M. Albert, G. Mairet-coello, C. Danis, S. Lieger, R. Caillierez et al., Prevention of tau seeding and propagation by immunotherapy with a central tau epitope antibody, Brain, vol.142, issue.6, pp.1736-1750, 2019.
URL : https://hal.archives-ouvertes.fr/inserm-02348408

B. Allen, E. Ingram, M. Takao, M. J. Smith, R. Jakes et al., Abundant Tau Filaments and Nonapoptotic Neurodegeneration in Transgenic Mice Expressing Human P301S Tau Protein, The Journal of Neuroscience, vol.22, issue.21, pp.9340-9351, 2002.

A. Apetri, R. Crespo, J. Juraszek, G. Pascual, R. Janson et al., A common antigenic motif recognized by naturally occurring human VH5?51/VL4?1 anti-tau antibodies with distinct functionalities, Acta Neuropathologica Communications, vol.6, issue.1, p.43, 2018.

M. C. Arikan, J. Memmott, J. A. Broderick, R. Lafyatis, G. Screaton et al., Modulation of the membrane-binding projection domain of tau protein: splicing regulation of exon 3, Molecular Brain Research, vol.101, issue.1-2, pp.109-121, 2002.

S. Boluda, M. Iba, B. Zhang, K. M. Raible, N. Y. Lee et al., Differential induction and spread of tau pathology in young PS19 tau transgenic mice following intracerebral injections of pathological tau from Alzheimer?s disease or corticobasal degeneration brains, Acta Neuropathologica, vol.129, issue.2, pp.221-237, 2014.

R. Brandt, J. Léger, and G. Lee, Interaction of tau with the neural plasma membrane mediated by tau's amino-terminal projection domain., Journal of Cell Biology, vol.131, issue.5, pp.1327-1340, 1995.

J. Brettschneider, K. D. Tredici, N. Y. Lee, and J. Q. Trojanowski, Spreading of pathology in neurodegenerative diseases: a focus on human studies, Nature Reviews Neuroscience, vol.16, issue.2, pp.109-120, 2015.

L. Buee, T. Bussiere, V. Buee-scherrer, A. Delacourte, and P. R. Hof, Tau protein isoforms, phosphorylation and role in neurodegenerative disorders, Brain Res. Brain Res. Rev, vol.33, pp.95-130, 2000.

L. Buee and A. Delacourte, Comparative biochemistry of Tau in progressive supranuclear palsy, corticobasal degeneration, FTDP-17 and pick's disease, Brain Pathol, vol.9, pp.681-693, 1999.

G. Carmel, E. M. Mager, L. I. Binder, and J. Kuret, The Structural Basis of Monoclonal Antibody Alz50's Selectivity for Alzheimer's Disease Pathology, Journal of Biological Chemistry, vol.271, issue.51, pp.32789-32795, 1996.

D. L. Castillo-carranza, U. Sengupta, M. J. Guerrero-munoz, C. A. Lasagna-reeves, J. E. Gerson et al., Passive Immunization with Tau Oligomer Monoclonal Antibody Reverses Tauopathy Phenotypes without Affecting Hyperphosphorylated Neurofibrillary Tangles, Journal of Neuroscience, vol.34, issue.12, pp.4260-4272, 2014.

J. Chen, Y. Kanai, N. J. Cowan, and N. Hirokawa, Projection domains of MAP2 and tau determine spacings between microtubules in dendrites and axons, Nature, vol.360, issue.6405, pp.674-677, 1992.

F. Clavaguera, H. Akatsu, G. Fraser, R. A. Crowther, S. Frank et al., Brain homogenates from human tauopathies induce tau inclusions in mouse brain, Proceedings of the National Academy of Sciences, vol.110, issue.23, pp.9535-9540, 2013.

B. Combs, C. Hamel, and N. M. Kanaan, Pathological conformations involving the amino terminus of tau occur early in Alzheimer's disease and are differentially detected by monoclonal antibodies, Neurobiology of Disease, vol.94, pp.18-31, 2016.

J. P. Courade, R. Angers, G. Mairet-coello, N. Pacico, K. Tyson et al., Epitope determines efficacy of therapeutic anti-Tau antibodies in a functional assay with human Alzheimer Tau, Acta Neuropathologica, vol.136, issue.5, pp.729-745, 2018.

C. L. Dai, X. Chen, S. F. Kazim, F. Liu, C. X. Gong et al., Passive immunization targeting the N-terminal projection domain of tau decreases tau pathology and improves cognition in a transgenic mouse model of Alzheimer disease and tauopathies, Journal of Neural Transmission, vol.122, issue.4, pp.607-617, 2014.

C. L. Dai, W. Hu, Y. C. Tung, F. Liu, C. X. Gong et al., Tau passive immunization blocks seeding and spread of Alzheimer hyperphosphorylated Tau-induced pathology in 3 × Tg-AD mice, Alzheimer's Research & Therapy, vol.10, issue.1, p.13, 2018.

R. Dixit, J. L. Ross, Y. E. Goldman, and E. L. Holzbaur, Differential Regulation of Dynein and Kinesin Motor Proteins by Tau, Science, vol.319, issue.5866, pp.1086-1089, 2008.

B. Dubois, H. H. Feldman, C. Jacova, H. Hampel, J. L. Molinuevo et al., Advancing research diagnostic criteria for Alzheimer's disease: the IWG-2 criteria, The Lancet Neurology, vol.13, issue.6, pp.614-629, 2014.

S. Engelborghs, K. De-vreese, T. Van-de-casteele, H. Vanderstichele, B. Van-everbroeck et al., Diagnostic performance of a CSF-biomarker panel in autopsy-confirmed dementia, Neurobiology of Aging, vol.29, issue.8, pp.1143-1159, 2008.

B. Falcon, J. Zivanov, W. Zhang, A. G. Murzin, H. J. Garringer et al., Novel tau filament fold in chronic traumatic encephalopathy encloses hydrophobic molecules, Nature, vol.568, issue.7752, pp.420-423, 2019.

H. E. Feinstein, S. J. Benbow, N. E. Lapointe, N. Patel, S. Ramachandran et al., Oligomerization of the microtubule-associated protein tau is mediated by its N-terminal sequences: implications for normal and pathological tau action, Journal of Neurochemistry, vol.137, issue.6, pp.939-954, 2016.

S. C. Feinstein and L. Wilson, Inability of tau to properly regulate neuronal microtubule dynamics: a loss-of-function mechanism by which tau might mediate neuronal cell death, Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, vol.1739, issue.2-3, pp.268-279, 2005.

Y. Fichou, Y. K. Al-hilaly, F. Devred, C. Smet-nocca, P. O. Tsvetkov et al., The elusive tau molecular structures: can we translate the recent breakthroughs into new targets for intervention?, Acta Neuropathologica Communications, vol.7, issue.1, p.31, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02055894

A. W. Fitzpatrick, B. Falcon, S. He, A. G. Murzin, G. Murshudov et al., Cryo-EM structures of tau filaments from Alzheimer?s disease, Nature, vol.547, issue.7662, pp.185-190, 2017.

F. García-sierra, N. Ghoshal, B. Quinn, R. W. Berry, and L. I. Binder, Conformational changes and truncation of tau protein during tangle evolution in Alzheimer's disease, Journal of Alzheimer's Disease, vol.5, issue.2, pp.65-77, 2003.

N. Ghoshal, F. García-sierra, Y. Fu, L. A. Beckett, E. J. Mufson et al., Tau-66: evidence for a novel tau conformation in Alzheimer's disease, Journal of Neurochemistry, vol.77, issue.5, pp.1372-1385, 2001.

G. S. Gibbons, R. A. Banks, B. Kim, L. Changolkar, D. M. Riddle et al., Detection of Alzheimer Disease (AD)-Specific Tau Pathology in AD and NonAD Tauopathies by Immunohistochemistry With Novel Conformation-Selective Tau Antibodies, Journal of Neuropathology & Experimental Neurology, vol.77, issue.3, pp.216-228, 2018.

G. S. Gibbons, S. J. Kim, J. L. Robinson, L. Changolkar, D. J. Irwin et al., Detection of Alzheimer?s disease (AD) specific tau pathology with conformation-selective anti-tau monoclonal antibody in co-morbid frontotemporal lobar degeneration-tau (FTLD-tau), Acta Neuropathologica Communications, vol.7, issue.1, p.34, 2019.

R. Godemann, J. Biernat, E. Mandelkow, and E. Mandelkow, Phosphorylation of tau protein by recombinant GSK-3?: pronounced phosphorylation at select Ser/Thr-Pro motifs but no phosphorylation at Ser262 in the repeat domain, FEBS Letters, vol.454, issue.1-2, pp.157-164, 1999.

M. Goedert, B. Falcon, W. Zhang, B. Ghetti, and S. H. Scheres, Distinct Conformers of Assembled Tau in Alzheimer's and Pick's Diseases, Cold Spring Harbor Symposia on Quantitative Biology, vol.83, pp.163-171, 2018.

M. Goedert and R. Jakes, Expression of separate isoforms of human tau protein: correlation with the tau pattern in brain and effects on tubulin polymerization., The EMBO Journal, vol.9, issue.13, pp.4225-4230, 1990.

M. Goedert and M. G. Spillantini, Propagation of Tau aggregates, Molecular Brain, vol.10, issue.1, p.18, 2017.

M. Goedert, M. G. Spillantini, R. Jakes, D. Rutherford, and R. A. Crowther, Multiple isoforms of human microtubule-associated protein tau: sequences and localization in neurofibrillary tangles of Alzheimer's disease, Neuron, vol.3, issue.4, pp.519-526, 1989.

E. A. Greenfield, Polyethylene Glycol Fusion for Hybridoma Production, Cold Spring Harbor Protocols, vol.2018, issue.3, p.pdb.prot103176, 2018.

J. L. Guo and V. M. Lee, Cell-to-cell transmission of pathogenic proteins in neurodegenerative diseases, Nature Medicine, vol.20, issue.2, pp.130-138, 2014.

N. Gustke, B. Trinczek, J. Biernat, E. M. Mandelkow, and E. M. Mandelkow, Domains of tau Protein and Interactions with Microtubules, Biochemistry, vol.33, issue.32, pp.9511-9522, 1994.

S. Jeganathan, A. Hascher, S. Chinnathambi, J. Biernat, E. M. Mandelkow et al., Proline-directed Pseudo-phosphorylation at AT8 and PHF1 Epitopes Induces a Compaction of the Paperclip Folding of Tau and Generates a Pathological (MC-1) Conformation, Journal of Biological Chemistry, vol.283, issue.46, pp.32066-32076, 2008.

S. Jeganathan, M. Von-bergen, H. Brutlach, H. J. Steinhoff, and E. Mandelkow, Global Hairpin Folding of Tau in Solution?, Biochemistry, vol.45, issue.7, pp.2283-2293, 2006.

G. A. Jicha, R. Bowser, I. G. Kazam, and P. Davies, Alz-50 and MC-1, a new monoclonal antibody raised to paired helical filaments, recognize conformational epitopes on recombinant tau, Journal of Neuroscience Research, vol.48, issue.2, pp.128-132, 1997.

G. A. Jicha, E. Lane, I. Vincent, L. Otvos, R. Hoffmann et al., A Conformation- and Phosphorylation-Dependent Antibody Recognizing the Paired Helical Filaments of Alzheimer's Disease, Journal of Neurochemistry, vol.69, issue.5, pp.2087-2095, 2002.

N. M. Kanaan, G. A. Morfini, N. E. Lapointe, G. F. Pigino, K. R. Patterson et al., Pathogenic forms of Tau inhibit kinesin-dependent axonal transport through a mechanism involving activation of axonal phosphotransferases, J. Neurosci, vol.31, pp.9858-9868, 2011.

W. Kim, S. Lee, and G. F. Hall, Secretion of human tau fragments resembling CSF-tau in Alzheimer's disease is modulated by the presence of the exon 2 insert, FEBS Letters, vol.584, issue.14, pp.3085-3088, 2010.

J. P. Langedijk, M. J. Zekveld, M. Ruiter, D. Corti, and J. W. Back, Helical peptide arrays for lead identification and interaction site mapping, Analytical Biochemistry, vol.417, issue.1, pp.149-155, 2011.

J. P. Langedijk, M. J. Zekveld, M. Ruiter, D. Corti, and J. W. Back, Helical peptide arrays for lead identification and interaction site mapping, Analytical Biochemistry, vol.417, issue.1, pp.149-155, 2011.

K. Li, M. C. Arikan, and A. Andreadis, Modulation of the membrane-binding domain of tau protein: splicing regulation of exon 2, Molecular Brain Research, vol.116, issue.1-2, pp.94-105, 2003.

C. Liu, X. Song, R. Nisbet, and J. Gotz, Co-immunoprecipitation with Tau isoform-specific antibodies reveals distinct protein interactions and highlights a putative role for 2N Tau in disease, J. Biol. Chem, vol.291, pp.8173-8188, 2016.

D. Moechars, I. Dewachter, K. Lorent, D. Reversé, V. Baekelandt et al., Early Phenotypic Changes in Transgenic Mice That Overexpress Different Mutants of Amyloid Precursor Protein in Brain, Journal of Biological Chemistry, vol.274, issue.10, pp.6483-6492, 1999.

M. D. Mukrasch, S. Bibow, J. Korukottu, S. Jeganathan, J. Biernat et al., Structural Polymorphism of 441-Residue Tau at Single Residue Resolution, PLoS Biology, vol.7, issue.2, p.e1000034, 2009.

M. D. Mukrasch, J. Biernat, M. Von-bergen, C. Griesinger, E. Mandelkow et al., Sites of Tau Important for Aggregation Populate ?-Structure and Bind to Microtubules and Polyanions, Journal of Biological Chemistry, vol.280, issue.26, pp.24978-24986, 2005.

E. Mylonas, A. Hascher, P. Bernado?, M. Blackledge, E. Mandelkow et al., Domain Conformation of Tau Protein Studied by Solution Small-Angle X-ray Scattering?, Biochemistry, vol.47, issue.39, pp.10345-10353, 2008.

H. Qi, S. Prabakaran, F. X. Cantrelle, B. Chambraud, J. Gunawardena et al., Characterization of Neuronal Tau Protein as a Target of Extracellular Signal-regulated Kinase, Journal of Biological Chemistry, vol.291, issue.14, pp.7742-7753, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01389831

P. Reilly, C. N. Winston, K. R. Baron, M. Trejo, E. M. Rockenstein et al., Novel human neuronal tau model exhibiting neurofibrillary tangles and transcellular propagation, Neurobiology of Disease, vol.106, pp.222-234, 2017.

J. Rosseels, J. Van-den-brande, M. Violet, D. Jacobs, P. Grognet et al., Tau Monoclonal Antibody Generation Based on Humanized Yeast Models, Journal of Biological Chemistry, vol.290, issue.7, pp.4059-4074, 2014.

K. Schindowski, A. Bretteville, K. Leroy, S. Bégard, J. P. Brion et al., Alzheimer's Disease-Like Tau Neuropathology Leads to Memory Deficits and Loss of Functional Synapses in a Novel Mutated Tau Transgenic Mouse without Any Motor Deficits, The American Journal of Pathology, vol.169, issue.2, pp.599-616, 2006.

O. Schweers, E. Schonbrunn-hanebeck, A. Marx, and E. Mandelkow, Structural studies of Tau protein and Alzheimer paired helical filaments show no evidence for beta-structure, J. Biol. Chem, vol.269, pp.24290-24297, 1994.

N. Sergeant, A. Bretteville, M. Hamdane, M. L. Caillet-boudin, P. Grognet et al., Biochemistry of Tau in Alzheimer?s disease and related neurological disorders, Expert Review of Proteomics, vol.5, issue.2, pp.207-224, 2008.

R. Skrabana, P. Kontsek, A. Mederlyova, K. Iqbal, and M. Novak, Folding of Alzheimer's core PHF subunit revealed by monoclonal antibody 423, FEBS Letters, vol.568, issue.1-3, pp.178-182, 2004.

K. Soltys, G. Rolkova, L. Vechterova, P. Filipcik, N. Zilka et al., First insert of Tau protein is present in all stages of Tau pathology in Alzheimer's disease, Neuroreport, vol.16, pp.1677-1681, 2005.

S. Taniguchi-watanabe, T. Arai, F. Kametani, T. Nonaka, M. Masuda-suzukake et al., Biochemical classification of Tauopathies by immunoblot, protein sequence and mass spectrometric analyses of sarkosyl-insoluble and trypsin-resistant Tau, Acta Neuropathol, vol.131, pp.267-280, 2016.

D. Terwel, R. Lasrado, J. Snauwaert, E. Vandeweert, C. Van-haesendonck et al., Changed conformation of mutant Tau-P301L underlies the moribund Tauopathy, absent in progressive, nonlethal axonopathy of Tau-4R/2N transgenic mice, J. Biol. Chem, vol.280, pp.3963-3973, 2005.

J. Van-den-brande, Generation and diagnostic valorisation of monoclonal antibodies for human protein tau (Doctoral dissertation), 2014.

S. Van-der-mussele, E. Fransen, H. Struyfs, J. Luyckx, P. Marien et al., Depression in mild cognitive impairment is associated with progression to Alzheimer's disease: a longitudinal study, J. Alzheimers. Dis, vol.42, pp.1239-1250, 2014.

T. Vandebroek, D. Terwel, T. Vanhelmont, M. Gysemans, C. Van-haesendonck et al., Microtubule binding and clustering of human Tau-4R and Tau-P301L proteins isolated from yeast deficient in orthologues of glycogen synthase kinase-3beta or cdk5, J. Biol. Chem, vol.281, pp.25388-25397, 2006.

T. Vandebroek, T. Vanhelmont, D. Terwel, P. Borghgraef, K. Lemaire et al., Identification and isolation of a hyperphosphorylated, conformationally changed intermediate of human protein Tau expressed in yeast, Biochemistry, vol.44, pp.11466-11475, 2005.

T. Vanhelmont, T. Vandebroek, A. De-vos, D. Terwel, K. Lemaire et al., Serine-409 phosphorylation and oxidative damage define aggregation of human protein Tau in yeast, FEMS Yeast Res, vol.10, pp.992-1005, 2010.

V. Bergen, M. Barghorn, S. Li, L. Marx, A. Biernat et al., Mutations of Tau protein in frontotemporal dementia promote aggregation of paired helical filaments by enhancing local beta-structure, J. Biol. Chem, vol.276, pp.48165-48174, 2001.

V. Bergen, M. Friedhoff, P. Biernat, J. Heberle, J. Mandelkow et al., Assembly of Tau protein into Alzheimer paired helical filaments depends on a local sequence motif [(306)VQIVYK(311)] forming beta structure, Proc. Natl. Acad. Sci. U.S.A, vol.97, pp.5129-5134, 2000.

S. M. Ward, D. S. Himmelstein, Y. Ren, Y. Fu, X. W. Yu et al., TOC1: a valuable tool in assessing disease progression in the rTg4510 mouse model of Tauopathy, Neurobiol. Dis, vol.67, pp.37-48, 2014.

M. D. Weingarten, A. H. Lockwood, S. Y. Hwo, and M. W. Kirschner, A protein factor essential for microtubule assembly., Proceedings of the National Academy of Sciences, vol.72, issue.5, pp.1858-1862, 1975.

H. Zempel, F. J. Dennissen, Y. Kumar, J. Luedtke, J. Biernat et al., Axodendritic sorting and pathological missorting of Tau are isoform-specific and determined by axon initial segment architecture, J. Biol. Chem, vol.292, pp.12192-12207, 2017.

, Potential Conflict of Interest, Physical Therapy, 2016.

J. Verelst, N. Geukens, S. Eddarkaoui, D. Vliegen, E. De-smidt et al., A Novel Tau Antibody Detecting the First Amino-Terminal Insert Reveals Conformational Differences Among Tau Isoforms, Frontiers in Molecular Biosciences, vol.7, 2020.
URL : https://hal.archives-ouvertes.fr/inserm-02999911