 2016.
URL : https://hal.archives-ouvertes.fr/inserm-01322569

N. Batra, R. Kar, and J. X. Jiang, Gap junctions and hemichannels in signal transmission, function and development of bone, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1818, issue.8, pp.1909-1918, 2012.

F. Lecanda, P. M. Warlow, S. Sheikh, F. Furlan, T. H. Steinberg et al., Connexin43 Deficiency Causes Delayed Ossification, Craniofacial Abnormalities, and Osteoblast Dysfunction, Journal of Cell Biology, vol.151, issue.4, pp.931-944, 2000.

A. M. Buo, R. E. Tomlinson, E. R. Eidelman, M. Chason, and J. P. Stains, Connexin43 and Runx2 Interact to Affect Cortical Bone Geometry, Skeletal Development, and Osteoblast and Osteoclast Function, Journal of Bone and Mineral Research, vol.32, issue.8, pp.1727-1738, 2017.

D. J. Chung, C. H. Castro, M. Watkins, J. P. Stains, M. Y. Chung et al., Low peak bone mass and attenuated anabolic response to parathyroid hormone in mice with an osteoblast-specific deletion of connexin43, Journal of Cell Science, vol.119, issue.20, pp.4187-4198, 2006.

S. K. Grimston, M. D. Brodt, M. J. Silva, and R. Civitelli, Attenuated Response to In Vivo Mechanical Loading in Mice With Conditional Osteoblast Ablation of the Connexin43 Gene (Gja1), Journal of Bone and Mineral Research, vol.23, issue.6, pp.879-886, 2008.

F. Lecanda, D. A. Towler, K. Ziambaras, S. L. Cheng, M. Koval et al., Gap Junctional Communication Modulates Gene Expression in Osteoblastic Cells, Molecular Biology of the Cell, vol.9, issue.8, pp.2249-2258, 1998.

Z. Li, Z. Zhou, C. E. Yellowley, and H. J. Donahue, Inhibiting gap junctional intercellular communication alters expression of differentiation markers in osteoblastic cells, Bone, vol.25, issue.6, pp.661-666, 1999.

J. Talbot, R. Brion, A. Lamora, M. Mullard, S. Morice et al., Connexin43 intercellular communication drives the early differentiation of human bone marrow stromal cells into osteoblasts, Journal of Cellular Physiology, vol.233, issue.2, pp.946-957, 2017.
URL : https://hal.archives-ouvertes.fr/inserm-01670779

J. P. Stains and R. Civitelli, Gap Junctions Regulate Extracellular Signal-regulated Kinase Signaling to Affect Gene Transcription, Molecular Biology of the Cell, vol.16, issue.1, pp.64-72, 2005.

J. Ilvesaro, K. Väänänen, and J. Tuukkanen, Bone-Resorbing Osteoclasts Contain Gap-Junctional Connexin-43, Journal of Bone and Mineral Research, vol.15, issue.5, pp.919-926, 2010.

J. Talbot, M. Dupuy, S. Morice, F. Rédini, and F. Verrecchia, Antagonistic Functions of Connexin 43 during the Development of Primary or Secondary Bone Tumors, Biomolecules, vol.10, issue.9, p.1240, 2020.
URL : https://hal.archives-ouvertes.fr/inserm-03004043

A. Hobolt-pedersen, J. Delaissé, and K. Søe, Osteoclast Fusion is Based on Heterogeneity Between Fusion Partners, Calcified Tissue International, vol.95, issue.1, pp.73-82, 2014.

R. Pacheco-costa, I. Hassan, R. D. Reginato, H. M. Davis, A. Bruzzaniti et al., High Bone Mass in Mice Lacking Cx37 Because of Defective Osteoclast Differentiation, Journal of Biological Chemistry, vol.289, issue.12, pp.8508-8520, 2014.

M. J. Alao, D. Bonneau, M. Holder-espinasse, C. Goizet, S. Manouvrier-hanu et al., Oculo-dento-digital dysplasia: Lack of genotype?phenotype correlation for GJA1 mutations and usefulness of neuro-imaging, European Journal of Medical Genetics, vol.53, issue.1, pp.19-22, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00628409

G. Brice, P. Ostergaard, S. Jeffery, K. Gordon, P. S. Mortimer et al., A novel mutation inGJA1causing oculodentodigital syndrome and primary lymphoedema in a three generation family, Clinical Genetics, vol.84, issue.4, pp.378-381, 2013.

L. I. Plotkin, H. M. Davis, B. A. Cisterna, and J. C. Sáez, Connexins and Pannexins in Bone and Skeletal Muscle, Current Osteoporosis Reports, vol.15, issue.4, pp.326-334, 2017.

. Danieau, . Morice, . Rédini, . Verrecchia, and . Royer, New Insights about the Wnt/?-Catenin Signaling Pathway in Primary Bone Tumors and Their Microenvironment: A Promising Target to Develop Therapeutic Strategies?, International Journal of Molecular Sciences, vol.20, issue.15, p.3751, 2019.
URL : https://hal.archives-ouvertes.fr/inserm-03004122

F. Lézot, I. Corre, S. Morice, F. Rédini, and F. Verrecchia, SHH Signaling Pathway Drives Pediatric Bone Sarcoma Progression, Cells, vol.9, issue.3, p.536, 2020.

S. Morice, G. Danieau, F. Rédini, B. Brounais-le-royer, and F. Verrecchia, Hippo/YAP Signaling Pathway: A Promising Therapeutic Target in Bone Paediatric Cancers?, Cancers, vol.12, issue.3, p.645, 2020.
URL : https://hal.archives-ouvertes.fr/inserm-03004096

Y. W. Zhang, I. Morita, M. Ikeda, K. W. Ma, and S. Murota, Connexin43 suppresses proliferation of osteosarcoma U2OS cells through post-transcriptional regulation of p27, Oncogene, vol.20, issue.31, pp.4138-4149, 2001.

D. Xie, G. Zheng, P. Xie, Q. Zhang, F. Lin et al., Antitumor activity of resveratrol against human osteosarcoma cells: a key role of Cx43 and Wnt/?-catenin signaling pathway, Oncotarget, vol.8, issue.67, pp.111419-111432, 2017.

D. Zhang, K. Yu, Z. Yang, Y. Li, X. Ma et al., Silencing Ubc9 expression suppresses osteosarcoma tumorigenesis and enhances chemosensitivity to HSV-TK/GCV by regulating connexin?43 SUMOylation, International Journal of Oncology, vol.53, pp.1323-1331, 2018.

S. Geng, B. Sun, S. Liu, and J. Wang, Up-regulation of connexin 43 and gap junctional intercellular communication by Coleusin Factor is associated with growth inhibition in rat osteosarcoma UMR106 cells, Cell Biology International, vol.31, issue.11, pp.1420-1427, 2007.

S. Fukuda, M. Akiyama, H. Harada, and K. Nakahama, Effect of gap junction-mediated intercellular communication on TGF-? induced epithelial-to-mesenchymal transition, Biochemical and Biophysical Research Communications, vol.508, issue.3, pp.928-933, 2019.

J. Talbot, R. Brion, G. Picarda, J. Amiaud, J. Chesneau et al., Loss of connexin43 expression in Ewing's sarcoma cells favors the development of the primary tumor and the associated bone osteolysis, Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, vol.1832, issue.4, pp.553-564, 2013.

L. A. Torre, F. Bray, R. L. Siegel, J. Ferlay, J. Lortet-tieulent et al., Global cancer statistics, 2012, CA: A Cancer Journal for Clinicians, vol.65, issue.2, pp.87-108, 2015.

M. S. Litwin and H. Tan, The Diagnosis and Treatment of Prostate Cancer, JAMA, vol.317, issue.24, p.2532, 2017.

G. Wang, D. Zhao, D. J. Spring, and R. A. Depinho, Genetics and biology of prostate cancer, Genes & Development, vol.32, issue.17-18, pp.1105-1140, 2018.

R. B. Berish, A. N. Ali, P. G. Telmer, J. A. Ronald, and H. S. Leong, Translational models of prostate cancer bone metastasis, Nature Reviews Urology, vol.15, issue.7, pp.403-421, 2018.

J. Boucher, A. Monvoisin, J. Vix, M. Mesnil, D. Thuringer et al., Connexins, important players in the dissemination of prostate cancer cells, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1860, issue.1, pp.202-215, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01578098

S. K. Wong, N. Mohamad, T. R. Giaze, K. Chin, N. Mohamed et al., Prostate Cancer and Bone Metastases: The Underlying Mechanisms, International Journal of Molecular Sciences, vol.20, issue.10, p.2587, 2019.

C. Asencio-barría, N. Defamie, J. C. Sáez, M. Mesnil, and A. S. Godoy, Direct Intercellular Communications and Cancer: A Snapshot of the Biological Roles of Connexins in Prostate Cancer, Cancers, vol.11, issue.9, p.1370, 2019.

P. P. Mehta, C. Perez-stable, M. Nadji, M. Mian, K. Asotra et al., Suppression of human prostate cancer cell growth by forced expression of connexin genes, Dev. Genet, vol.24, pp.91-110, 1999.

M. Z. Hossain, A. B. Jagdale, P. Ao, C. Leciel, R. P. Huang et al., Impaired expression and posttranslational processing of connexin43 and downregulation of gap junctional communication in neoplastic human prostate cells, Prostate, vol.38, pp.55-59, 1999.

L. Cronier, S. Crespin, P. Strale, N. Defamie, and M. Mesnil, Gap Junctions and Cancer: New Functions for an Old Story, Antioxidants & Redox Signaling, vol.11, issue.2, pp.323-338, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00425220

A. W. Tate, T. Lung, A. Radhakrishnan, S. D. Lim, X. Lin et al., Changes in gap junctional connexin isoforms during prostate cancer progression, The Prostate, vol.66, issue.1, pp.19-31, 2006.

C. Lamiche, J. Clarhaut, P. Strale, S. Crespin, N. Pedretti et al., The gap junction protein Cx43 is involved in the bone-targeted metastatic behaviour of human prostate cancer cells, Clinical & Experimental Metastasis, vol.29, issue.2, pp.111-122, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00993073

K. Szpak, E. Wybieralska, E. Niedzia?kowska, M. Rak, I. Bechyne et al., DU-145 prostate carcinoma cells that selectively transmigrate narrow obstacles express elevated levels of Cx43, Cellular and Molecular Biology Letters, vol.16, issue.4, pp.625-637, 2011.

A. Zhang, M. Hitomi, N. Bar-shain, Z. Dalimov, L. Ellis et al., Connexin 43 expression is associated with increased malignancy in prostate cancer cell lines and functions to promote migration, Oncotarget, vol.6, issue.13, pp.11640-11651, 2015.

J. Wang, J. Li, H. Liu, S. Yi, G. Su et al., Dynamic alterations of connexin43, matrix metalloproteinase-2 and tissue inhibitor of matrix metalloproteinase-2 during ventricular fibrillation in canine, Molecular and Cellular Biochemistry, vol.391, issue.1-2, pp.259-266, 2014.

H. Peng, D. Dai, H. Ji, and Y. Dai, The separate roles of endothelin receptors participate in remodeling of matrix metalloproteinase and connexin 43 of cardiac fibroblasts in maladaptive response to isoproterenol, European Journal of Pharmacology, vol.634, issue.1-3, pp.101-106, 2010.

D. Bock, M. Wang, N. Decrock, E. Bultynck, G. Leybaert et al., Intracellular Cleavage of the Cx43 C-Terminal Domain by Matrix-Metalloproteases: A Novel Contributor to Inflammation?, Mediat. Inflamm, 2015.

H. Wang, L. Tian, J. Liu, A. Goldstein, I. Bado et al., The Osteogenic Niche Is a Calcium Reservoir of Bone Micrometastases and Confers Unexpected Therapeutic Vulnerability, Cancer Cell, vol.34, issue.5, pp.823-839.e7, 2018.

J. Willebrords, M. Maes, S. Crespo-yanguas, and M. Vinken, Inhibitors of connexin and pannexin channels as potential therapeutics, Pharmacology & Therapeutics, vol.180, pp.144-160, 2017.

J. S. Davidson, I. M. Baumgarten, and E. H. Harley, Reversible inhibition of intercellular junctional communication by glycyrrhetinic acid, Biochemical and Biophysical Research Communications, vol.134, issue.1, pp.29-36, 1986.

J. Délèze and J. C. Hervé, Effect of several uncouplers of cell-to-cell communication on gap junction morphology in mammalian heart, The Journal of Membrane Biology, vol.74, issue.3, pp.203-215, 1983.

E. M. Bastiaanse, H. J. Jongsma, A. Van-der-laarse, and B. R. Takens-kwak, Heptanol-induced decrease in cardiac gap junctional conductance is mediated by a decrease in the fluidity of membranous cholesterol-rich domains, The Journal of Membrane Biology, vol.136, issue.2, pp.135-145, 1993.

B. R. Takens-kwak, H. J. Jongsma, M. B. Rook, and A. C. Van-ginneken, Mechanism of heptanol-induced uncoupling of cardiac gap junctions: a perforated patch-clamp study, American Journal of Physiology-Cell Physiology, vol.262, issue.6, pp.C1531-C1538, 1992.

C. Peracchia, Effects of the anesthetics heptanol, halothane and isoflurane on gap junction conductance in crayfish septate axons: A calcium- and hydrogen-independent phenomenon potentiated by caffeine and theophylline, and inhibited by 4-aminopyridine, The Journal of Membrane Biology, vol.121, issue.1, pp.67-78, 1991.

J. Mantz, J. Cordier, and C. Giaume, Effects of General Anesthetics on Intercellular Communications Mediated by Gap Junctions between Astrocytes in Primary Culture, Anesthesiology, vol.78, issue.5, pp.892-901, 1993.

S. B.-bodendiek and G. Raman, Connexin Modulators and Their Potential Targets under the Magnifying Glass, Current Medicinal Chemistry, vol.17, issue.34, pp.4191-4230, 2010.

T. Delvaeye, P. Vandenabeele, G. Bultynck, L. Leybaert, and D. V. Krysko, Therapeutic Targeting of Connexin Channels: New Views and Challenges, Trends in Molecular Medicine, vol.24, issue.12, pp.1036-1053, 2018.

K. A. Dora, P. E. Martin, A. T. Chaytor, W. H. Evans, C. J. Garland et al., Role of Heterocellular Gap Junctional Communication in Endothelium-Dependent Smooth Muscle Hyperpolarization: Inhibition by a Connexin-Mimetic Peptide, Biochemical and Biophysical Research Communications, vol.254, issue.1, pp.27-31, 1999.

A. T. Chaytor, W. H. Evans, T. M. Griffith, and K. D. Thornbury, Peptides Homologous to Extracellular Loop Motifs of Connexin 43 Reversibly Abolish Rhythmic Contractile Activity in Rabbit Arteries, The Journal of Physiology, vol.503, issue.1, pp.99-110, 1997.

S. J. O'carroll, M. Alkadhi, L. F. Nicholson, and C. R. Green, Connexin43 Mimetic Peptides Reduce Swelling, Astrogliosis, and Neuronal Cell Death after Spinal Cord Injury, Cell Communication & Adhesion, vol.15, issue.1-2, pp.27-42, 2008.

N. Wang, E. De-vuyst, R. Ponsaerts, K. Boengler, N. Palacios-prado et al., Selective inhibition of Cx43 hemichannels by Gap19 and its impact on myocardial ischemia/reperfusion injury, Basic Research in Cardiology, vol.108, issue.1, 2012.

D. L. Becker, W. H. Evans, C. R. Green, and A. E. Warner, Functional Block Of Gap Junctional Communication Using Antipeptide Antibodies: Molecular Localisation Of The Putative Binding Sites, Intercellular Communication through Gap Junctions, vol.108, pp.427-430, 1995.