A. H. Alhasan, D. Y. Kim, W. L. Daniel, E. Watson, J. J. Meeks et al., Scanometric MicroRNA Array Profiling of Prostate Cancer Markers Using Spherical Nucleic Acid?Gold Nanoparticle Conjugates, Analytical Chemistry, vol.84, issue.9, pp.4153-4160, 2012.

M. M. Ali, F. Li, Z. Zhang, K. Zhang, D. Kang et al., Rolling circle amplification: a versatile tool for chemical biology, materials science and medicine, Chemical Society Reviews, vol.43, issue.10, p.3324, 2014.

P. Androvic, L. Valihrach, J. Elling, R. Sjoback, and M. Kubista, Two-tailed RT-qPCR: a novel method for highly accurate miRNA quantification, Nucleic Acids Research, vol.45, issue.15, pp.e144-e144, 2017.

E. Arefian, J. Kiani, M. Soleimani, S. A. Shariati, S. H. Aghaee-bakhtiari et al., Analysis of microRNA signatures using size-coded ligation-mediated PCR, Nucleic Acids Research, vol.39, issue.12, pp.e80-e80, 2011.

J. Aslanzadeh, Annals of Clinical and Laboratory Research, Ann. Clin. Lab. Sci, vol.34, pp.389-396

M. A. Baker, S. J. Davis, P. Liu, X. Pan, A. M. Williams et al., Tissue-Specific MicroRNA Expression Patterns in Four Types of Kidney Disease, Journal of the American Society of Nephrology, vol.28, issue.10, pp.2985-2992, 2017.

K. N. Ballantyne, R. A. Van-oorschot, and R. J. Mitchell, Locked nucleic acids in PCR primers increase sensitivity and performance, Genomics, vol.91, issue.3, pp.301-305, 2008.

J. Bao, C. Hou, Y. Zhao, X. Geng, M. Samalo et al., An enzyme-free sensitive electrochemical microRNA-16 biosensor by applying a multiple signal amplification strategy based on Au/PPy?rGO nanocomposite as a substrate, Talanta, vol.196, pp.329-336, 2019.

D. P. Bartel, MicroRNAs, Cell, vol.116, issue.2, pp.281-297, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00369966

A. S. Basu, Digital Assays Part I: Partitioning Statistics and Digital PCR, SLAS TECHNOLOGY: Translating Life Sciences Innovation, vol.22, issue.4, pp.369-386, 2017.

V. Benes and M. Castoldi, Expression profiling of microRNA using real-time quantitative PCR, how to use it and what is available, Methods, vol.50, issue.4, pp.244-249, 2010.

S. Bi, Y. Cui, and L. Li, Dumbbell probe-mediated cascade isothermal amplification: A novel strategy for label-free detection of microRNAs and its application to real sample assay, Analytica Chimica Acta, vol.760, pp.69-74, 2013.

H. G. Binderup, J. S. Madsen, N. H. Heegaard, K. Houlind, R. F. Andersen et al., Quantification of microRNA levels in plasma ? Impact of preanalytical and analytical conditions, PLOS ONE, vol.13, issue.7, p.e0201069, 2018.

R. A. Brown, M. R. Epis, J. L. Horsham, T. D. Kabir, K. L. Richardson et al., Total RNA extraction from tissues for microRNA and target gene expression analysis: not all kits are created equal, BMC Biotechnology, vol.18, issue.1, p.16, 2018.

S. A. Bustin, V. Benes, J. A. Garson, J. Hellemans, J. Huggett et al., The MIQE Guidelines: Minimum Information for Publication of Quantitative Real-Time PCR Experiments, Clinical Chemistry, vol.55, issue.4, pp.611-622, 2009.

S. A. Byrnes, Simple Polydisperse Droplet Emulsion Polymerase Chain Reaction with Statistical Volumetric Correction Compared with Microfluidic Droplet Digital Polymerase Chain Reaction, Anal. Chem, vol.90, pp.9374-9380

P. Campomenosi, E. Gini, D. M. Noonan, A. Poli, P. D?antona et al., A comparison between quantitative PCR and droplet digital PCR technologies for circulating microRNA quantification in human lung cancer, BMC Biotechnology, vol.16, issue.1, p.60, 2016.

P. Campomenosi, E. Gini, D. M. Noonan, A. Poli, P. D?antona et al., A comparison between quantitative PCR and droplet digital PCR technologies for circulating microRNA quantification in human lung cancer, BMC Biotechnology, vol.16, issue.1, pp.1-10, 2016.

A. D. Castañeda, N. J. Brenes, A. Kondajji, and R. M. Crooks, Detection of microRNA by Electrocatalytic Amplification: A General Approach for Single-Particle Biosensing, Journal of the American Chemical Society, vol.139, issue.22, pp.7657-7664, 2017.

H. Chan, L. Chan, R. N. Wong, and H. Li, Direct Quantification of Single-Molecules of MicroRNA by Total Internal Reflection Fluorescence Microscopy, Analytical Chemistry, vol.82, issue.16, pp.6911-6918, 2010.

A. R. Chandrasekaran, J. A. Punnoose, L. Zhou, P. Dey, B. K. Dey et al., DNA nanotechnology approaches for microRNA detection and diagnosis, Nucleic Acids Research, vol.47, issue.20, pp.10489-10505, 2019.

S. C. Chapin and P. S. Doyle, Ultrasensitive Multiplexed MicroRNA Quantification on Encoded Gel Microparticles Using Rolling Circle Amplification, Analytical Chemistry, vol.83, issue.18, pp.7179-7185, 2011.

C. Chen, Real-time quantification of microRNAs by stem-loop RT-PCR, Nucleic Acids Research, vol.33, issue.20, pp.e179-e179, 2005.

Y. Chen, B. Jiang, Y. Xiang, Y. Chai, and R. Yuan, Target recycling amplification for sensitive and label-free impedimetric genosensing based on hairpin DNA and graphene/Au nanocomposites, Chemical Communications, vol.47, issue.48, p.12798, 2011.

J. Chen, B. Liu, X. Song, P. Tong, H. Yang et al., Enzyme-free amplified detection of microRNA using target-catalyzed hairpin assembly and magnesium ion-dependent deoxyribozyme, Science China Chemistry, vol.58, issue.12, pp.1906-1911, 2015.

J. Chen, X. Zhou, Y. Ma, X. Lin, Z. Dai et al., Asymmetric exponential amplification reaction on a toehold/biotin featured template: an ultrasensitive and specific strategy for isothermal microRNAs analysis, Nucleic Acids Research, vol.44, p.gkw504, 2016.

J. Chen, Isothermal Amplification on a Structure-Switchable Symmetric Toehold Dumbbell-Template: A Strategy Enabling MicroRNA Analysis at the Single-Cell Level with Ultrahigh Specificity and Accuracy, Anal. Chem, vol.90, pp.859-865

Y. Cheng, X. Zhang, Z. Li, X. Jiao, Y. Wang et al., Highly Sensitive Determination of microRNA Using Target-Primed and Branched Rolling-Circle Amplification, Angewandte Chemie International Edition, vol.48, issue.18, pp.3268-3272, 2009.

Y. Cheng, L. Dong, J. Zhang, Y. Zhao, and Z. Li, Recent advances in microRNA detection, The Analyst, vol.143, issue.8, pp.1758-1774, 2018.

A. M. Coenen-stass, H. Sork, S. Gatto, C. Godfrey, A. Bhomra et al., Comprehensive RNA-Sequencing Analysis in Serum and Muscle Reveals Novel Small RNA Signatures with Biomarker Potential for DMD, Molecular Therapy - Nucleic Acids, vol.13, pp.1-15, 2018.

L. Cohen, M. R. Hartman, A. Amardey-wellington, and D. R. Walt, Digital direct detection of microRNAs using single molecule arrays, Nucleic Acids Research, vol.45, issue.14, pp.e137-e137, 2017.

J. Compton, Nucleic acid sequence-based amplification, Nature, vol.350, issue.6313, pp.91-92, 1991.

W. Dai, J. Zhang, X. Meng, J. He, K. Zhang et al., Catalytic hairpin assembly gel assay for multiple and sensitive microRNA detection, Theranostics, vol.8, issue.10, pp.2646-2656, 2018.

V. P. Dave, T. A. Ngo, A. Pernestig, D. Tilevik, K. Kant et al., MicroRNA amplification and detection technologies: opportunities and challenges for point of care diagnostics, Laboratory Investigation, vol.99, issue.4, pp.452-469, 2018.

V. P. Dave, T. A. Ngo, A. Pernestig, D. Tilevik, K. Kant et al., MicroRNA amplification and detection technologies: opportunities and challenges for point of care diagnostics, Laboratory Investigation, vol.99, issue.4, pp.452-469, 2018.

M. De-planell-saguer and M. C. Rodicio, Detection methods for microRNAs in clinic practice, Clinical Biochemistry, vol.46, issue.10-11, pp.869-878, 2013.

F. Degliangeli, P. Kshirsagar, V. Brunetti, P. P. Pompa, and R. Fiammengo, Absolute and Direct MicroRNA Quantification Using DNA?Gold Nanoparticle Probes, Journal of the American Chemical Society, vol.136, issue.6, pp.2264-2267, 2014.

R. Deng, L. Tang, Q. Tian, Y. Wang, L. Lin et al., Toehold-initiated Rolling Circle Amplification for Visualizing Individual MicroRNAs In Situ in Single Cells, Angewandte Chemie International Edition, vol.53, issue.9, pp.2389-2393, 2014.

H. Deng, W. Shen, Y. Ren, and Z. Gao, A highly sensitive and selective homogenous assay for profiling microRNA expression, Biosensors and Bioelectronics, vol.54, pp.650-655, 2014.

B. Deng, X. Cheng, H. Li, J. Qin, M. Tian et al., Microarray expression profiling in the denervated hippocampus identifies long noncoding RNAs functionally involved in neurogenesis, BMC Molecular Biology, vol.18, issue.1, p.15, 2017.

R. Deng, K. Zhang, and J. Li, Isothermal Amplification for MicroRNA Detection: From the Test Tube to the Cell, Accounts of Chemical Research, vol.50, issue.4, pp.1059-1068, 2017.

J. A. Denis, Practical PACS Implementation, PACS and Digital Medicine, vol.76, pp.179-202, 2010.

R. M. Dirks and N. A. Pierce, From The Cover: Triggered amplification by hybridization chain reaction, Proceedings of the National Academy of Sciences, vol.101, issue.43, pp.15275-15278, 2004.

H. Dong, J. Lei, L. Ding, Y. Wen, H. Ju et al., MicroRNA: Function, Detection, and Bioanalysis, Chemical Reviews, vol.113, issue.8, pp.6207-6233, 2013.

W. Du, M. Lv, J. Li, R. Yu, and J. Jiang, A ligation-based loop-mediated isothermal amplification (ligation-LAMP) strategy for highly selective microRNA detection, Chemical Communications, vol.52, issue.86, pp.12721-12724, 2016.

R. Duan, X. Zuo, S. Wang, X. Quan, D. Chen et al., Lab in a Tube: Ultrasensitive Detection of MicroRNAs at the Single-Cell Level and in Breast Cancer Patients Using Quadratic Isothermal Amplification, Journal of the American Chemical Society, vol.135, issue.12, pp.4604-4607, 2013.

V. El-khoury, S. Pierson, T. Kaoma, F. Bernardin, and G. Berchem, Assessing cellular and circulating miRNA recovery: the impact of the RNA isolation method and the quantity of input material, Scientific Reports, vol.6, issue.1, 2016.

T. Fan, Y. Mao, Q. Sun, F. Liu, J. Lin et al., Branched rolling circle amplification method for measuring serum circulating micro RNA levels for early breast cancer detection, Cancer Science, vol.109, issue.9, pp.2897-2906, 2018.

G. Gines, R. Menezes, W. Xiao, Y. Rondelez, and V. Taly, Emerging isothermal amplification technologies for microRNA biosensing: Applications to liquid biopsies, Molecular Aspects of Medicine, vol.72, p.100832, 2020.
URL : https://hal.archives-ouvertes.fr/inserm-02992632

T. Fan, Y. Mao, F. Liu, W. Zhang, J. Lin et al., Label-free fluorescence detection of circulating microRNAs based on duplex-specific nuclease-assisted target recycling coupled with rolling circle amplification, Talanta, vol.200, pp.480-486, 2019.

C. Foye, I. K. Yan, W. David, N. Shukla, Y. Habboush et al., Comparison of miRNA quantitation by Nanostring in serum and plasma samples, PLOS ONE, vol.12, issue.12, p.e0189165, 2017.

R. C. Friedman, N. H. Farh, C. B. Burge, and D. P. Bartel, Most mammalian mRNAs are conserved targets of microRNAs, Genome Research, vol.19, issue.1, pp.92-105, 2008.

A. Gansen, A. M. Herrick, I. K. Dimov, L. P. Lee, and D. T. Chiu, Digital LAMP in a sample self-digitization (SD) chip, Lab on a Chip, vol.12, issue.12, p.2247, 2012.

L. A. Garraway and E. S. Lander, Lessons from the Cancer Genome, Cell, vol.153, issue.1, pp.17-37, 2013.

J. Ge, L. Zhang, S. Liu, R. Yu, and X. Chu, A Highly Sensitive Target-Primed Rolling Circle Amplification (TPRCA) Method for Fluorescent in Situ Hybridization Detection of MicroRNA in Tumor Cells, Analytical Chemistry, vol.86, issue.3, pp.1808-1815, 2014.

Z. Ge, M. Lin, P. Wang, H. Pei, J. Yan et al., Hybridization Chain Reaction Amplification of MicroRNA Detection with a Tetrahedral DNA Nanostructure-Based Electrochemical Biosensor, Analytical Chemistry, vol.86, issue.4, pp.2124-2130, 2014.

Q. Ge, Y. Zhou, J. Lu, Y. Bai, X. Xie et al., miRNA in Plasma Exosome is Stable under Different Storage Conditions, Molecules, vol.19, issue.2, pp.1568-1575, 2014.

L. F. Gebert and I. J. Macrae, Regulation of microRNA function in animals, Nature Reviews Molecular Cell Biology, vol.20, issue.1, pp.21-37, 2018.

G. K. Geiss, Direct multiplexed measurement of gene expression with colorcoded probe pairs, Nat. Biotechnol, vol.26, pp.317-325, 2008.

G. Gines, R. Menezes, K. Nara, A. Kirstetter, V. Taly et al., Isothermal digital detection of microRNA using background-free molecular circuit, 2019.

M. C. Giuffrida and G. Spoto, Integration of isothermal amplification methods in microfluidic devices: Recent advances, Biosensors and Bioelectronics, vol.90, pp.174-186, 2017.

C. Glinge, S. Clauss, K. Boddum, R. Jabbari, J. Jabbari et al., Stability of Circulating Blood-Based MicroRNAs ? Pre-Analytic Methodological Considerations, PLOS ONE, vol.12, issue.2, p.e0167969, 2017.

J. C. Guatelli, K. M. Whitfield, D. Y. Kwoh, K. J. Barringer, D. D. Richman et al., Isothermal, in vitro amplification of nucleic acids by a multienzyme reaction modeled after retroviral replication., Proceedings of the National Academy of Sciences, vol.87, issue.5, pp.1874-1878, 1990.

L. Guo, Y. Lin, C. Chen, B. Qiu, Z. Lin et al., Direct visualization of sub-femtomolar circulating microRNAs in serum based on the duplex-specific nuclease-amplified oriented assembly of gold nanoparticle dimers, Chemical Communications, vol.52, issue.76, pp.11347-11350, 2016.

S. Guo, W. N. Lin, Y. Hu, G. Sun, D. Phan et al., Ultrahigh-throughput droplet microfluidic device for single-cell miRNA detection with isothermal amplification, Lab on a Chip, vol.18, issue.13, pp.1914-1920, 2018.

J. Guo, C. Mingoes, X. Qiu, and N. Hildebrandt, Simple, Amplified, and Multiplexed Detection of MicroRNAs Using Time-Gated FRET and Hybridization Chain Reaction, Analytical Chemistry, vol.91, issue.4, pp.3101-3109, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02171004

M. Ha and V. N. Kim, Regulation of microRNA biogenesis, Nature Reviews Molecular Cell Biology, vol.15, issue.8, pp.509-524, 2014.

E. M. Harcourt and E. T. Kool, Amplified microRNA detection by templated chemistry, Nucleic Acids Research, vol.40, issue.9, pp.e65-e65, 2012.

C. He, M. Wang, X. Sun, Y. Zhu, X. Zhou et al., Integrating PDA microtube waveguide system with heterogeneous CHA amplification strategy towards superior sensitive detection of miRNA, Biosensors and Bioelectronics, vol.129, pp.50-57, 2019.

B. J. Hindson, K. D. Ness, D. A. Masquelier, P. Belgrader, N. J. Heredia et al., High-Throughput Droplet Digital PCR System for Absolute Quantitation of DNA Copy Number, Analytical Chemistry, vol.83, issue.22, pp.8604-8610, 2011.

C. M. Hindson, J. R. Chevillet, H. A. Briggs, E. N. Gallichotte, I. K. Ruf et al., Absolute quantification by droplet digital PCR versus analog real-time PCR, Nature Methods, vol.10, issue.10, pp.1003-1005, 2013.

C. Hoey, M. Ahmed, A. Fotouhi-ghiam, D. Vesprini, X. Huang et al., Circulating miRNAs as non-invasive biomarkers to predict aggressive prostate cancer after radical prostatectomy, Journal of Translational Medicine, vol.17, issue.1, p.173, 2019.

P. M. Holland, R. D. Abramson, R. Watson, and D. H. Gelfand, Detection of specific polymerase chain reaction product by utilizing the 5'----3' exonuclease activity of Thermus aquaticus DNA polymerase., Proceedings of the National Academy of Sciences, vol.88, issue.16, pp.7276-7280, 1991.

J. Hu, M. Liu, and C. Zhang, Integration of isothermal amplification with quantum dot-based fluorescence resonance energy transfer for simultaneous detection of multiple microRNAs, Chemical Science, vol.9, issue.18, pp.4258-4267, 2018.

X. Hu, J. Fan, B. Duan, H. Zhang, Y. He et al., Single-molecule catalytic hairpin assembly for rapid and direct quantification of circulating miRNA biomarkers, Analytica Chimica Acta, vol.1042, pp.109-115, 2018.

R. Huang, X. Zhou, C. Zhang, and D. Xing, High-specific microRNA detection based on dual-recycling cascade reaction and nicking endonuclease signal amplification, Sensors and Actuators B: Chemical, vol.264, pp.169-176, 2018.

J. F. Huggett, C. A. Foy, V. Benes, K. Emslie, J. A. Garson et al., The Digital MIQE Guidelines: Minimum Information for Publication of Quantitative Digital PCR Experiments, Clinical Chemistry, vol.59, issue.6, pp.892-902, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-02992959

J. F. Huggett, S. Cowen, and C. A. Foy, Considerations for Digital PCR as an Accurate Molecular Diagnostic Tool, Clinical Chemistry, vol.61, issue.1, pp.79-88, 2015.

E. A. Hunt, D. Broyles, T. Head, and S. K. Deo, MicroRNA Detection: Current Technology and Research Strategies, Annual Review of Analytical Chemistry, vol.8, issue.1, pp.217-237, 2015.

S. Husale, H. H. Persson, and O. Sahin, DNA nanomechanics allows direct digital detection of complementary DNA and microRNA targets, Nature, vol.462, issue.7276, pp.1075-1078, 2009.

J. S. Jang, V. A. Simon, R. M. Feddersen, F. Rakhshan, D. A. Schultz et al., Quantitative miRNA Expression Analysis Using Fluidigm Microfluidics Dynamic Arrays, BMC Genomics, vol.12, issue.1, p.144, 2011.

J. Jarry, D. Schadendorf, C. Greenwood, A. Spatz, and L. C. Van-kempen, The validity of circulating microRNAs in oncology: Five years of challenges and contradictions, Molecular Oncology, vol.8, issue.4, pp.819-829, 2014.

S. G. Jensen, P. Lamy, M. H. Rasmussen, M. S. Ostenfeld, L. Dyrskjøt et al., Evaluation of two commercial global miRNA expression profiling platforms for detection of less abundant miRNAs, BMC Genomics, vol.12, issue.1, p.435, 2011.

H. Jia, Z. Li, C. Liu, and Y. Cheng, Ultrasensitive Detection of microRNAs by Exponential Isothermal Amplification, Angewandte Chemie International Edition, vol.49, issue.32, pp.5498-5501, 2010.

Z. Jin, D. Geißler, X. Qiu, K. D. Wegner, and N. Hildebrandt, A Rapid, Amplification-Free, and Sensitive Diagnostic Assay for Single-Step Multiplexed Fluorescence Detection of MicroRNA, Angewandte Chemie International Edition, vol.54, issue.34, pp.10024-10029, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02400075

J. Jin, S. Vaud, A. M. Zhelkovsky, J. Posfai, and L. A. Mcreynolds, Sensitive and specific miRNA detection method using SplintR Ligase, Nucleic Acids Research, vol.44, issue.13, pp.e116-e116, 2016.

A. Johnson-buck, X. Su, M. D. Giraldez, M. Zhao, M. Tewari et al., Kinetic fingerprinting to identify and count single nucleic acids, Nature Biotechnology, vol.33, issue.7, pp.730-732, 2015.

S. P. Jonstrup, J. Koch, and J. Kjems, A microRNA detection system based on padlock probes and rolling circle amplification, RNA, vol.12, issue.9, pp.1747-1752, 2006.

T. Kawaguchi, S. Komatsu, D. Ichikawa, M. Tsujiura, H. Takeshita et al., Circulating MicroRNAs: A Next-Generation Clinical Biomarker for Digestive System Cancers, International Journal of Molecular Sciences, vol.17, issue.9, p.1459, 2016.

H. Kim, S. Kang, K. S. Park, and H. G. Park, Enzyme-free and label-free miRNA detection based on target-triggered catalytic hairpin assembly and fluorescence enhancement of DNA-silver nanoclusters, Sensors and Actuators B: Chemical, vol.260, pp.140-145, 2018.

K. Komiya, M. Komori, C. Noda, S. Kobayashi, T. Yoshimura et al., Leak-free million-fold DNA amplification with locked nucleic acid and targeted hybridization in one pot, Organic & Biomolecular Chemistry, vol.17, issue.23, pp.5708-5713, 2019.

M. Komori, K. Komiya, T. Shirakawa, T. J. Morikawa, and T. Yoshimura, Measurement of microRNA with isothermal DNA amplification on fully automated immunoassay analyzers, Analytical and Bioanalytical Chemistry, vol.411, issue.17, pp.3789-3800, 2019.

J. Koshiol, E. Wang, Y. Zhao, F. Marincola, and M. T. Landi, Strengths and Limitations of Laboratory Procedures for MicroRNA Detection, Cancer Epidemiology Biomarkers & Prevention, vol.19, issue.4, pp.907-911, 2010.

M. F. Kramer, Stem-Loop RT-qPCR for miRNAs, Current Protocols in Molecular Biology, vol.95, issue.1, pp.15.10.1-15.10.15, 2011.

E. Larrea, C. Sole, L. Manterola, I. Goicoechea, M. Armesto et al., New Concepts in Cancer Biomarkers: Circulating miRNAs in Liquid Biopsies, International Journal of Molecular Sciences, vol.17, issue.5, p.627, 2016.

N. Latchana, M. J. Divincenzo, K. Regan, Z. Abrams, X. Zhang et al., Alterations in patient plasma microRNA expression profiles following resection of metastatic melanoma, Journal of Surgical Oncology, vol.118, pp.501-509, 2018.

P. Laurent-puig, M. Grisoni, V. Heinemann, F. Liebaert, D. Neureiter et al., Validation of miR-31-3p Expression to Predict Cetuximab Efficacy When Used as First-Line Treatment in RAS Wild-Type Metastatic Colorectal Cancer, Clinical Cancer Research, vol.25, issue.1, pp.134-141, 2018.

R. C. Lee, R. L. Feinbaum, and V. Ambros, The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14, Cell, vol.75, issue.5, pp.843-854, 1993.
URL : https://hal.archives-ouvertes.fr/in2p3-00597159

C. Li, Z. Li, H. Jia, and J. Yan, One-step ultrasensitive detection of microRNAs with loop-mediated isothermal amplification (LAMP), Chem. Commun., vol.47, issue.9, pp.2595-2597, 2011.

Y. Li, L. Liang, and C. Zhang, Isothermally Sensitive Detection of Serum Circulating miRNAs for Lung Cancer Diagnosis, Analytical Chemistry, vol.85, issue.23, pp.11174-11179, 2013.

Y. Li, J. Zhang, J. Zhao, L. Zhao, Y. Cheng et al., A simple molecular beacon with duplex-specific nuclease amplification for detection of microRNA, The Analyst, vol.141, issue.3, pp.1071-1076, 2016.

L. Li, J. Feng, H. Liu, Q. Li, L. Tong et al., Two-color imaging of microRNA with enzyme-free signal amplification via hybridization chain reactions in living cells, Chemical Science, vol.7, issue.3, pp.1940-1945, 2016.

D. Li, Y. Wu, C. Gan, R. Yuan, and Y. Xiang, Bio-cleavable nanoprobes for target-triggered catalytic hairpin assembly amplification detection of microRNAs in live cancer cells, Nanoscale, vol.10, issue.37, pp.17623-17628, 2018.

L. Li, M. Lu, Y. Fan, L. Shui, S. Xie et al., High-throughput and ultra-sensitive single-cell profiling of multiple microRNAs and identification of human cancer, Chemical Communications, vol.55, issue.70, pp.10404-10407, 2019.

R. Liang, An oligonucleotide microarray for microRNA expression analysis based on labeling RNA with quantum dot and nanogold probe, Nucleic Acids Research, vol.33, issue.2, pp.e17-e17, 2005.

X. Lin, C. Zhang, Y. Huang, Z. Zhu, X. Chen et al., Backbone-modified molecular beacons for highly sensitive and selective detection of microRNAs based on duplex specific nuclease signal amplification, Chemical Communications, vol.49, issue.65, p.7243, 2013.

S. Lingam, M. Beta, D. Dendukuri, and S. Krishnakumar, A Focus on Microfluidics and Nanotechnology Approaches for the Ultra Sensitive Detection of MicroRNA, MicroRNA, vol.3, issue.1, pp.18-28, 2014.

H. Liu, L. Li, L. Duan, X. Wang, Y. Xie et al., High Specific and Ultrasensitive Isothermal Detection of MicroRNA by Padlock Probe-Based Exponential Rolling Circle Amplification, Analytical Chemistry, vol.85, issue.16, pp.7941-7947, 2013.

Y. Liu, T. Shen, J. Li, H. Gong, C. Chen et al., Ratiometric Fluorescence Sensor for the MicroRNA Determination by Catalyzed Hairpin Assembly, ACS Sensors, vol.2, issue.10, pp.1430-1434, 2017.

H. Liu, T. Tian, Y. Zhang, L. Ding, J. Yu et al., Sensitive and rapid detection of microRNAs using hairpin probes-mediated exponential isothermal amplification, Biosensors and Bioelectronics, vol.89, pp.710-714, 2017.

C. Liu, C. Chen, S. Li, H. Dong, W. Dai et al., Target-Triggered Catalytic Hairpin Assembly-Induced Core?Satellite Nanostructures for High-Sensitive ?Off-to-On? SERS Detection of Intracellular MicroRNA, Analytical Chemistry, vol.90, issue.17, pp.10591-10599, 2018.

W. Lu, Quantitative Detection of MicroRNA in One Step via Next Generation Magnetic Relaxation Switch Sensing, ACS Nano, vol.10, pp.6685-6692

X. Luo, J. Zhang, H. Wang, Y. Du, L. Yang et al., PolyA RT-PCR-based quantification of microRNA by using universal TaqMan probe, Biotechnology Letters, vol.34, issue.4, pp.627-633, 2011.

C. Ma, W. Wang, Z. Li, L. Cao, and Q. Wang, Simple colorimetric DNA detection based on hairpin assembly reaction and target-catalytic circuits for signal amplification, Analytical Biochemistry, vol.429, issue.2, pp.99-102, 2012.

A. Mader, U. Riehle, T. Brandstetter, E. Stickeler, and J. Ruehe, Universal nucleic acid sequence-based amplification for simultaneous amplification of messengerRNAs and microRNAs, Analytica Chimica Acta, vol.754, pp.1-7, 2012.

F. Marabita, P. De-candia, A. Torri, J. Tegnér, S. Abrignani et al., Normalization of circulating microRNA expression data obtained by quantitative real-time RT-PCR, Briefings in Bioinformatics, vol.17, issue.2, pp.204-212, 2015.

S. A. Marras, S. Tyagi, and F. R. Kramer, Real-time assays with molecular beacons and other fluorescent nucleic acid hybridization probes, Clinica Chimica Acta, vol.363, issue.1-2, pp.48-60, 2006.

M. A. Mcalexander, M. J. Phillips, and K. W. Witwer, Comparison of Methods for miRNA Extraction from Plasma and Quantitative Recovery of RNA from Cerebrospinal Fluid, Frontiers in Genetics, vol.4, 2013.

Q. Mei, X. Li, Y. Meng, Z. Wu, M. Guo et al., A Facile and Specific Assay for Quantifying MicroRNA by an Optimized RT-qPCR Approach, PLoS ONE, vol.7, issue.10, p.e46890, 2012.

P. Mestdagh, N. Hartmann, L. Baeriswyl, D. Andreasen, N. Bernard et al., Evaluation of quantitative miRNA expression platforms in the microRNA quality control (miRQC) study, Nature Methods, vol.11, issue.8, pp.809-815, 2014.

P. Miao, T. Zhang, J. Xu, and Y. Tang, Electrochemical Detection of miRNA Combining T7 Exonuclease-Assisted Cascade Signal Amplification and DNA-Templated Copper Nanoparticles, Analytical Chemistry, vol.90, issue.18, pp.11154-11160, 2018.

P. S. Mitchell, Circulating microRNAs as stable blood-based markers for, Molecular Aspects of Medicine, vol.72, p.100832, 2008.

J. D. Pyle and S. P. Whelan, RNA ligands activate the Machupo virus polymerase and guide promoter usage, Proceedings of the National Academy of Sciences, vol.116, issue.21, pp.10518-10524, 2019.

R. Mizuno, K. Kawada, and Y. Sakai, The Molecular Basis and Therapeutic Potential of Let-7 MicroRNAs against Colorectal Cancer, Canadian Journal of Gastroenterology and Hepatology, vol.2018, pp.1-7, 2018.

E. Mok, E. Wee, Y. Wang, and M. Trau, Comprehensive evaluation of molecular enhancers of the isothermal exponential amplification reaction, Scientific Reports, vol.6, issue.1, p.37837, 2016.

F. Moltzahn, A. B. Olshen, L. Baehner, A. Peek, L. Fong et al., Microfluidic-Based Multiplex qRT-PCR Identifies Diagnostic and Prognostic microRNA Signatures in the Sera of Prostate Cancer Patients, Cancer Research, vol.71, issue.2, pp.550-560, 2010.

K. Montagne, G. Gines, T. Fujii, and Y. Rondelez, Boosting functionality of synthetic DNA circuits with tailored deactivation, Nature Communications, vol.7, issue.1, p.13474, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01419361

M. Mraz, K. Malinova, J. Mayer, and S. Pospisilova, MicroRNA isolation and stability in stored RNA samples, Biochemical and Biophysical Research Communications, vol.390, issue.1, pp.1-4, 2009.

J. Na, G. W. Shin, H. G. Son, S. V. Lee, and G. Y. Jung, Multiplex quantitative analysis of microRNA expression via exponential isothermal amplification and conformation-sensitive DNA separation, Scientific Reports, vol.7, issue.1, pp.1-8, 2017.

K. Nagamine, T. Hase, and T. Notomi, Accelerated reaction by loop-mediated isothermal amplification using loop primers, Molecular and Cellular Probes, vol.16, issue.3, pp.223-229, 2002.

M. B. Nagarajan, A. M. Tentori, W. C. Zhang, F. J. Slack, and P. S. Doyle, Nonfouling, Encoded Hydrogel Microparticles for Multiplex MicroRNA Profiling Directly from Formalin-Fixed, Paraffin-Embedded Tissue, Analytical Chemistry, vol.90, issue.17, pp.10279-10285, 2018.

C. Nejad, G. Pépin, M. A. Behlke, and M. P. Gantier, Modified Polyadenylation-Based RT-qPCR Increases Selectivity of Amplification of 3?-MicroRNA Isoforms, Frontiers in Genetics, vol.9, 2018.

P. T. Nelson, D. A. Baldwin, L. M. Scearce, J. C. Oberholtzer, J. W. Tobias et al., Microarray-based, high-throughput gene expression profiling of microRNAs, Nature Methods, vol.1, issue.2, pp.155-161, 2004.

J. V. Ness, L. K. Ness, and D. J. Galas, Isothermal reactions for the amplification of oligonucleotides, Proc. Natl. Acad. Sci, vol.100, pp.4504-4509, 2003.

E. K. Ng, W. W. Chong, H. Jin, E. K. Lam, V. Y. Shin et al., Differential expression of microRNAs in plasma of patients with colorectal cancer: a potential marker for colorectal cancer screening, Gut, vol.58, issue.10, pp.1375-1381, 2009.

Y. Nie, X. Yuan, P. Zhang, Y. Chai, and R. Yuan, Versatile and Ultrasensitive Electrochemiluminescence Biosensor for Biomarker Detection Based on Nonenzymatic Amplification and Aptamer-Triggered Emitter Release, Analytical Chemistry, vol.91, issue.5, pp.3452-3458, 2019.

Y. Niu, L. Zhang, H. Qiu, Y. Wu, Z. Wang et al., An improved method for detecting circulating microRNAs with S-Poly(T) Plus real-time PCR, Scientific Reports, vol.5, issue.1, p.15100, 2015.

T. Ouyang, Z. Liu, Z. Han, and Q. Ge, MicroRNA Detection Specificity: Recent Advances and Future Perspective, Analytical Chemistry, vol.91, issue.5, pp.3179-3186, 2019.

G. S. Pall, C. Codony-servat, J. Byrne, L. Ritchie, and A. Hamilton, Carbodiimide-mediated cross-linking of RNA to nylon membranes improves the detection of siRNA, miRNA and piRNA by northern blot, Nucleic Acids Research, vol.35, issue.8, pp.e60-e60, 2007.

R. Palmirotta, D. Lovero, P. Cafforio, C. Felici, F. Mannavola et al., Liquid biopsy of cancer: a multimodal diagnostic tool in clinical oncology, Therapeutic Advances in Medical Oncology, vol.10, p.175883591879463, 2018.

Y. Pang, C. Wang, J. Wang, Z. Sun, R. Xiao et al., Fe3O4@Ag magnetic nanoparticles for microRNA capture and duplex-specific nuclease signal amplification based SERS detection in cancer cells, Biosensors and Bioelectronics, vol.79, pp.574-580, 2016.

Y. Park, C. Y. Lee, S. Kang, H. Kim, K. S. Park et al., Universal, colorimetric microRNA detection strategy based on target-catalyzed toehold-mediated strand displacement reaction, Nanotechnology, vol.29, issue.8, p.085501, 2018.

D. Pekin, Y. Skhiri, J. Baret, D. Le-corre, L. Mazutis et al., Quantitative and sensitive detection of rare mutations using droplet-based microfluidics, Lab on a Chip, vol.11, issue.13, p.2156, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02148770

G. Perkins, H. Lu, F. Garlan, and V. Taly, Droplet-Based Digital PCR, Advances in Clinical Chemistry, vol.79, pp.43-91, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02332823

M. Postel, A. Roosen, P. Laurent-puig, V. Taly, and S. Wang-renault, Droplet-based digital PCR and next generation sequencing for monitoring circulating tumor DNA: a cancer diagnostic perspective, Expert Review of Molecular Diagnostics, vol.18, issue.1, pp.7-17, 2017.
URL : https://hal.archives-ouvertes.fr/inserm-02299515

G. Poulet, J. Massias, and V. Taly, Liquid Biopsy: General Concepts, Acta Cytologica, vol.63, issue.6, pp.449-455, 2019.
URL : https://hal.archives-ouvertes.fr/inserm-02299480

P. Quan, M. Sauzade, and E. Brouzes, dPCR: A Technology Review, Sensors, vol.18, issue.4, p.1271, 2018.

C. A. Raabe, T. Tang, J. Brosius, and T. S. Rozhdestvensky, Biases in small RNA deep sequencing data, Nucleic Acids Research, vol.42, issue.3, pp.1414-1426, 2013.

M. Rana, M. Balcioglu, M. Kovach, M. S. Hizir, N. M. Robertson et al., Reprogrammable multiplexed detection of circulating oncomiRs using hybridization chain reaction, Chemical Communications, vol.52, issue.17, pp.3524-3527, 2016.

N. Redshaw, T. Wilkes, A. Whale, S. Cowen, J. Huggett et al., A comparison of miRNA isolation and RT-qPCR technologies and their effects on quantification accuracy and repeatability, BioTechniques, vol.54, issue.3, pp.155-164, 2013.

M. S. Reid, R. E. Paliwoda, H. Zhang, and X. C. Le, Reduction of Background Generated from Template-Template Hybridizations in the Exponential Amplification Reaction, Analytical Chemistry, vol.90, issue.18, pp.11033-11039, 2018.

P. Ren, F. Gong, Y. Zhang, J. Jiang, and H. Zhang, MicroRNA-92a promotes growth, metastasis, and chemoresistance in non-small cell lung cancer cells by targeting PTEN, Tumor Biology, vol.37, issue.3, pp.3215-3225, 2015.

S. Robinson, M. Follo, D. Haenel, M. Mauler, D. Stallmann et al., Chip-based digital PCR as a novel detection method for quantifying microRNAs in acute myocardial infarction patients, Acta Pharmacologica Sinica, vol.39, issue.7, pp.1217-1227, 2017.

S. Robinson, M. Follo, D. Haenel, M. Mauler, D. Stallmann et al., Droplet digital PCR as a novel detection method for quantifying microRNAs in acute myocardial infarction, International Journal of Cardiology, vol.257, pp.247-254, 2018.

Y. Rondelez, G. Tresset, K. V. Tabata, H. Arata, H. Fujita et al., Microfabricated arrays of femtoliter chambers allow single molecule enzymology, Nature Biotechnology, vol.23, issue.3, pp.361-365, 2005.

A. E. Roser, L. Caldi-gomes, J. Schünemann, F. Maass, and P. Lingor, Circulating miRNAs as Diagnostic Biomarkers for Parkinson?s Disease, Frontiers in Neuroscience, vol.12, p.625, 2018.

S. Roush and F. J. Slack, The let-7 family of microRNAs, Trends in Cell Biology, vol.18, issue.10, pp.505-516, 2008.

S. Roy, J. H. Soh, and Z. Gao, A microfluidic-assisted microarray for ultrasensitive detection of miRNA under an optical microscope, Lab on a Chip, vol.11, issue.11, p.1886, 2011.

E. K. Sackmann, A. L. Fulton, and D. J. Beebe, The present and future role of microfluidics in biomedical research, Nature, vol.507, issue.7491, pp.181-189, 2014.

R. Sanders, J. F. Huggett, C. A. Bushell, S. Cowen, D. J. Scott et al., Evaluation of Digital PCR for Absolute DNA Quantification, Analytical Chemistry, vol.83, issue.17, pp.6474-6484, 2011.

D. Sanz-rubio, I. Martin-burriel, A. Gil, P. Cubero, M. Forner et al., Stability of Circulating Exosomal miRNAs in Healthy Subjects, Scientific Reports, vol.8, issue.1, pp.1-10, 2018.

S. Sassen, E. A. Miska, and C. Caldas, MicroRNA?implications for cancer, Virchows Archiv, vol.452, issue.1, pp.1-10, 2007.

E. Satake, M. G. Pezzolesi, Z. I. Md-dom, A. M. Smiles, M. A. Niewczas et al., Circulating miRNA Profiles Associated With Hyperglycemia in Patients With Type 1 Diabetes, Diabetes, vol.67, issue.5, pp.1013-1023, 2018.

H. Schwarzenbach, N. Nishida, G. A. Calin, and K. Pantel, Clinical relevance of circulating cell-free microRNAs in cancer, Nature Reviews Clinical Oncology, vol.11, issue.3, pp.145-156, 2014.

M. Schwarzkopf and N. A. Pierce, Multiplexed miRNA northern blots via hybridization chain reaction, Nucleic Acids Research, vol.44, p.gkw503, 2016.

D. A. Shagin, A Novel Method for SNP Detection Using a New Duplex-Specific Nuclease From Crab Hepatopancreas, Genome Research, vol.12, issue.12, pp.1935-1942, 2002.

Y. Shi, Alternative polyadenylation: New insights from global analyses, RNA, vol.18, issue.12, pp.2105-2117, 2012.

E. V. Stein, D. L. Duewer, N. Farkas, E. L. Romsos, L. Wang et al., Steps to achieve quantitative measurements of microRNA using two step droplet digital PCR, PLOS ONE, vol.12, issue.11, p.e0188085, 2017.

Y. Sun and T. Li, Composition-Tunable Hollow Au/Ag SERS Nanoprobes Coupled with Target-Catalyzed Hairpin Assembly for Triple-Amplification Detection of miRNA, Analytical Chemistry, vol.90, issue.19, pp.11614-11621, 2018.

Y. Sun, H. Tian, C. Liu, Y. Sun, and Z. Li, One-step detection of microRNA with high sensitivity and specificity via target-triggered loop-mediated isothermal amplification (TT-LAMP), Chemical Communications, vol.53, issue.80, pp.11040-11043, 2017.

P. J. Sykes, Limiting dilutionpolymerasechainreaction (limiting dilution PCR), Biotechniques, vol.13, pp.1-1, 2015.

V. Taly, D. Pekin, A. E. Abed, and P. Laurent-puig, Detecting biomarkers with microdroplet technology, Trends in Molecular Medicine, vol.18, issue.7, pp.405-416, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-02299585

J. M. Thomson, J. Parker, C. M. Perou, and S. M. Hammond, A custom microarray platform for analysis of microRNA gene expression, Nature Methods, vol.1, issue.1, pp.47-53, 2004.

Q. Tian, Y. Wang, R. Deng, L. Lin, Y. Liu et al., Carbon nanotube enhanced label-free detection of microRNAs based on hairpin probe triggered solid-phase rolling-circle amplification, Nanoscale, vol.7, issue.3, pp.987-993, 2015.

H. Tian, Precise Quantitation of MicroRNA in a Single Cell with Droplet Digital PCR Based on Ligation Reaction, Anal. Chem, vol.88, pp.11384-11389

B. Tian, Optomagnetic Detection of MicroRNA Based on Duplex-Specific Nuclease-Assisted Target Recycling and Multilayer Core-Satellite Magnetic Superstructures, ACS Nano, vol.11, pp.1798-1806

B. Tian, Z. Qiu, J. Ma, M. Donolato, M. F. Hansen et al., On-Particle Rolling Circle Amplification-Based Core?Satellite Magnetic Superstructures for MicroRNA Detection, ACS Applied Materials & Interfaces, vol.10, issue.3, pp.2957-2964, 2018.

T. Tian, Y. Bi, X. Xu, Z. Zhu, and C. Yang, Integrated paper-based microfluidic devices for point-of-care testing, Analytical Methods, vol.10, issue.29, pp.3567-3581, 2018.

W. Tian, P. Li, W. He, C. Liu, and Z. Li, Rolling circle extension-actuated loop-mediated isothermal amplification (RCA-LAMP) for ultrasensitive detection of microRNAs, Biosensors and Bioelectronics, vol.128, pp.17-22, 2019.

P. Tiberio, M. Callari, V. Angeloni, M. G. Daidone, and V. Appierto, Challenges in Using Circulating miRNAs as Cancer Biomarkers, BioMed Research International, vol.2015, pp.1-10, 2015.

N. Tomita, Y. Mori, H. Kanda, and T. Notomi, Loop-mediated isothermal amplification (LAMP) of gene sequences and simple visual detection of products, Nature Protocols, vol.3, issue.5, pp.877-882, 2008.

S. Tyagi and F. R. Kramer, Molecular Beacons: Probes that Fluoresce upon Hybridization, Nature Biotechnology, vol.14, issue.3, pp.303-308, 1996.

S. Ultimo, G. Zauli, A. M. Martelli, M. Vitale, J. A. Mccubrey et al., Cardiovascular disease-related miRNAs expression: potential role as biomarkers and effects of training exercise, Oncotarget, vol.9, issue.24, pp.17238-17254, 2018.

G. Urtel, M. Van-der-hofstadt, J. Galas, and A. Estevez-torres, rEXPAR: An Isothermal Amplification Scheme That Is Robust to Autocatalytic Parasites, Biochemistry, vol.58, issue.23, pp.2675-2681, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02180838

A. Válóczi, Sensitive and specific detection of microRNAs by northern blot analysis using LNA-modified oligonucleotide probes, Nucleic Acids Res, vol.32, p.175, 2004.

S. Venkataraman, R. M. Dirks, P. W. Rothemund, E. Winfree, and N. A. Pierce, An autonomous polymerization motor powered by DNA hybridization, Nature Nanotechnology, vol.2, issue.8, pp.490-494, 2007.

B. Vogelstein and K. W. Kinzler, Digital PCR, Proceedings of the National Academy of Sciences, vol.96, issue.16, pp.9236-9241, 1999.

Y. Wang, J. Shi, Y. Wu, W. Xu, Q. Wang et al., Use of Luminex xMAP bead-based suspension array for detecting microRNA in NSCLC tissues and its clinical application, Tumori Journal, vol.98, issue.6, pp.792-799, 2012.

X. Wang, B. Yin, P. Wang, and B. Ye, Highly sensitive detection of microRNAs based on isothermal exponential amplification-assisted generation of catalytic G-quadruplexDNAzyme, Biosensors and Bioelectronics, vol.42, pp.131-135, 2013.

J. Wang, S. Huang, M. Zhao, M. Yang, J. Zhong et al., Identification of a Circulating MicroRNA Signature for Colorectal Cancer Detection, PLoS ONE, vol.9, issue.4, p.e87451, 2014.

L. Wang, R. Deng, and J. Li, Target-fueled DNA walker for highly selective miRNA detection, Chemical Science, vol.6, issue.12, pp.6777-6782, 2015.

J. Wang, B. Zou, J. Rui, Q. Song, T. Kajiyama et al., Exponential amplification of DNA with very low background using graphene oxide and single-stranded binding protein to suppress non-specific amplification, Microchimica Acta, vol.182, issue.5-6, pp.1095-1101, 2014.

H. Wang, H. Wang, X. Duan, C. Liu, and Z. Li, Digital quantitative analysis of microRNA in single cell based on ligation-depended polymerase colony (Polony), Biosensors and Bioelectronics, vol.95, pp.146-151, 2017.

Y. Wang, P. D. Howes, E. Kim, C. D. Spicer, M. R. Thomas et al., Duplex-Specific Nuclease-Amplified Detection of MicroRNA Using Compact Quantum Dot?DNA Conjugates, ACS Applied Materials & Interfaces, vol.10, issue.34, pp.28290-28300, 2018.

C. Wang, Q. Ding, P. Plant, M. Basheer, C. Yang et al., Droplet digital PCR improves urinary exosomal miRNA detection compared to real-time PCR, Clinical Biochemistry, vol.67, pp.54-59, 2019.

H. Wang, H. Tang, C. Yang, and Y. Li, Selective Single Molecule Nanopore Sensing of microRNA Using PNA Functionalized Magnetic Core?Shell Fe3O4?Au Nanoparticles, Analytical Chemistry, vol.91, issue.12, pp.7965-7970, 2019.

A. W. Wark, H. J. Lee, and R. M. Corn, Multiplexed Detection Methods for Profiling MicroRNA Expression in Biological Samples, Angewandte Chemie International Edition, vol.47, issue.4, pp.644-652, 2008.

R. Watanabe, T. Komatsu, S. Sakamoto, Y. Urano, and H. Noji, High-throughput single-molecule bioassay using micro-reactor arrays with a concentration gradient of target molecules, Lab on a Chip, vol.18, issue.18, pp.2849-2853, 2018.

H. Wei, S. Tang, T. Hu, G. Zhao, and Y. Guan, Production of dumbbell probe through hairpin cleavage-ligation and increasing RCA sensitivity and specificity by circle to circle amplification, Scientific Reports, vol.6, issue.1, p.29229, 2016.

Q. Wei, J. Huang, J. Li, J. Wang, X. Yang et al., A DNA nanowire based localized catalytic hairpin assembly reaction for microRNA imaging in live cells, Chemical Science, vol.9, issue.40, pp.7802-7808, 2018.

J. Wei, X. Gong, Q. Wang, M. Pan, X. Liu et al., Construction of an autonomously concatenated hybridization chain reaction for signal amplification and intracellular imaging, Chemical Science, vol.9, issue.1, pp.52-61, 2018.

Y. Wen, Y. Xu, X. Mao, Y. Wei, H. Song et al., DNAzyme-Based Rolling-Circle Amplification DNA Machine for Ultrasensitive Analysis of MicroRNA in Drosophila Larva, Analytical Chemistry, vol.84, issue.18, pp.7664-7669, 2012.

H. Wu, Y. Liu, H. Wang, J. Wu, F. Zhu et al., Label-free and enzyme-free colorimetric detection of microRNA by catalyzed hairpin assembly coupled with hybridization chain reaction, Biosensors and Bioelectronics, vol.81, pp.303-308, 2016.

C. Wu, F. Lin, S. Chen, Y. Chen, W. Chung et al., Optimized Collection Protocol for Plasma MicroRNA Measurement in Patients with Cardiovascular Disease, BioMed Research International, vol.2016, pp.1-12, 2016.

L. Wu, Y. Wang, R. He, Y. Zhang, Y. He et al., Fluorescence hydrogel array based on interfacial cation exchange amplification for highly sensitive microRNA detection, Analytica Chimica Acta, vol.1080, pp.206-214, 2019.

Q. Xu, A. Cao, L. Zhang, and C. Zhang, Rapid and Label-Free Monitoring of Exonuclease III-Assisted Target Recycling Amplification, Analytical Chemistry, vol.84, issue.24, pp.10845-10851, 2012.

Y. Xu, D. Li, W. Cheng, R. Hu, Y. Sang et al., Chemiluminescence imaging for microRNA detection based on cascade exponential isothermal amplification machinery, Analytica Chimica Acta, vol.936, pp.229-235, 2016.

L. Yang, C. Liu, W. Ren, and Z. Li, Graphene Surface-Anchored Fluorescence Sensor for Sensitive Detection of MicroRNA Coupled with Enzyme-Free Signal Amplification of Hybridization Chain Reaction, ACS Applied Materials & Interfaces, vol.4, issue.12, pp.6450-6453, 2012.

W. Yi, R. Cai, D. Xiang, Y. Wang, M. Zhang et al., A novel photoelectrochemical strategy based on an integrative photoactive heterojunction nanomaterial and a redox cycling amplification system for ultrasensitive determination of microRNA in cells, Biosensors and Bioelectronics, vol.143, p.111614, 2019.

J. Q. Yin, R. C. Zhao, and K. V. Morris, Profiling microRNA expression with microarrays, Trends in Biotechnology, vol.26, issue.2, pp.70-76, 2008.

B. Yin, Y. Liu, and B. Ye, One-Step, Multiplexed Fluorescence Detection of microRNAs Based on Duplex-Specific Nuclease Signal Amplification, Journal of the American Chemical Society, vol.134, issue.11, pp.5064-5067, 2012.

Y. Yu, Z. Chen, L. Shi, F. Yang, J. Pan et al., Ultrasensitive Electrochemical Detection of MicroRNA Based on an Arched Probe Mediated Isothermal Exponential Amplification, Analytical Chemistry, vol.86, issue.16, pp.8200-8205, 2014.

S. Yue, T. Zhao, S. Bi, and Z. Zhang, Programmable strand displacement-based magnetic separation for simultaneous amplified detection of multiplex microRNAs by chemiluminescence imaging array, Biosensors and Bioelectronics, vol.98, pp.234-239, 2017.

K. Zen and C. Zhang, Circulating MicroRNAs: a novel class of biomarkers to diagnose and monitor human cancers, Medicinal Research Reviews, vol.32, issue.2, pp.326-348, 2010.

D. Y. Zhang and E. Winfree, Control of DNA Strand Displacement Kinetics Using Toehold Exchange, Journal of the American Chemical Society, vol.131, issue.47, pp.17303-17314, 2009.

Y. Zhang and C. Zhang, Sensitive Detection of microRNA with Isothermal Amplification and a Single-Quantum-Dot-Based Nanosensor, Analytical Chemistry, vol.84, issue.1, pp.224-231, 2011.

J. Zhang, Z. Li, H. Wang, Y. Wang, H. Jia et al., Ultrasensitive quantification of mature microRNAs by real-time PCR based on ligation of a ribonucleotide-modified DNA probe, Chemical Communications, vol.47, issue.33, p.9465, 2011.

P. Zhang, Y. Liu, Y. Zhang, C. Liu, Z. Wang et al., Multiplex ligation-dependent probe amplification (MLPA) for ultrasensitive multiplexed microRNA detection using ribonucleotide-modified DNA probes, Chemical Communications, vol.49, issue.85, p.10013, 2013.

L. Zhang, G. Zhu, and C. Zhang, Homogeneous and Label-Free Detection of MicroRNAs Using Bifunctional Strand Displacement Amplification-Mediated Hyperbranched Rolling Circle Amplification, Analytical Chemistry, vol.86, issue.13, pp.6703-6709, 2014.

X. Zhang, C. Liu, L. Sun, X. Duan, and Z. Li, Lab on a single microbead: an ultrasensitive detection strategy enabling microRNA analysis at the single-molecule level, Chemical Science, vol.6, issue.11, pp.6213-6218, 2015.

Y. Zhang, Y. Yan, W. Chen, W. Cheng, S. Li et al., A simple electrochemical biosensor for highly sensitive and specific detection of microRNA based on mismatched catalytic hairpin assembly, Biosensors and Bioelectronics, vol.68, pp.343-349, 2015.

K. Zhang, D. Kang, M. M. Ali, L. Liu, L. Labanieh et al., Digital quantification of miRNA directly in plasma using integrated comprehensive droplet digital detection, Lab on a Chip, vol.15, issue.21, pp.4217-4226, 2015.

J. Zhang, D. Wu, S. Cai, M. Chen, Y. Xia et al., An immobilization-free electrochemical impedance biosensor based on duplex-specific nuclease assisted target recycling for amplified detection of microRNA, Biosensors and Bioelectronics, vol.75, pp.452-457, 2016.

C. Zhang, Y. Tang, Y. Sheng, H. Wang, Z. Wu et al., Ultrasensitive detection of microRNAs using catalytic hairpin assembly coupled with enzymatic repairing amplification, Chemical Communications, vol.52, issue.93, pp.13584-13587, 2016.

K. Zhang, K. Wang, X. Zhu, F. Xu, and M. Xie, Sensitive detection of microRNA in complex biological samples by using two stages DSN-assisted target recycling signal amplification method, Biosensors and Bioelectronics, vol.87, pp.358-364, 2017.

Y. Zhang, Single-Molecule Analysis of MicroRNA and Logic Operations Using a Smart Plasmonic Nanobiosensor, J. Am. Chem. Soc, vol.140, pp.3988-3993

J. Zhao, W. Fu, H. Liao, L. Dai, Z. Jiang et al., The regulatory and predictive functions of miR-17 and miR-92 families on cisplatin resistance of non-small cell lung cancer, BMC Cancer, vol.15, issue.1, p.731, 2015.

Y. Zhao, Q. Xia, Y. Yin, and Z. Wang, Comparison of Droplet Digital PCR and Quantitative PCR Assays for Quantitative Detection of Xanthomonas citri Subsp. citri, PLOS ONE, vol.11, issue.7, p.e0159004, 2016.

G. Zhao, T. Jiang, Y. Liu, G. Huai, C. Lan et al., Droplet digital PCR-based circulating microRNA detection serve as a promising diagnostic method for gastric cancer, BMC Cancer, vol.18, issue.1, pp.1-10, 2018.

X. Zheng, L. Niu, D. Wei, X. Li, and S. Zhang, Label-free detection of microRNA based on coupling multiple isothermal amplification techniques, Scientific Reports, vol.6, issue.1, p.35982, 2016.

Y. Zhou, Q. Huang, J. Gao, J. Lu, X. Shen et al., A dumbbell probe-mediated rolling circle amplification strategy for highly sensitive microRNA detection, Nucleic Acids Research, vol.38, issue.15, pp.e156-e156, 2010.

X. Zhou, P. Cao, Y. Zhu, W. Lu, N. Gu et al., Phage-mediated counting by the naked eye of miRNA molecules at attomolar concentrations in a Petri dish, Nature Materials, vol.14, issue.10, pp.1058-1064, 2015.

H. Zhou, C. Yang, H. Chen, X. Li, Y. Li et al., A simple G-quadruplex molecular beacon-based biosensor for highly selective detection of microRNA, Biosensors and Bioelectronics, vol.87, pp.552-557, 2017.

L. Zhou, Y. Wang, C. Yang, H. Xu, J. Luo et al., A label-free electrochemical biosensor for microRNAs detection based on DNA nanomaterial by coupling with Y-shaped DNA structure and non-linear hybridization chain reaction, Biosensors and Bioelectronics, vol.126, pp.657-663, 2019.

Q. Zhu, L. Qiu, B. Yu, Y. Xu, Y. Gao et al., Digital PCR on an integrated self-priming compartmentalization chip, Lab Chip, vol.14, issue.6, pp.1176-1185, 2014.

X. Zhu, Y. Shen, J. Cao, L. Yin, F. Ban et al., Detection of microRNA SNPs with ultrahigh specificity by using reduced graphene oxide-assisted rolling circle amplification, Chemical Communications, vol.51, issue.49, pp.10002-10005, 2015.

D. Zhu, L. Zhang, W. Ma, S. Lu, and X. Xing, Detection of microRNA in clinical tumor samples by isothermal enzyme-free amplification and label-free graphene oxide-based SYBR Green I fluorescence platform, Biosensors and Bioelectronics, vol.65, pp.152-158, 2015.

F. Zhuang, R. T. Fuchs, and G. B. Robb, Small RNA Expression Profiling by High-Throughput Sequencing: Implications of Enzymatic Manipulation, Journal of Nucleic Acids, vol.2012, pp.1-15, 2012.

J. Zhuang, W. Lai, G. Chen, and D. Tang, A rolling circle amplification-based DNA machine for miRNA screening coupling catalytic hairpin assembly with DNAzyme formation, Chemical Communications, vol.50, issue.22, p.2935, 2014.

G. Gines, R. Menezes, W. Xiao, Y. Rondelez, and V. Taly, Emerging isothermal amplification technologies for microRNA biosensing: Applications to liquid biopsies, Molecular Aspects of Medicine, vol.72, p.100832, 2020.
URL : https://hal.archives-ouvertes.fr/inserm-02992632