T. Ahmed, D. Blum, S. Burnouf, D. Demeyer, V. Buée-scherrer et al., Rescue of impaired late?phase long-term depression in a tau transgenic mouse model, Neurobiology of Aging, vol.36, issue.2, pp.730-739, 2015.

T. Ahmed, V. Sabanov, R. D'hooge, and D. Balschun, An N-methyl-d-aspartate-receptor dependent, late-phase long-term depression in middle-aged mice identifies no GluN2-subunit bias, Neuroscience, vol.185, pp.27-38, 2011.

J. C. Augustinack, A. Schneider, E. M. Mandelkow, and B. T. Hyman, Specific tau phosphorylation sites correlate with severity of neuronal cytopathology in Alzheimer's disease, Acta Neuropathologica, vol.103, issue.1, pp.26-35, 2001.

R. Baeta-corral and L. Giménez-llort, Bizarre behaviors and risk assessment in 3xTg-AD mice at early stages of the disease, Behavioural Brain Research, vol.258, pp.97-105, 2014.

D. Balschun, D. P. Wolfer, P. Gass, T. Mantamadiotis, H. Welzl et al., Does cAMP Response Element-Binding Protein Have a Pivotal Role in Hippocampal Synaptic Plasticity and Hippocampus-Dependent Memory?, The Journal of Neuroscience, vol.23, issue.15, pp.6304-6314, 2003.

K. Belarbi, K. Schindowski, S. Burnouf, R. Caillierez, M. E. Grosjean et al., Early Tau Pathology Involving the Septo-Hippocampal Pathway in a Tau Transgenic Model: Relevance to Alzheimers Disease, Current Alzheimer Research, vol.6, issue.2, pp.152-157, 2009.

F. P. Bellinger, A. V. Raman, M. A. Reeves, and M. J. Berry, Regulation and function of selenoproteins in human disease, Biochemical Journal, vol.422, issue.1, pp.11-22, 2009.

F. Biundo, D. Del-prete, H. Zhang, O. Arancio, and L. D?adamio, A role for tau in learning, memory and synaptic plasticity, Scientific Reports, vol.8, issue.1, p.3184, 2018.

T. Blackmore, S. Meftah, T. K. Murray, P. J. Craig, A. Blockeel et al., Tracking progressive pathological and functional decline in the rTg4510 mouse model of tauopathy, Alzheimer's Research & Therapy, vol.9, issue.1, p.77, 2017.

H. Braak, R. A. Vos, E. N. Jansen, H. Bratzke, and E. Braak, Chapter 20 Neuropathological hallmarks of Alzheimer's and Parkinson's diseases, Progress in Brain Research, vol.117, pp.267-285, 1998.

M. R. Brier, B. Gordon, K. Friedrichsen, J. Mccarthy, A. Stern et al., Tau and A? imaging, CSF measures, and cognition in Alzheimer?s disease, Science Translational Medicine, vol.8, issue.338, pp.338ra66-338ra66, 2016.

J. Brozmanova, Selenium and cancer: from prevention to treatment, Klin. Onkol, vol.24, pp.171-179, 2011.

L. Buée, L. Troquier, S. Burnouf, K. Belarbi, A. Van der jeugd et al., From tau phosphorylation to tau aggregation: what about neuronal death?, Biochemical Society Transactions, vol.38, issue.4, pp.967-972, 2010.

S. Burnouf, A. Martire, M. Derisbourg, C. Laurent, K. Belarbi et al., NMDA receptor dysfunction contributes to impaired brain-derived neurotrophic factor-induced facilitation of hippocampal synaptic transmission in a Tau transgenic model, Aging Cell, vol.12, issue.1, pp.11-23, 2012.

T. Cañete, G. Blázquez, A. Tobeña, L. Giménez-llort, and A. Fernández-teruel, Cognitive and emotional alterations in young Alzheimer's disease (3xTgAD) mice: Effects of neonatal handling stimulation and sexual dimorphism, Behavioural Brain Research, vol.281, pp.156-171, 2015.

B. R. Cardoso, B. R. Roberts, C. B. Malpas, L. Vivash, S. Genc et al., Supranutritional Sodium Selenate Supplementation Delivers Selenium to the Central Nervous System: Results from a Randomized Controlled Pilot Trial in Alzheimer?s Disease, Neurotherapeutics, vol.16, issue.1, pp.192-202, 2018.

E. E. Congdon and E. M. Sigurdsson, Tau-targeting therapies for Alzheimer disease, Nature Reviews Neurology, vol.14, issue.7, pp.399-415, 2018.

N. M. Corcoran, C. M. Hovens, M. Michael, M. A. Rosenthal, and A. J. Costello, Open-label, phase I dose-escalation study of sodium selenate, a novel activator of PP2A, in patients with castration-resistant prostate cancer, British Journal of Cancer, vol.103, issue.4, pp.462-468, 2010.

N. M. Corcoran, D. Martin, B. Hutter-paier, M. Windisch, T. Nguyen et al., Sodium selenate specifically activates PP2A phosphatase, dephosphorylates tau and reverses memory deficits in an Alzheimer?s disease model, Journal of Clinical Neuroscience, vol.17, issue.8, pp.1025-1033, 2010.

N. Deters, L. M. Ittner, and J. Götz, Substrate-specific reduction of PP2A activity exaggerates tau pathology, Biochemical and Biophysical Research Communications, vol.379, issue.2, pp.400-405, 2009.

K. M. Fiest, J. I. Roberts, C. J. Maxwell, D. B. Hogan, E. E. Smith et al., The Prevalence and Incidence of Dementia Due to Alzheimer?s Disease: a Systematic Review and Meta-Analysis, Canadian Journal of Neurological Sciences / Journal Canadien des Sciences Neurologiques, vol.43, issue.S1, pp.S51-S82, 2016.

S. Forner, D. Baglietto-vargas, A. C. Martini, L. Trujillo-estrada, and F. M. Laferla, Synaptic Impairment in Alzheimer?s Disease: A Dysregulated Symphony, Trends in Neurosciences, vol.40, issue.6, pp.347-357, 2017.

J. Fujio, H. Hosono, K. Ishiguro, S. Ikegami, and S. C. Fujita, Tau phosphorylation in the mouse brain during aversive conditioning, Neurochemistry International, vol.51, issue.2-4, pp.200-208, 2007.

H. Goddyn, S. Leo, T. Meert, and R. Dhooge, Differences in behavioural test battery performance between mice with hippocampal and cerebellar lesions, Behavioural Brain Research, vol.173, issue.1, pp.138-147, 2006.

T. Gómez-isla, R. Hollister, H. West, S. Mui, J. H. Growdon et al., Neuronal loss correlates with but exceeds neurofibrillary tangles in Alzheimer's disease, Annals of Neurology, vol.41, issue.1, pp.17-24, 1997.

D. B. Hogan, N. Jetté, K. M. Fiest, J. I. Roberts, D. Pearson et al., The Prevalence and Incidence of Frontotemporal Dementia: a Systematic Review, Canadian Journal of Neurological Sciences / Journal Canadien des Sciences Neurologiques, vol.43, issue.S1, pp.S96-S109, 2016.

B. R. Hoover, M. N. Reed, J. Su, R. D. Penrod, L. A. Kotilinek et al., Tau Mislocalization to Dendritic Spines Mediates Synaptic Dysfunction Independently of Neurodegeneration, Neuron, vol.68, issue.6, pp.1067-1081, 2010.

B. Hoppe, A. U. Bräuer, M. Kühbacher, N. E. Savaskan, D. Behne et al., Biochemical analysis of selenoprotein expression in brain cell lines and in distinct brain regions, Cell and Tissue Research, vol.332, issue.3, pp.403-414, 2008.

B. T. Hyman, C. H. Phelps, T. G. Beach, E. H. Bigio, N. J. Cairns et al., National Institute on Aging-Alzheimer's Association guidelines for the neuropathologic assessment of Alzheimer's disease, Alzheimer's & Dementia, vol.8, issue.1, pp.1-13, 2012.

N. Jin, H. Zhu, X. Liang, W. Huang, Q. Xie et al., Sodium selenate activated Wnt/?-catenin signaling and repressed amyloid-? formation in a triple transgenic mouse model of Alzheimer's disease, Experimental Neurology, vol.297, pp.36-49, 2017.

A. Joly-amado, K. S. Serraneau, M. Brownlow, C. Marín-de-evsikova, J. R. Speakman et al., Metabolic changes over the course of aging in a mouse model of tau deposition, Neurobiology of Aging, vol.44, pp.62-73, 2016.

P. Jul, C. Volbracht, I. E. De-jong, L. Helboe, A. B. Elvang et al., Hyperactivity with Agitative-Like Behavior in a Mouse Tauopathy Model, Journal of Alzheimer's Disease, vol.49, issue.3, pp.783-795, 2015.

S. Kins, A. Crameri, D. R. Evans, B. A. Hemmings, R. M. Nitsch et al., Reduced protein phosphatase 2A activity induces hyperphosphorylation and altered compartmentalization of tau in transgenic mice, J. Biol. Chem, vol.276, pp.38193-38200, 2001.

S. Kins, P. Kurosinski, R. M. Nitsch, and J. Götz, Activation of the ERK and JNK Signaling Pathways Caused by Neuron-Specific Inhibition of PP2A in Transgenic Mice, The American Journal of Pathology, vol.163, issue.3, pp.833-843, 2003.

F. Kosel, J. M. Pelley, and T. B. Franklin, Behavioural and psychological symptoms of dementia in mouse models of Alzheimer?s disease-related pathology, Neuroscience & Biobehavioral Reviews, vol.112, pp.634-647, 2020.

A. Kremer, J. V. Louis, T. Jaworski, and L. F. Van, GSK3 and Alzheimer?s disease: facts and fiction?, Frontiers in Molecular Neuroscience, vol.4, p.17, 2011.

C. Lambrecht, D. Haesen, W. Sents, E. Ivanova, and V. Janssens, Structure, Regulation, and Pharmacological Modulation of PP2A Phosphatases, Methods in Molecular Biology, vol.1053, pp.283-305, 2013.

C. Laurent, S. Eddarkaoui, M. Derisbourg, A. Leboucher, D. Demeyer et al., Beneficial effects of caffeine in a transgenic model of Alzheimer's disease-like tau pathology, Neurobiology of Aging, vol.35, issue.9, pp.2079-2090, 2014.

A. Leboucher, C. Laurent, F. Fernandez-gomez, S. Burnouf, L. Troquier et al., Detrimental Effects of Diet-Induced Obesity on Pathology Are Independent of Insulin Resistance in Transgenic Mice, Diabetes, vol.62, issue.5, pp.1681-1688, 2012.

F. Liu, I. Grundke-iqbal, K. Iqbal, and C. X. Gong, Contributions of protein phosphatases PP1, PP2A, PP2B and PP5 to the regulation of tau phosphorylation, European Journal of Neuroscience, vol.22, issue.8, pp.1942-1950, 2005.

M. Loef, G. N. Schrauzer, and H. Walach, Selenium and Alzheimer's Disease: A Systematic Review, Journal of Alzheimer's Disease, vol.26, issue.1, pp.81-104, 2011.

D. Loreth, L. Ozmen, F. G. Revel, F. Knoflach, P. Wetzel et al., Selective degeneration of septal and hippocampal GABAergic neurons in a mouse model of amyloidosis and tauopathy, Neurobiology of Disease, vol.47, issue.1, pp.1-12, 2012.

S. Lovestone and H. K. Manji, Will We Have a Drug for Alzheimer's Disease by 2030? The View From Pharma, Clinical Pharmacology & Therapeutics, vol.107, issue.1, pp.79-81, 2019.

T. J. Malia, A. Teplyakov, R. Ernst, S. J. Wu, E. R. Lacy et al., Epitope mapping and structural basis for the recognition of phosphorylated tau by the anti?tau antibody AT8, Proteins: Structure, Function, and Bioinformatics, vol.84, issue.4, pp.427-434, 2016.

C. B. Malpas, L. Vivash, S. Genc, M. M. Saling, P. Desmond et al., A Phase IIa Randomized Control Trial of VEL015 (Sodium Selenate) in Mild-Moderate Alzheimer?s Disease, Journal of Alzheimer's Disease, vol.54, issue.1, pp.223-232, 2016.

L. Martin, X. Latypova, C. M. Wilson, A. Magnaudeix, M. Perrin et al., Tau protein kinases: Involvement in Alzheimer's disease, Ageing Research Reviews, vol.12, issue.1, pp.289-309, 2013.

C. L. Masters, R. Bateman, K. Blennow, C. C. Rowe, R. A. Sperling et al., Alzheimer's disease, Nature Reviews Disease Primers, vol.1, issue.1, p.15056, 2015.
URL : https://hal.archives-ouvertes.fr/inserm-01723790

M. S. Morris, Homocysteine and Alzheimer's disease, The Lancet Neurology, vol.2, issue.7, pp.425-428, 2003.

R. A. Nebel, N. T. Aggarwal, L. L. Barnes, A. Gallagher, J. M. Goldstein et al., Understanding the impact of sex and gender in Alzheimer's disease: A call to action, Alzheimer's & Dementia, vol.14, issue.9, pp.1171-1183, 2018.

P. T. Nelson, I. Alafuzoff, E. H. Bigio, C. Bouras, H. Braak et al., Correlation of Alzheimer Disease Neuropathologic Changes With Cognitive Status: A Review of the Literature, Journal of Neuropathology & Experimental Neurology, vol.71, issue.5, pp.362-381, 2012.

R. E. Nicholls, J. M. Alarcon, G. Malleret, R. C. Carroll, M. Grody et al., Transgenic Mice Lacking NMDAR-Dependent LTD Exhibit Deficits in Behavioral Flexibility, Neuron, vol.58, issue.1, pp.104-117, 2008.

R. E. Nicholls, J. Sontag, H. Zhang, A. Staniszewski, S. Yan et al., PP2A methylation controls sensitivity and resistance to ?-amyloid?induced cognitive and electrophysiological impairments, Proceedings of the National Academy of Sciences, vol.113, issue.12, pp.3347-3352, 2016.

C. U. Onyike and J. Diehl-schmid, The epidemiology of frontotemporal dementia, International Review of Psychiatry, vol.25, issue.2, pp.130-137, 2013.

J. J. Palop and L. Mucke, Network abnormalities and interneuron dysfunction in Alzheimer disease, Nature Reviews Neuroscience, vol.17, issue.12, pp.777-792, 2016.

M. A. Papon, N. B. El-khoury, F. Marcouiller, C. Julien, F. Morin et al., Deregulation of Protein Phosphatase 2A and Hyperphosphorylation of Protein Following Onset of Diabetes in NOD Mice, Diabetes, vol.62, issue.2, pp.609-617, 2012.

E. K. Pickett, A. G. Herrmann, J. Mcqueen, K. Abt, O. Dando et al., Amyloid Beta and Tau Cooperate to Cause Reversible Behavioral and Transcriptional Deficits in a Model of Alzheimer?s Disease, Cell Reports, vol.29, issue.11, pp.3592-3604.e5, 2019.

S. Pietropaolo, J. Feldon, and B. K. Yee, Age-dependent phenotypic characteristics of a triple transgenic mouse model of Alzheimer disease., Behavioral Neuroscience, vol.122, issue.4, pp.733-747, 2008.

M. W. Pitts, C. N. Byrns, A. N. Ogawa-wong, P. Kremer, and M. J. Berry, Selenoproteins in Nervous System Development and Function, Biological Trace Element Research, vol.161, issue.3, pp.231-245, 2014.

M. Przybyla, C. H. Stevens, J. Van-der-hoven, A. Harasta, M. Bi et al., Disinhibition-like behavior in a P301S mutant tau transgenic mouse model of frontotemporal dementia, Neuroscience Letters, vol.631, pp.24-29, 2016.

W. Qian, J. Shi, X. Yin, K. Iqbal, I. Grundke-iqbal et al., PP2A Regulates Tau Phosphorylation Directly and also Indirectly via Activating GSK-3?, Journal of Alzheimer's Disease, vol.19, issue.4, pp.1221-1229, 2010.

H. W. Querfurth and F. M. Laferla, Alzheimer's Disease, New England Journal of Medicine, vol.362, issue.4, pp.329-344, 2010.

M. P. Rayman, Selenium and human health, The Lancet, vol.379, issue.9822, pp.1256-1268, 2012.

E. Rockenstein, C. R. Overk, K. Ubhi, M. Mante, C. Patrick et al., A Novel Triple Repeat Mutant Tau Transgenic Model That Mimics Aspects of Pick?s Disease and Fronto-Temporal Tauopathies, PLOS ONE, vol.10, issue.3, p.e0121570, 2015.

M. N. Sabbagh, Editorial: Alzheimer's disease drug development pipeline 2020, J. Prev. Alzheimers Dis, vol.7, pp.66-67, 2020.

K. Santacruz, J. Lewis, T. Spires, J. Paulson, L. Kotilinek et al., Tau Suppression in a Neurodegenerative Mouse Model Improves Memory Function, Science, vol.309, issue.5733, pp.476-481, 2005.

P. Scheltens, K. Blennow, M. M. Breteler, B. De-strooper, G. B. Frisoni et al., Alzheimer's disease, The Lancet, vol.388, issue.10043, pp.505-517, 2016.
URL : https://hal.archives-ouvertes.fr/inserm-01723790

K. Schindowski, A. Bretteville, K. Leroy, S. Bégard, J. P. Brion et al., Alzheimer's Disease-Like Tau Neuropathology Leads to Memory Deficits and Loss of Functional Synapses in a Novel Mutated Tau Transgenic Mouse without Any Motor Deficits, The American Journal of Pathology, vol.169, issue.2, pp.599-616, 2006.

D. J. Selkoe, Alzheimer's Disease Is a Synaptic Failure, Science, vol.298, issue.5594, pp.789-791, 2002.

N. Sergeant, A. Bretteville, M. Hamdane, M. Caillet-boudin, P. Grognet et al., Biochemistry of Tau in Alzheimer?s disease and related neurological disorders, Expert Review of Proteomics, vol.5, issue.2, pp.207-224, 2008.

S. R. Shultz, D. K. Wright, P. Zheng, R. Stuchbery, S. J. Liu et al., Sodium selenate reduces hyperphosphorylated tau and improves outcomes after traumatic brain injury, Brain, vol.138, issue.5, pp.1297-1313, 2015.

G. Song, Z. Zhang, L. Wen, C. Chen, Q. Shi et al., Selenomethionine Ameliorates Cognitive Decline, Reduces Tau Hyperphosphorylation, and Reverses Synaptic Deficit in the Triple Transgenic Mouse Model of Alzheimer's Disease, Journal of Alzheimer's Disease, vol.41, issue.1, pp.85-99, 2014.

E. Sontag, Protein phosphatase 2A: the Trojan Horse of cellular signaling, Cellular Signalling, vol.13, issue.1, pp.7-16, 2001.

E. Sontag, C. Hladik, L. Montgomery, A. Luangpirom, I. Mudrak et al., Downregulation of Protein Phosphatase 2A Carboxyl Methylation and Methyltransferase May Contribute to Alzheimer Disease Pathogenesis, Journal of Neuropathology & Experimental Neurology, vol.63, issue.10, pp.1080-1091, 2004.

E. Sontag, A. Luangpirom, C. Hladik, I. Mudrak, E. Ogris et al., Altered Expression Levels of the Protein Phosphatase 2A AB?C Enzyme Are Associated with Alzheimer Disease Pathology, Journal of Neuropathology & Experimental Neurology, vol.63, issue.4, pp.287-301, 2004.

E. Sontag, V. Nunbhakdi-craig, G. Lee, G. S. Bloom, and M. C. Mumby, Regulation of the Phosphorylation State and Microtubule-Binding Activity of Tau by Protein Phosphatase 2A, Neuron, vol.17, issue.6, pp.1201-1207, 1996.

E. Sontag, V. Nunbhakdi-craig, G. Lee, R. Brandt, C. Kamibayashi et al., Molecular Interactions among Protein Phosphatase 2A, Tau, and Microtubules, Journal of Biological Chemistry, vol.274, issue.36, pp.25490-25498, 1999.

J. Sontag and E. Sontag, Protein phosphatase 2A dysfunction in Alzheimerâ??s disease, Frontiers in Molecular Neuroscience, vol.7, p.16, 2014.

J. Sontag, V. Nunbhakdi-craig, M. Mitterhuber, E. Ogris, and E. Sontag, Regulation of protein phosphatase 2A methylation by LCMT1 and PME-1 plays a critical role in differentiation of neuroblastoma cells, Journal of Neurochemistry, vol.115, issue.6, pp.1455-1465, 2010.

J. Sontag, V. Nunbhakdi-craig, and E. Sontag, Leucine Carboxyl Methyltransferase 1 (LCMT1)-dependent Methylation Regulates the Association of Protein Phosphatase 2A and Tau Protein with Plasma Membrane Microdomains in Neuroblastoma Cells, Journal of Biological Chemistry, vol.288, issue.38, pp.27396-27405, 2013.

L. R. Squire, J. T. Wixted, and R. E. Clark, Recognition memory and the medial temporal lobe: a new perspective, Nature Reviews Neuroscience, vol.8, issue.11, pp.872-883, 2007.

J. H. Su, B. J. Cummings, and C. W. Cotman, Early phosphorylation of tau in Alzheimer?s disease occurs at Ser-202 and is preferentially located within neurites, NeuroReport, vol.5, issue.17, pp.2358-2362, 1994.

A. Sydow, A. Van-der-jeugd, F. Zheng, T. Ahmed, D. Balschun et al., Tau-Induced Defects in Synaptic Plasticity, Learning, and Memory Are Reversible in Transgenic Mice after Switching Off the Toxic Tau Mutant, Journal of Neuroscience, vol.31, issue.7, pp.2511-2525, 2011.

T. Takeuchi, A. J. Duszkiewicz, and R. G. Morris, The synaptic plasticity and memory hypothesis: encoding, storage and persistence, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.369, issue.1633, p.20130288, 2014.

G. Taleski and E. Sontag, Protein phosphatase 2A and tau: an orchestrated ?Pas de Deux?, FEBS Letters, vol.592, issue.7, pp.1079-1095, 2017.

T. Taniguchi, N. Doe, S. Matsuyama, Y. Kitamura, H. Mori et al., Transgenic mice expressing mutant (N279K) human tau show mutation dependent cognitive deficits without neurofibrillary tangle formation, FEBS Letters, vol.579, issue.25, pp.5704-5712, 2005.

T. Tolstykh, J. Lee, S. Vafai, and J. B. Stock, Carboxyl methylation regulates phosphoprotein phosphatase 2A by controlling the association of regulatory B subunits, The EMBO Journal, vol.19, issue.21, pp.5682-5691, 2000.

S. B. Vafai and J. B. Stock, Protein phosphatase 2A methylation: a link between elevated plasma homocysteine and Alzheimer's Disease, FEBS Letters, vol.518, issue.1-3, pp.1-4, 2002.

A. Van-der-jeugd, T. Ahmed, S. Burnouf, K. Belarbi, M. Hamdame et al., Hippocampal tauopathy in tau transgenic mice coincides with impaired hippocampus-dependent learning and memory and attenuated late-phase long-term depression of synaptic transmission, Neurobiol. Learn. Mem, vol.95, pp.296-304, 2011.

A. Van-der-jeugd, D. Blum, S. Raison, S. Eddarkaoui, L. Bue et al., Observations in THY-Tau22 mice that resemble behavioral and psychological signs and symptoms of dementia, Behavioural Brain Research, vol.242, pp.34-39, 2013.

A. Van-der-jeugd, K. Hochgräfe, T. Ahmed, J. M. Decker, A. Sydow et al., Cognitive defects are reversible in inducible mice expressing pro-aggregant full-length human Tau, Acta Neuropathologica, vol.123, issue.6, pp.787-805, 2012.

A. Van-der-jeugd, A. Parra-damas, R. Baeta-corral, C. M. Soto-faguás, T. Ahmed et al., Reversal of memory and neuropsychiatric symptoms and reduced tau pathology by selenium in 3xTg-AD mice, Scientific Reports, vol.8, issue.1, p.6431, 2018.

J. Van-eersel, Y. D. Ke, X. Liu, F. Delerue, J. J. Kril et al., Sodium selenate mitigates tau pathology, neurodegeneration, and functional deficits in Alzheimer's disease models, Proceedings of the National Academy of Sciences, vol.107, issue.31, pp.13888-13893, 2010.

X. Wang, K. Smith, M. Pearson, A. Hughes, M. L. Cosden et al., Early intervention of tau pathology prevents behavioral changes in the rTg4510 mouse model of tauopathy, PLOS ONE, vol.13, issue.4, p.e0195486, 2018.

H. J. Wobst, F. Denk, P. L. Oliver, A. Livieratos, T. N. Taylor et al., Increased 4R tau expression and behavioural changes in a novel MAPT-N296H genomic mouse model of tauopathy, Scientific Reports, vol.7, issue.1, p.43198, 2017.

Y. Xia, S. Prokop, K. M. Gorion, J. D. Kim, Z. A. Sorrentino et al., Tau Ser208 phosphorylation promotes aggregation and reveals neuropathologic diversity in Alzheimer?s disease and other tauopathies, Acta Neuropathologica Communications, vol.8, issue.1, p.88, 2020.

Y. Xie, Y. Tan, Y. Zheng, X. Du, and Q. Liu, Ebselen ameliorates ?-amyloid pathology, tau pathology, and cognitive impairment in triple-transgenic Alzheimer?s disease mice, JBIC Journal of Biological Inorganic Chemistry, vol.22, issue.6, pp.851-865, 2017.

Y. Xu, Y. Chen, P. Zhang, P. D. Jeffrey, and Y. Shi, Structure of a Protein Phosphatase 2A Holoenzyme: Insights into B55-Mediated Tau Dephosphorylation, Molecular Cell, vol.31, issue.6, pp.873-885, 2008.

X. Q. Yao, X. C. Li, X. X. Zhang, Y. Y. Yin, B. Liu et al., Glycogen synthase kinase-3? regulates leucine-309 demethylation of protein phosphatase-2A via PPMT1 and PME-1, FEBS Letters, vol.586, issue.16, pp.2522-2528, 2012.

Z. H. Zhang, C. Chen, Q. Y. Wu, R. Zheng, Q. Liu et al., Selenomethionine reduces the deposition of beta-amyloid plaques by modulating ?-secretase and enhancing selenoenzymatic activity in a mouse model of Alzheimer's disease, Metallomics, vol.8, issue.8, pp.782-789, 2016.

Z. Zhang, Q. Wu, R. Zheng, C. Chen, Y. Chen et al., Selenomethionine Mitigates Cognitive Decline by Targeting Both Tau Hyperphosphorylation and Autophagic Clearance in an Alzheimer's Disease Mouse Model, The Journal of Neuroscience, vol.37, issue.9, pp.2449-2462, 2017.