M. Akbari, T. B. Kirkwood, and V. A. Bohr, Mitochondria in the signaling pathways that control longevity and health span, Ageing Research Reviews, vol.54, p.100940, 2019.

M. Akbari and H. E. Krokan, Cytotoxicity and mutagenicity of endogenous DNA base lesions as potential cause of human aging, Mechanisms of Ageing and Development, vol.129, issue.7-8, pp.353-365, 2008.

M. Akbari, P. Sykora, and V. A. Bohr, Slow mitochondrial repair of 5?-AMP renders mtDNA susceptible to damage in APTX deficient cells, Scientific Reports, vol.5, issue.1, p.12876, 2015.

M. Akbari, T. Visnes, H. E. Krokan, and M. Otterlei, Mitochondrial base excision repair of uracil and AP sites takes place by single-nucleotide insertion and long-patch DNA synthesis, DNA Repair, vol.7, issue.4, pp.605-616, 2008.

T. Arendt, J. T. Stieler, and M. Holzer, Tau and tauopathies, Brain Research Bulletin, vol.126, pp.238-292, 2016.

H. Benhelli-mokrani, Z. Mansuroglu, A. Chauderlier, B. Albaud, D. Gentien et al., Genome-wide identification of genic and intergenic neuronal DNA regions bound by Tau protein under physiological and stress conditions, Nucleic Acids Research, vol.46, pp.11405-11422, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02404215

M. A. Bradley-whitman, M. D. Timmons, T. L. Beckett, M. P. Murphy, B. C. Lynn et al., Nucleic acid oxidation: an early feature of Alzheimer's disease, Journal of Neurochemistry, vol.128, issue.2, pp.294-304, 2013.

M. D. Brand, J. L. Pakay, A. Ocloo, J. Kokoszka, D. C. Wallace et al., The basal proton conductance of mitochondria depends on adenine nucleotide translocase content, Biochemical Journal, vol.392, issue.2, pp.353-362, 2005.

T. A. Brown, A. N. Tkachuk, G. Shtengel, B. G. Kopek, D. F. Bogenhagen et al., Superresolution Fluorescence Imaging of Mitochondrial Nucleoids Reveals Their Spatial Range, Limits, and Membrane Interaction, Molecular and Cellular Biology, vol.31, issue.24, pp.4994-5010, 2011.

E. Cadenas and K. J. Davies, Mitochondrial free radical generation, oxidative stress, and aging11This article is dedicated to the memory of our dear friend, colleague, and mentor Lars Ernster (1920?1998), in gratitude for all he gave to us., Free Radical Biology and Medicine, vol.29, issue.3-4, pp.222-230, 2000.

A. K. Camara, Y. Zhou, P. C. Wen, E. Tajkhorshid, and W. M. Kwok, Mitochondrial VDAC1: A Key Gatekeeper as Potential Therapeutic Target, Frontiers in Physiology, vol.8, p.460, 2017.

D. L. Castillo-carranza, J. E. Gerson, U. Sengupta, M. J. Guerrero-muñoz, C. A. Lasagna-reeves et al., Specific Targeting of Tau Oligomers in Htau Mice Prevents Cognitive Impairment and Tau Toxicity Following Injection with Brain-Derived Tau Oligomeric Seeds, Journal of Alzheimer's Disease, vol.40, issue.s1, pp.S97-S111, 2014.

D. C. Chan, Fusion and Fission: Interlinked Processes Critical for Mitochondrial Health, Annual Review of Genetics, vol.46, issue.1, pp.265-287, 2012.

Y. Chen, J. Zhang, Y. Lin, Q. Lei, K. L. Guan et al., Tumour suppressor SIRT3 deacetylates and activates manganese superoxide dismutase to scavenge ROS, EMBO reports, vol.12, issue.6, pp.534-541, 2011.

A. Cheng, Y. Yang, Y. Zhou, C. Maharana, D. Lu et al., Mitochondrial SIRT3 Mediates Adaptive Responses of Neurons to Exercise and Metabolic and Excitatory Challenges, Cell Metabolism, vol.23, issue.1, pp.128-142, 2016.

C. Montier, L. L. Deng, J. J. Bai, and Y. , Number matters: control of mammalian mitochondrial DNA copy number, J Genet Genomics, vol.36, pp.125-131, 2009.

S. Cogliati, C. Frezza, M. E. Soriano, T. Varanita, R. Quintana-cabrera et al., Mitochondrial Cristae Shape Determines Respiratory Chain Supercomplexes Assembly and Respiratory Efficiency, Cell, vol.155, issue.1, pp.160-171, 2013.

M. Cuadrado-tejedor, M. Vilariño, F. Cabodevilla, J. Del-río, D. Frechilla et al., Enhanced Expression of the Voltage-Dependent Anion Channel 1 (VDAC1) in Alzheimer's Disease Transgenic Mice: An Insight into the Pathogenic Effects of Amyloid-?, Journal of Alzheimer's Disease, vol.23, issue.2, pp.195-206, 2011.

P. E. Czabotar, G. Lessene, A. Strasser, and J. M. Adams, Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy, Nature Reviews Molecular Cell Biology, vol.15, issue.1, pp.49-63, 2013.

M. D'amelio, V. Cavallucci, S. Middei, C. Marchetti, S. Pacioni et al., Caspase-3 triggers early synaptic dysfunction in a mouse model of Alzheimer's disease, Nature Neuroscience, vol.14, issue.1, pp.69-76, 2010.

S. H. Dai, T. Chen, Y. H. Wang, J. Zhu, P. Luo et al., Sirt3 Protects Cortical Neurons against Oxidative Stress via Regulating Mitochondrial Ca2+ and Mitochondrial Biogenesis, International Journal of Molecular Sciences, vol.15, issue.8, pp.14591-14609, 2014.

M. Dizdaroglu and P. Jaruga, Mechanisms of free radical-induced damage to DNA, Free Radical Research, vol.46, issue.4, pp.382-419, 2012.

I. Drago, D. De-stefani, R. Rizzuto, and T. Pozzan, Mitochondrial Ca2+ uptake contributes to buffering cytoplasmic Ca2+ peaks in cardiomyocytes, Proceedings of the National Academy of Sciences, vol.109, issue.32, pp.12986-12991, 2012.

G. Elachouri, S. Vidoni, C. Zanna, A. Pattyn, H. Boukhaddaoui et al., OPA1 links human mitochondrial genome maintenance to mtDNA replication and distribution, Genome Research, vol.21, issue.1, pp.12-20, 2010.

G. Elachouri, S. Vidoni, C. Zanna, A. Pattyn, H. Boukhaddaoui et al., OPA1 links human mitochondrial genome maintenance to mtDNA replication and distribution, Genome Research, vol.21, issue.1, pp.12-20, 2010.

E. F. Fang, Y. Hou, K. Palikaras, B. A. Adriaanse, J. S. Kerr et al., Mitophagy inhibits amyloid-? and tau pathology and reverses cognitive deficits in models of Alzheimer?s disease, Nature Neuroscience, vol.22, issue.3, pp.401-412, 2019.

E. F. Fang, H. Kassahun, D. L. Croteau, M. Scheibye-knudsen, K. Marosi et al., NAD + Replenishment Improves Lifespan and Healthspan in Ataxia Telangiectasia Models via Mitophagy and DNA Repair, Cell Metabolism, vol.24, issue.4, pp.566-581, 2016.

E. F. Fang, M. Scheibye-knudsen, L. E. Brace, H. Kassahun, T. Sengupta et al., Defective Mitophagy in XPA via PARP-1 Hyperactivation and NAD+/SIRT1 Reduction, Cell, vol.157, issue.4, pp.882-896, 2014.

G. Farge and M. Falkenberg, Organization of DNA in Mammalian Mitochondria, International Journal of Molecular Sciences, vol.20, issue.11, p.2770, 2019.

K. Flach, I. Hilbrich, A. Schiffmann, U. Gärtner, M. Krüger et al., Tau Oligomers Impair Artificial Membrane Integrity and Cellular Viability, Journal of Biological Chemistry, vol.287, issue.52, pp.43223-43233, 2012.

S. Fuke, M. Kubota-sakashita, T. Kasahara, Y. Shigeyoshi, and T. Kato, Regional variation in mitochondrial DNA copy number in mouse brain, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1807, issue.3, pp.270-274, 2011.

L. Galluzzi, E. H. Baehrecke, A. Ballabio, P. Boya, J. M. Bravo?san-pedro et al., Molecular definitions of autophagy and related processes, The EMBO Journal, vol.36, issue.13, pp.1811-1836, 2017.

M. J. Guerrero-muñoz, J. Gerson, and D. L. Castillo-carranza, Tau Oligomers: The Toxic Player at Synapses in Alzheimer?s Disease, Frontiers in Cellular Neuroscience, vol.9, p.464, 2015.

M. Hosseini-sharifabad and J. R. Nyengaard, Design-based estimation of neuronal number and individual neuronal volume in the rat hippocampus, Journal of Neuroscience Methods, vol.162, issue.1-2, pp.206-214, 2007.

Y. Hou, S. Lautrup, S. Cordonnier, Y. Wang, D. L. Croteau et al., NAD+ supplementation normalizes key Alzheimer?s features and DNA damage responses in a new AD mouse model with introduced DNA repair deficiency, Proceedings of the National Academy of Sciences, vol.115, issue.8, pp.E1876-E1885, 2018.

S. Jager, C. Handschin, J. St.-pierre, and B. M. Spiegelman, AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1, Proceedings of the National Academy of Sciences, vol.104, issue.29, pp.12017-12022, 2007.

S. M. Jin, M. Lazarou, C. Wang, L. A. Kane, D. P. Narendra et al., Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL, Journal of Cell Biology, vol.191, issue.5, pp.933-942, 2010.

R. Kandimalla, M. Manczak, D. Fry, Y. Suneetha, H. Sesaki et al., Reduced dynamin-related protein 1 protects against phosphorylated Tau-induced mitochondrial dysfunction and synaptic damage in Alzheimer?s disease, Human Molecular Genetics, vol.25, p.ddw312, 2016.

S. Kaniyappan, R. R. Chandupatla, E. M. Mandelkow, and E. M. Mandelkow, Extracellular low-n oligomers of tau cause selective synaptotoxicity without affecting cell viability, Alzheimer's & Dementia, vol.13, issue.11, pp.1270-1291, 2017.

S. H. Kim, H. F. Lu, and C. C. Alano, Neuronal Sirt3 Protects against Excitotoxic Injury in Mouse Cortical Neuron Culture, PLoS ONE, vol.6, issue.3, p.e14731, 2011.

D. J. Klionsky, K. Abdelmohsen, A. Abe, M. J. Abedin, H. Abeliovich et al., Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition), Autophagy, vol.12, issue.1, pp.1-222, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02486052

A. K. Kondadi, S. Wang, S. Montagner, N. Kladt, A. Korwitz et al., Loss of the m-AAA protease subunit AFG3L2 causes mitochondrial transport defects and tau hyperphosphorylation, The EMBO Journal, vol.33, issue.9, pp.1011-1026, 2014.

D. J. Koss, G. Jones, A. Cranston, H. Gardner, N. M. Kanaan et al., Soluble pre-fibrillar tau and ?-amyloid species emerge in early human Alzheimer?s disease and track disease progression and cognitive decline, Acta Neuropathologica, vol.132, issue.6, pp.875-895, 2016.

H. E. Krokan and M. Bjoras, Base Excision Repair, Cold Spring Harbor Perspectives in Biology, vol.5, issue.4, pp.a012583-a012583, 2013.

C. A. Lasagna-reeves, D. L. Castillo-carranza, M. J. Guerrero-mun?oz, G. R. Jackson, and R. Kayed, Preparation and Characterization of Neurotoxic Tau Oligomers, Biochemistry, vol.49, issue.47, pp.10039-10041, 2010.

C. A. Lasagna-reeves, D. L. Castillo-carranza, U. Sengupta, A. L. Clos, G. R. Jackson et al., Tau oligomers impair memory and induce synaptic and mitochondrial dysfunction in wild-type mice, Molecular Neurodegeneration, vol.6, issue.1, p.39, 2011.

C. A. Lasagna?reeves, D. L. Castillo?carranza, U. Sengupta, J. Sarmiento, J. Troncoso et al., Identification of oligomers at early stages of tau aggregation in Alzheimer's disease, The FASEB Journal, vol.26, issue.5, pp.1946-1959, 2012.

C. Laurent, S. Burnouf, B. Ferry, V. L. Batalha, J. E. Coelho et al., Erratum: A2A adenosine receptor deletion is protective in a mouse model of Tauopathy, Molecular Psychiatry, vol.21, issue.1, pp.149-149, 2015.

J. Lee, Y. Kim, T. Liu, Y. J. Hwang, S. J. Hyeon et al., SIRT3 deregulation is linked to mitochondrial dysfunction in Alzheimer's disease, Aging Cell, vol.17, issue.1, p.e12679, 2017.

J. Lee, S. E. Schriner, and D. C. Wallace, Adenine nucleotide translocator 1 deficiency increases resistance of mouse brain and neurons to excitotoxic insults, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1787, issue.5, pp.364-370, 2009.

Z. Li, K. Okamoto, Y. Hayashi, and M. Sheng, The Importance of Dendritic Mitochondria in the Morphogenesis and Plasticity of Spines and Synapses, Cell, vol.119, issue.6, pp.873-887, 2004.

C. Liao, N. Ashley, A. Diot, K. Morten, K. Phadwal et al., Dysregulated mitophagy and mitochondrial organization in optic atrophy due to OPA1 mutations, Neurology, vol.88, issue.2, pp.131-142, 2016.

D. B. Lombard, F. W. Alt, H. L. Cheng, J. Bunkenborg, R. S. Streeper et al., Mammalian Sir2 Homolog SIRT3 Regulates Global Mitochondrial Lysine Acetylation, Molecular and Cellular Biology, vol.27, issue.24, pp.8807-8814, 2007.

M. Manczak and P. H. Reddy, Abnormal interaction between the mitochondrial fission protein Drp1 and hyperphosphorylated tau in Alzheimer's disease neurons: implications for mitochondrial dysfunction and neuronal damage, Human Molecular Genetics, vol.21, issue.11, pp.2538-2547, 2012.

M. Manczak and P. H. Reddy, Abnormal interaction of VDAC1 with amyloid beta and phosphorylated tau causes mitochondrial dysfunction in Alzheimer's disease, Hum Mol Genet, vol.21, pp.5131-5146, 2012.

J. M. Marcus and S. A. Andrabi, SIRT3 regulation under cellular stress: making sense of the ups and downs, Front Neurosci, vol.12, p.799, 2018.

L. Mayorga, B. N. Salassa, D. M. Marzese, M. A. Loos, H. D. Eiroa et al., Mitochondrial stress triggers a pro-survival response through epigenetic modifications of nuclear DNA, Cell Mol Life Sci, vol.76, pp.1397-1417, 2019.

C. Merkwirth, P. Martinelli, A. Korwitz, M. Morbin, H. S. Brönneke et al., Loss of Prohibitin Membrane Scaffolds Impairs Mitochondrial Architecture and Leads to Tau Hyperphosphorylation and Neurodegeneration, PLoS Genetics, vol.8, issue.11, p.e1003021, 2012.

M. Misiak, R. Vergara-greeno, B. A. Baptiste, P. Sykora, D. Liu et al., DNA polymerase ? decrement triggers death of olfactory bulb cells and impairs olfaction in a mouse model of Alzheimer's disease, Aging Cell, vol.16, issue.1, pp.162-172, 2016.

R. Morsch, W. Simon, and P. D. Coleman, Neurons may live for decades with neurofibrillary tangles, J Neuropathol Exp Neurol, vol.58, pp.188-197, 1999.

E. J. Mufson, S. Ward, and L. Binder, Prefibrillar tau oligomers in mild cognitive impairment and Alzheimer's disease, Neurodegener Dis, vol.13, pp.151-153, 2014.

S. Nemoto, M. M. Fergusson, and T. Finkel, SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1{alpha}, J Biol Chem, vol.280, pp.16456-16460, 2005.

A. N. Nilson, K. C. English, J. E. Gerson, B. Whittle, T. et al., Tau oligomers associate with inflammation in the brain and retina of tauopathy mice and in neurodegenerative diseases, J Alzheimers Dis, vol.55, pp.1083-1099, 2017.

U. Ozkurede and R. A. Miller, Improved mitochondrial stress response in long?lived Snell dwarf mice, Aging Cell, vol.18, issue.6, 2019.

K. R. Patterson, C. Remmers, Y. Fu, S. Brooker, N. M. Kanaan et al., Characterization of Prefibrillar Tau Oligomersin Vitroand in Alzheimer Disease, Journal of Biological Chemistry, vol.286, issue.26, pp.23063-23076, 2011.

R. Prasad, M. Ça?layan, D. P. Dai, C. A. Nadalutti, M. L. Zhao et al., DNA polymerase ?: A missing link of the base excision repair machinery in mammalian mitochondria, DNA Repair, vol.60, pp.77-88, 2017.

J. Qu, Y. X. Wu, T. Zhang, Y. Qiu, Z. J. Ding et al., Sirt3 confers protection against acrolein-induced oxidative stress in cochlear nucleus neurons, Neurochemistry International, vol.114, pp.1-9, 2018.

A. Rahman, I. Grundke-iqbal, and K. Iqbal, Phosphothreonine-212 of Alzheimer Abnormally Hyperphosphorylated Tau is a Preferred Substrate of Protein Phosphatase-1, Neurochemical Research, vol.30, issue.2, pp.277-287, 2005.

J. H. Santos, B. S. Mandavilli, and B. Van-houten, Measuring Oxidative mtDNA Damage and Repair Using Quantitative PCR, Mitochondrial DNA, vol.197, pp.159-176

R. C. Scarpulla, Metabolic control of mitochondrial biogenesis through the PGC-1 family regulatory network, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1813, issue.7, pp.1269-1278, 2011.

K. Schindowski, A. Bretteville, K. Leroy, S. Bégard, J. P. Brion et al., Alzheimer's Disease-Like Tau Neuropathology Leads to Memory Deficits and Loss of Functional Synapses in a Novel Mutated Tau Transgenic Mouse without Any Motor Deficits, The American Journal of Pathology, vol.169, issue.2, pp.599-616, 2006.

D. Sebastián, M. Palacín, and A. Zorzano, Mitochondrial Dynamics: Coupling Mitochondrial Fitness with Healthy Aging, Trends in Molecular Medicine, vol.23, issue.3, pp.201-215, 2017.

N. M. Shanbhag, M. D. Evans, W. Mao, A. L. Nana, W. W. Seeley et al., Early neuronal accumulation of DNA double strand breaks in Alzheimer?s disease, Acta Neuropathologica Communications, vol.7, issue.1, 2019.

V. Shoshan-barmatz, E. Nahon-crystal, A. Shteinfer-kuzmine, and R. Gupta, VDAC1, mitochondrial dysfunction, and Alzheimer's disease, Pharmacological Research, vol.131, pp.87-101, 2018.

N. Sugo, Y. Aratani, Y. Nagashima, Y. Kubota, and H. Koyama, Neonatal lethality with abnormal neurogenesis in mice deficient in DNA polymerase beta, The EMBO Journal, vol.19, issue.6, pp.1397-1404, 2000.

R. H. Swerdlow, J. M. Burns, and S. M. Khan, The Alzheimer's disease mitochondrial cascade hypothesis: Progress and perspectives, Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, vol.1842, issue.8, pp.1219-1231, 2014.

P. Sykora, S. Kanno, M. Akbari, T. Kulikowicz, B. A. Baptiste et al., DNA polymerase beta participates in mitochondrial DNA repair, Mol Cell Biol, 2017.

P. Sykora, M. Misiak, Y. Wang, S. Ghosh, G. S. Leandro et al., DNA polymerase beta deficiency leads to neurodegeneration and exacerbates Alzheimer disease phenotypes, Nucleic Acids Res, vol.43, pp.943-959, 2015.

P. Sykora, D. M. Wilson, and V. A. Bohr, Repair of persistent strand breaks in the mitochondrial genome, Mechanisms of Ageing and Development, vol.133, issue.4, pp.169-175, 2012.

N. Taguchi, N. Ishihara, A. Jofuku, T. Oka, and K. Mihara, Mitotic phosphorylation of dynamin-related GTPase Drp1 participates in mitochondrial fission, J Biol Chem, vol.282, pp.11521-11529, 2007.

R. Tao, M. C. Coleman, J. D. Pennington, O. Ozden, S. H. Park et al., Sirt3-mediated deacetylation of evolutionarily conserved lysine 122 regulates MnSOD activity in response to stress, Mol Cell, vol.40, pp.893-904, 2010.

G. Twig, A. Elorza, A. J. Molina, H. Mohamed, J. D. Wikstrom et al., Fission and selective fusion govern mitochondrial segregation and elimination by autophagy, The EMBO Journal, vol.27, issue.2, pp.433-446, 2008.

A. Van-der-jeugd, B. Vermaercke, M. Derisbourg, A. C. Lo, M. Hamdane et al., Progressive age-related cognitive decline in tau mice, J Alzheimers Dis, vol.37, pp.777-788, 2013.

G. Van-loo, X. Saelens, M. Van-gurp, M. Macfarlane, S. J. Martin et al., The role of mitochondrial factors in apoptosis: a Russian roulette with more than one bullet, Cell Death & Differentiation, vol.9, issue.10, pp.1031-1042, 2002.

M. Violet, A. Chauderlier, L. Delattre, M. Tardivel, M. S. Chouala et al., Prefibrillar Tau oligomers alter the nucleic acid protective function of Tau in hippocampal neurons in vivo, Neurobiology of Disease, vol.82, pp.540-551, 2015.

Y. Wang and E. Mandelkow, Tau in physiology and pathology, Nature Reviews Neuroscience, vol.17, issue.1, pp.22-35, 2015.

S. M. Ward, D. S. Himmelstein, J. K. Lancia, Y. Fu, K. R. Patterson et al., TOC1: Characterization of a Selective Oligomeric Tau Antibody, Journal of Alzheimer's Disease, vol.37, issue.3, pp.593-602, 2013.

B. T. Weinert, T. Moustafa, V. Iesmantavicius, R. Zechner, and C. Choudhary, Analysis of acetylation stoichiometry suggests that SIRT 3 repairs nonenzymatic acetylation lesions, The EMBO Journal, vol.34, issue.21, pp.2620-2632, 2015.

L. Weissman, D. G. Jo, M. M. Sorensen, N. C. De-souza-pinto, W. R. Markesbery et al., Defective DNA base excision repair in brain from individuals with Alzheimer's disease and amnestic mild cognitive impairment, Nucleic Acids Research, vol.35, issue.16, pp.5545-5555, 2007.

Y. Yoshiyama, M. Higuchi, B. Zhang, S. M. Huang, N. Iwata et al., Synapse Loss and Microglial Activation Precede Tangles in a P301S Tauopathy Mouse Model, Neuron, vol.53, issue.3, pp.337-351, 2007.

H. Zaid, S. Abu-hamad, A. Israelson, I. Nathan, and V. Shoshan-barmatz, The voltage-dependent anion channel-1 modulates apoptotic cell death, Cell Death & Differentiation, vol.12, issue.7, pp.751-760, 2005.

L. Zhang, S. Trushin, T. A. Christensen, B. V. Bachmeier, B. Gateno et al., Altered brain energetics induces mitochondrial fission arrest in Alzheimer?s Disease, Scientific Reports, vol.6, issue.1, p.18725, 2016.

J. Zheng, D. L. Croteau, V. A. Bohr, and M. Akbari, Diminished OPA1 expression and impaired mitochondrial morphology and homeostasis in Aprataxin-deficient cells, Nucleic Acids Research, vol.47, issue.8, pp.4086-4110, 2019.

M. Zick, R. Rabl, and A. S. Reichert, Cristae formation?linking ultrastructure and function of mitochondria, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1793, issue.1, pp.5-19, 2009.

, Note from the publisher

, Jurisdictional immunity of foreign States with regard to claims relating to infringements of obligations under peremptory norms