M. Garcia, S. L. Mulvagh, C. N. Bairey-merz, J. E. Buring, and J. E. Manson, Cardiovascular Disease in Women, Circulation Research, vol.118, issue.8, pp.1273-1293, 2016.

M. C. Honigberg, S. M. Zekavat, K. Aragam, P. Finneran, D. Klarin et al., Association of Premature Natural and Surgical Menopause With Incident Cardiovascular Disease, JAMA, vol.322, issue.24, p.2411, 2019.

T. Kim and R. Vemuganti, Effect of Sex and Age Interactions on Functional Outcome after Stroke, CNS Neuroscience & Therapeutics, vol.21, issue.4, pp.327-336, 2014.

A. P. Arnold, L. A. Cassis, M. Eghbali, K. Reue, and K. Sandberg, Sex Hormones and Sex Chromosomes Cause Sex Differences in the Development of Cardiovascular Diseases, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.37, issue.5, pp.746-756, 2017.

C. Tannenbaum, R. P. Ellis, F. Eyssel, J. Zou, and L. Schiebinger, Sex and gender analysis improves science and engineering, Nature, vol.575, issue.7781, pp.137-146, 2019.

J. A. Clayton and F. S. Collins, Policy: NIH to balance sex in cell and animal studies, Nature, vol.509, issue.7500, pp.282-283, 2014.

D. E. Handy, R. Castro, and J. Loscalzo, Epigenetic Modifications, Circulation, vol.123, issue.19, pp.2145-2156, 2011.

E. L. Robinson, C. P. Gomes, I. Poto?njak, J. Hellemans, F. Betsou et al., A Year in the Life of the EU-CardioRNA COST Action: CA17129 Catalysing Transcriptomics Research in Cardiovascular Disease, Non-Coding RNA, vol.6, issue.2, p.17, 2020.

E. A. Khramtsova, L. K. Davis, and B. E. Stranger, Author Correction: The role of sex in the genomics of human complex traits, Nature Reviews Genetics, vol.20, issue.8, pp.494-494, 2019.

, Articles Accessed in June 2005, Obstetrics & Gynecology, vol.106, issue.3, p.443, 2005.

, Issue Information, Molecular Ecology, vol.29, issue.21, pp.4890-4911, 2020.

E. Orlowska-baranowska, J. Gora, R. Baranowski, P. Stoklosa, L. Gadomska-vel-betka et al., Association of the Common Genetic Polymorphisms and Haplotypes of the Chymase Gene with Left Ventricular Mass in Male Patients with Symptomatic Aortic Stenosis, PLoS ONE, vol.9, issue.5, p.e96306, 2014.

H. Urata, A. Kinoshita, K. S. Misono, F. M. Bumpus, and A. Husain, Identification of a highly specific chymase as the major angiotensin II-forming enzyme in the human heart, J. Biol. Chem, vol.265, pp.22348-22357, 1990.

M. Dobaczewski, W. Chen, and N. G. Frangogiannis, Transforming growth factor (TGF)-? signaling in cardiac remodeling, Journal of Molecular and Cellular Cardiology, vol.51, issue.4, pp.600-606, 2011.

J. F. Reckelhoff, Gender differences in hypertension, Current Opinion in Nephrology and Hypertension, vol.27, issue.3, pp.176-181, 2018.

M. H. Davidson, K. C. Maki, S. K. Karp, and K. A. Ingram, Management of Hypercholesterolaemia in Postmenopausal Women, Drugs & Aging, vol.19, issue.3, pp.169-178, 2002.

D. L. Ely and M. E. Turner, Hypertension in the spontaneously hypertensive rat is linked to the Y chromosome., Hypertension, vol.16, issue.3, pp.277-281, 1990.

D. Ely, M. Turner, and A. Milsted, Review of the Y chromosome and hypertension, Brazilian Journal of Medical and Biological Research, vol.33, issue.6, pp.679-691, 2000.

F. J. Charchar, L. D. Bloomer, T. A. Barnes, M. J. Cowley, C. P. Nelson et al., Inheritance of coronary artery disease in men: an analysis of the role of the Y chromosome, The Lancet, vol.379, issue.9819, pp.915-922, 2012.

J. Suto and K. Satou, Effect of the Y chromosome on plasma high-density lipoprotein-cholesterol levels in Y-chromosome-consomic mouse strains, BMC Research Notes, vol.7, issue.1, p.393, 2014.

J. C. Link, X. Chen, C. Prien, M. S. Borja, B. Hammerson et al., Increased High-Density Lipoprotein Cholesterol Levels in Mice With XX Versus XY Sex Chromosomes, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.35, issue.8, pp.1778-1786, 2015.

P. Severino, A. D?amato, L. Netti, M. Pucci, M. V. Mariani et al., Susceptibility to ischaemic heart disease: Focusing on genetic variants for ATP-sensitive potassium channel beyond traditional risk factors, European Journal of Preventive Cardiology, p.204748732092678, 2020.

P. Severino, A. D?amato, M. Pucci, F. Infusino, L. I. Birtolo et al., Ischemic Heart Disease and Heart Failure: Role of Coronary Ion Channels, International Journal of Molecular Sciences, vol.21, issue.9, p.3167, 2020.

G. Stone, A. Choi, O. Meritxell, J. Gorham, M. Heydarpour et al., Sex differences in gene expression in response to ischemia in the human left ventricular myocardium, Human Molecular Genetics, vol.28, issue.10, pp.1682-1693, 2019.

V. Regitz-zagrosek, E. Lehmkuhl, H. B. Lehmkuhl, and R. Hetzer, Gender aspects in heart failure, Pathophysiology and medical therapy. Arch. Mal. Coeur Vaiss, vol.97, pp.899-908, 2004.

B. Heidecker, M. M. Kittleson, E. K. Kasper, I. S. Wittstein, H. C. Champion et al., Transcriptomic Analysis Identifies the Effect of Beta-Blocking Agents on a Molecular Pathway of Contraction in the Heart and Predicts Response to Therapy, JACC: Basic to Translational Science, vol.1, issue.3, pp.107-121, 2016.

E. J. Benjamin, P. Muntner, A. Alonso, M. S. Bittencourt, C. W. Callaway et al., Heart Disease and Stroke Statistics?2019 Update: A Report From the American Heart Association, Circulation, vol.139, issue.10, pp.56-528, 2019.

K. A. Burns and K. S. Korach, Estrogen receptors and human disease: an update, Archives of Toxicology, vol.86, issue.10, pp.1491-1504, 2012.

M. E. Mendelsohn, Y. Yamamoto, M. P. Brady, Z. P. Lu, P. J. Maziasz et al., Molecular and Cellular Basis of Cardiovascular Gender Differences, Science, vol.308, issue.5728, pp.1583-1587, 2005.

P. Vrta?nik, B. Ostanek, S. Mencej-bedra?, and J. Marc, The many faces of estrogen signaling, Biochemia Medica, vol.24, issue.3, pp.329-342, 2014.

T. S. Mikkola, P. Tuomikoski, H. Lyytinen, P. Korhonen, F. Hoti et al., Estradiol-based postmenopausal hormone therapy and risk of cardiovascular and all-cause mortality, Menopause, vol.22, issue.9, pp.976-983, 2015.

, Issue Information, Molecular Ecology, vol.29, issue.21, pp.4890-4912, 2020.

J. E. Rossouw, R. L. Prentice, J. E. Manson, L. Wu, D. Barad et al., Postmenopausal Hormone Therapy and Risk of Cardiovascular Disease by Age and Years Since Menopause, JAMA, vol.297, issue.13, pp.1465-1477, 2007.

R. A. Lobo, Surgical menopause and cardiovascular risks, Menopause, vol.14, issue.Suppl. 1, pp.562-566, 2007.

S. Novella, A. P. Dantas, G. Segarra, P. Medina, and C. Hermenegildo, Vascular Aging in Women: is Estrogen the Fountain of Youth?, Frontiers in Physiology, vol.3, p.165, 2012.

T. B. Clarkson, G. C. Meléndez, and S. E. Appt, Timing hypothesis for postmenopausal hormone therapy, Menopause: The Journal of The North American Menopause Society, vol.20, issue.3, pp.342-353, 2013.

M. Azodi, R. Kamps, S. Heymans, and E. L. Robinson, The Missing ?lnc? between Genetics and Cardiac Disease, Non-Coding RNA, vol.6, issue.1, p.3, 2020.

A. Bird, DNA methylation patterns and epigenetic memory, Genes & Development, vol.16, issue.1, pp.6-21, 2002.

D. Jjingo, A. B. Conley, S. V. Yi, V. V. Lunyak, and I. K. Jordan, On the presence and role of human gene-body DNA methylation, Oncotarget, vol.3, issue.4, pp.462-474, 2012.

J. Haas, K. S. Frese, Y. J. Park, A. Keller, B. Vogel et al., Alterations in cardiac DNA methylation in human dilated cardiomyopathy, EMBO Molecular Medicine, vol.5, issue.3, pp.413-429, 2013.

M. Movassagh, M. Choy, M. Goddard, M. R. Bennett, T. A. Down et al., Differential DNA Methylation Correlates with Differential Expression of Angiogenic Factors in Human Heart Failure, PLoS ONE, vol.5, issue.1, p.e8564, 2010.

A. Vujic, E. L. Robinson, M. Ito, S. Haider, M. Ackers-johnson et al., Experimental heart failure modelled by the cardiomyocyte-specific loss of an epigenome modifier, DNMT3B, Journal of Molecular and Cellular Cardiology, vol.82, pp.174-183, 2015.

T. G. Nührenberg, N. Hammann, T. Schnick, S. Preißl, A. Witten et al., Cardiac Myocyte De Novo DNA Methyltransferases 3a/3b Are Dispensable for Cardiac Function and Remodeling after Chronic Pressure Overload in Mice, PLOS ONE, vol.10, issue.6, p.e0131019, 2015.

X. Xu, X. Tan, B. Tampe, G. Nyamsuren, X. Liu et al., Epigenetic balance of aberrant Rasal1 promoter methylation and hydroxymethylation regulates cardiac fibrosis, Cardiovascular Research, vol.105, issue.3, pp.279-291, 2015.

C. M. Greco, P. Kunderfranco, M. Rubino, V. Larcher, P. Carullo et al., DNA hydroxymethylation controls cardiomyocyte gene expression in development and hypertrophy, Nature Communications, vol.7, issue.1, 2016.

L. A. El-khattabi, S. Backer, A. Pinard, M. Dieudonné, V. Tsatsaris et al., A genome-wide search for new imprinted genes in the human placenta identifies DSCAM as the first imprinted gene on chromosome 21, Eur. J. Hum. Genet, vol.27, pp.49-60, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02619386

A. P. Wolffe, Transcriptional control: Imprinting insulation, Current Biology, vol.10, issue.12, pp.R463-R465, 2000.

V. White, A. Jawerbaum, M. B. Mazzucco, M. Gauster, G. Desoye et al., IGF2 stimulates fetal growth in a sex- and organ-dependent manner, Pediatric Research, vol.83, issue.1, pp.183-189, 2017.

S. Horvath, DNA methylation age of human tissues and cell types, Genome Biology, vol.14, issue.10, p.R115, 2013.

D. Jiang, D. Zheng, L. Wang, Y. Huang, H. Liu et al., Elevated PLA2G7 Gene Promoter Methylation as a Gender-Specific Marker of Aging Increases the Risk of Coronary Heart Disease in Females, PLoS ONE, vol.8, issue.3, p.e59752, 2013.

T. Guo, L. Huang, K. Liu, L. Ke, Z. Luo et al., PTX3 PROMOTER METHYLATION AND ITS RELATIONSHIP WITH PTX3 PLASMA LEVELS IN MODULATING ACUTE CORONARY SYNDROME RISK, The Gerontologist, vol.55, issue.Suppl_2, pp.407-407, 2015.

H. L. Cash, S. T. Mcgarvey, E. A. Houseman, C. J. Marsit, N. L. Hawley et al., Cardiovascular disease risk factors and DNA methylation at theLINE-1repeat region in peripheral blood from Samoan Islanders, Epigenetics, vol.6, issue.10, pp.1257-1264, 2011.

A. Barski, S. Cuddapah, K. Cui, T. Roh, D. E. Schones et al., High-Resolution Profiling of Histone Methylations in the Human Genome, Cell, vol.129, issue.4, pp.823-837, 2007.

B. Guillemette, P. Drogaris, H. S. Lin, H. Armstrong, K. Hiragami-hamada et al., H3 Lysine 4 Is Acetylated at Active Gene Promoters and Is Regulated by H3 Lysine 4 Methylation, PLoS Genetics, vol.7, issue.3, p.e1001354, 2011.

, Issue Information, Molecular Ecology, vol.29, issue.21, pp.4890-4913, 2020.

J. Backs, K. Song, S. Bezprozvannaya, S. Chang, and E. N. Olson, CaM kinase II selectively signals to histone deacetylase 4 during cardiomyocyte hypertrophy, Journal of Clinical Investigation, vol.116, issue.7, pp.1853-1864, 2006.

C. L. Zhang, T. A. Mckinsey, S. Chang, C. L. Antos, J. A. Hill et al., Class II Histone Deacetylases Act as Signal-Responsive Repressors of Cardiac Hypertrophy, Cell, vol.110, issue.4, pp.479-488, 2002.

C. L. Antos, T. A. Mckinsey, M. Dreitz, L. M. Hollingsworth, C. Zhang et al., Dose-dependent Blockade to Cardiomyocyte Hypertrophy by Histone Deacetylase Inhibitors, Journal of Biological Chemistry, vol.278, issue.31, pp.28930-28937, 2003.

Z. H. Jebessa, K. D. Shanmukha, M. Dewenter, L. H. Lehmann, C. Xu et al., The lipid-droplet-associated protein ABHD5 protects the heart through proteolysis of HDAC4, Nature Metabolism, vol.1, issue.11, pp.1157-1167, 2019.

H. Qian, Y. Chen, Z. Nian, L. Su, H. Yu et al., HDAC6-mediated acetylation of lipid droplet?binding protein CIDEC regulates fat-induced lipid storage, Journal of Clinical Investigation, vol.127, issue.4, pp.1353-1369, 2017.

B. Thienpont, J. M. Aronsen, E. L. Robinson, H. Okkenhaug, E. Loche et al., The H3K9 dimethyltransferases EHMT1/2 protect against pathological cardiac hypertrophy, Journal of Clinical Investigation, vol.127, issue.1, pp.335-348, 2016.

H. Tsai, P. A. Grant, and E. F. Rissman, Sex differences in histone modifications in the neonatal mouse brain, Epigenetics, vol.4, issue.1, pp.47-53, 2009.

A. A. Keiser and M. A. Wood, Examining the contribution of histone modification to sex differences in learning and memory, Learning & Memory, vol.26, issue.9, pp.318-331, 2019.

S. Hussain, F. Tuorto, S. Menon, S. Blanco, C. Cox et al., The Mouse Cytosine-5 RNA Methyltransferase NSun2 Is a Component of the Chromatoid Body and Required for Testis Differentiation, Molecular and Cellular Biology, vol.33, issue.8, pp.1561-1570, 2013.

S. Zhong, H. Li, Z. Bodi, J. Button, L. Vespa et al., MTA Is an Arabidopsis Messenger RNA Adenosine Methylase and Interacts with a Homolog of a Sex-Specific Splicing Factor, The Plant Cell, vol.20, issue.5, pp.1278-1288, 2008.

E. Shvetsova, A. Sofronova, R. Monajemi, K. Gagalova, H. H. Draisma et al., Skewed X-inactivation is common in the general female population, European Journal of Human Genetics, vol.27, issue.3, pp.455-465, 2018.

A. Sofronova, R. Monajemi, K. Gagalova, H. Draisma, S. J. White et al., Skewed X-inactivation is common in the general female population, Eur. J. Hum. Genet, vol.27, pp.455-465, 2018.

J. Wang, C. M. Syrett, M. C. Kramer, A. Basu, M. L. Atchison et al., Unusual maintenance of X chromosome inactivation predisposes female lymphocytes for increased expression from the inactive X, Proceedings of the National Academy of Sciences, vol.113, issue.14, pp.E2029-E2038, 2016.

R. R. Voskuhl, Sex differences in autoimmune diseases, Biology of Sex Differences, vol.2, issue.1, p.1, 2011.

P. Yi, Z. Wang, Q. Feng, G. D. Pintilie, C. E. Foulds et al., Structure of a Biologically Active Estrogen Receptor-Coactivator Complex on DNA, Molecular Cell, vol.57, issue.6, pp.1047-1058, 2015.

J. Direnzo, Y. Shang, M. Phelan, S. Sif, M. Myers et al., BRG-1 Is Recruited to Estrogen-Responsive Promoters and Cooperates with Factors Involved in Histone Acetylation, Molecular and Cellular Biology, vol.20, issue.20, pp.7541-7549, 2000.

B. Stamova, Y. Tian, G. Jickling, C. Bushnell, X. Zhan et al., The X-Chromosome Has a Different Pattern of Gene Expression in Women Compared With Men With Ischemic Stroke, Stroke, vol.43, issue.2, pp.326-334, 2012.

S. Sharma and M. Eghbali, Influence of sex differences on microRNA gene regulation in disease, Biology of Sex Differences, vol.5, issue.1, p.3, 2014.

P. J. Volders, K. Verheggen, G. Menschaert, K. Vandepoele, L. Martens et al., An update on LNCipedia: a database for annotated human lncRNA sequences, Nucleic Acids Research, vol.43, issue.8, pp.4363-4364, 2015.

A. L. Beale, P. Meyer, T. H. Marwick, C. S. Lam, and D. M. Kaye, Sex Differences in Cardiovascular Pathophysiology, Circulation, vol.138, issue.2, pp.198-205, 2018.

E. Eisenberg, K. E. Di-palo, and I. L. Piña, Sex differences in heart failure, Clinical Cardiology, vol.41, issue.2, pp.211-216, 2018.

A. Aimo, G. Vergaro, A. Barison, S. Maffei, C. Borrelli et al., Sex-related differences in chronic heart failure, International Journal of Cardiology, vol.255, pp.145-151, 2018.

, Issue Information, Molecular Ecology, vol.29, issue.21, pp.4890-4914, 2020.

S. Hermans-beijnsberger, M. Van-bilsen, and B. Schroen, Long non-coding RNAs in the failing heart and vasculature, Non-coding RNA Research, vol.3, issue.3, pp.118-130, 2018.

C. P. Gomes, B. Schroen, G. M. Kuster, E. L. Robinson, K. Ford et al., Regulatory RNAs in Heart Failure, Circulation, vol.141, issue.4, pp.313-328, 2020.

F. D. Ramirez, P. Motazedian, R. G. Jung, P. Di-santo, Z. Macdonald et al., Sex Bias Is Increasingly Prevalent in Preclinical Cardiovascular Research: Implications for Translational Medicine and Health Equity for Women, Circulation, vol.135, issue.6, pp.625-626, 2017.

R. J. Hartman, S. E. Huisman, and H. M. Den-ruijter, Sex differences in cardiovascular epigenetics?a systematic review, Biology of Sex Differences, vol.9, issue.1, 2018.

P. Han, W. Li, J. Yang, C. Shang, C. Lin et al., Epigenetic response to environmental stress: Assembly of BRG1?G9a/GLP?DNMT3 repressive chromatin complex on Myh6 promoter in pathologically stressed hearts, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1863, issue.7, pp.1772-1781, 2016.

K. N. Harikrishnan, J. Okabe, P. Mathiyalagan, A. W. Khan, S. A. Jadaan et al., Sex-Based Mhrt Methylation Chromatinizes MeCP2 in the Heart, vol.17, pp.288-301, 2019.

W. J. Teeuw, M. L. Laine, S. Bizzarro, and B. G. Loos, A Lead ANRIL Polymorphism Is Associated with Elevated CRP Levels in Periodontitis: A Pilot Case-Control Study, PLOS ONE, vol.10, issue.9, p.e0137335, 2015.

M. Vausort, A. Salgado-somoza, L. Zhang, P. Leszek, M. Scholz et al., Myocardial Infarction-Associated Circular RNA Predicting Left Ventricular Dysfunction, Journal of the American College of Cardiology, vol.68, issue.11, pp.1247-1248, 2016.

K. Higashimoto, H. Soejima, T. Saito, K. Okumura, and T. Mukai, Imprinting disruption of the <i>CDKN1C</i>/<i>KCNQ1OT1</i> domain: the molecular mechanisms causing Beckwith-Wiedemann syndrome and cancer, Cytogenetic and Genome Research, vol.113, issue.1-4, pp.306-312, 2006.

E. Coto, D. Calvo, J. R. Reguero, C. Morís, J. M. Rubín et al., Differential methylation of lncRNA KCNQ1OT1 promoter polymorphism was associated with symptomatic cardiac long QT, Epigenomics, vol.9, issue.8, pp.1049-1057, 2017.

T. Lalem, L. Zhang, M. Scholz, R. Burkhardt, V. Saccheti et al., Cyclin dependent kinase inhibitor 1 C is a female-specific marker of left ventricular function after acute myocardial infarction, International Journal of Cardiology, vol.274, pp.319-325, 2019.

J. T. Lee and M. S. Bartolomei, X-Inactivation, Imprinting, and Long Noncoding RNAs in Health and Disease, Cell, vol.152, issue.6, pp.1308-1323, 2013.

C. J. Brown, A. Ballabio, J. L. Rupert, R. G. Lafreniere, M. Grompe et al., A gene from the region of the human X inactivation centre is expressed exclusively from the inactive X chromosome, Nature, vol.349, issue.6304, pp.38-44, 1991.

A. Kozomara, M. Birgaoanu, and S. Griffiths-jones, miRBase: from microRNA sequences to function, Nucleic Acids Research, vol.47, issue.D1, pp.D155-D162, 2018.

Q. Su, X. Lv, Y. Sun, Z. Ye, B. Kong et al., Role of TLR4/MyD88/NF-?B signaling pathway in coronary microembolization-induced myocardial injury prevented and treated with nicorandil, Biomedicine & Pharmacotherapy, vol.106, pp.776-784, 2018.

S. Yan, P. Wang, J. Wang, J. Yang, H. Lu et al., Long Non-coding RNA HIX003209 Promotes Inflammation by Sponging miR-6089 via TLR4/NF-?B Signaling Pathway in Rheumatoid Arthritis, Frontiers in Immunology, vol.10, 2019.

R. Song, S. Ro, J. D. Michaels, C. Park, J. R. Mccarrey et al., Many X-linked microRNAs escape meiotic sex chromosome inactivation, Nature Genetics, vol.41, issue.4, pp.488-493, 2009.

L. Carrel and H. F. Willard, X-inactivation profile reveals extensive variability in X-linked gene expression in females, Nature, vol.434, issue.7031, pp.400-404, 2005.

T. Lalem and Y. Devaux, Circulating microRNAs to predict heart failure after acute myocardial infarction in women, Clinical Biochemistry, vol.70, pp.1-7, 2019.

B. W. Florijn, R. Bijkerk, E. P. Van-der-veer, and A. J. Van-zonneveld, Gender and cardiovascular disease: are sex-biased microRNA networks a driving force behind heart failure with preserved ejection fraction in women?, Cardiovascular Research, vol.114, issue.2, pp.210-225, 2017.

, Issue Information, Molecular Ecology, vol.29, issue.21, pp.4890-4915, 2020.

Y. Wang, P. Tsai, Y. Liao, N. Y. Hsu, and S. H. Juo, Circulating microRNAs have a sex-specific association with metabolic syndrome, Journal of Biomedical Science, vol.20, issue.1, p.72, 2013.

H. Lu, R. J. Buchan, and S. A. Cook, MicroRNA-223 regulates Glut4 expression and cardiomyocyte glucose metabolism, Cardiovascular Research, vol.86, issue.3, pp.410-420, 2010.

R. Hinkel, D. Penzkofer, S. Zühlke, A. Fischer, W. Husada et al., Inhibition of MicroRNA-92a Protects Against Ischemia/Reperfusion Injury in a Large-Animal Model, Circulation, vol.128, issue.10, pp.1066-1075, 2013.

A. Bonauer, G. Carmona, M. Iwasaki, M. C. Mione, M. Koyanagi et al., MicroRNA-92a Controls Angiogenesis and Functional Recovery of Ischemic Tissues in Mice, Science, vol.324, issue.5935, pp.1710-1713, 2009.

R. Verjans, T. Peters, F. J. Beaumont, R. Van-leeuwen, T. Van-herwaarden et al., MicroRNA-221/222 Family Counteracts Myocardial Fibrosis in Pressure Overload?Induced Heart Failure, Hypertension, vol.71, issue.2, pp.280-288, 2018.

E. W. Howard and X. Yang, microRNA Regulation in Estrogen Receptor-Positive Breast Cancer and Endocrine Therapy, Biological Procedures Online, vol.20, issue.1, 2018.

P. Volders, J. Anckaert, K. Verheggen, J. Nuytens, L. Martens et al., LNCipedia 5: towards a reference set of human long non-coding RNAs, Nucleic Acids Research, vol.47, issue.D1, pp.D135-D139, 2018.

W. Wang, Y. Wang, Y. Hu, Q. Lin, R. Chen et al., HDncRNA: a comprehensive database of non-coding RNAs associated with heart diseases, Database, vol.2018, 2018.

A. Selvamani, M. H. Williams, R. C. Miranda, and F. Sohrabji, Circulating miRNA profiles provide a biomarker for severity of stroke outcomes associated with age and sex in a rat model, Clinical Science, vol.127, issue.2, pp.77-89, 2014.

A. Boileau, A. S. Somoza, J. Dankiewicz, P. Stammet, P. Gilje et al., Circulating Levels of miR-574-5p Are Associated with Neurological Outcome after Cardiac Arrest in Women: A Target Temperature Management (TTM) Trial Substudy, Disease Markers, vol.2019, pp.1-10, 2019.

M. Tsuji, T. Kawasaki, T. Matsuda, T. Arai, S. Gojo et al., Sexual dimorphisms of mRNA and miRNA in human/murine heart disease, PLOS ONE, vol.12, issue.7, p.e0177988, 2017.

E. A. Dudink, B. W. Florijn, B. Weijs, J. M. Duijs, J. G. Luermans et al., Vascular Calcification and not Arrhythmia in Idiopathic Atrial Fibrillation Associates with Sex Differences in Diabetic Microvascular Injury miRNA Profiles, MicroRNA, vol.8, issue.2, pp.127-134, 2019.

M. Vausort, D. R. Wagner, and Y. Devaux, Long Noncoding RNAs in Patients With Acute Myocardial Infarction, Circulation Research, vol.115, issue.7, pp.668-677, 2014.

J. B. Becker, A. P. Arnold, K. J. Berkley, J. D. Blaustein, L. A. Eckel et al., Strategies and Methods for Research on Sex Differences in Brain and Behavior, Endocrinology, vol.146, issue.4, pp.1650-1673, 2005.

J. E. Reusch, T. R. Kumar, J. G. Regensteiner, P. S. Zeitler, Z. Arany et al., Identifying the Critical Gaps in Research on Sex Differences in Metabolism Across the Life Span, Endocrinology, vol.159, issue.1, pp.9-19, 2017.

S. K. Lee, Sex as an important biological variable in biomedical research, BMB Reports, vol.51, issue.4, pp.167-173, 2018.

K. E. Taylor, C. Vallejo-giraldo, N. S. Schaible, R. Zakeri, and V. M. Miller, Reporting of sex as a variable in cardiovascular studies using cultured cells, Biology of Sex Differences, vol.2, issue.1, p.11, 2011.

X. Leong, C. Ng, and K. Jaarin, Animal Models in Cardiovascular Research: Hypertension and Atherosclerosis, BioMed Research International, vol.2015, pp.1-11, 2015.

J. B. Becker and G. F. Koob, Sex Differences in Animal Models: Focus on Addiction, Pharmacological Reviews, vol.68, issue.2, pp.242-263, 2016.

P. A. Harvey and L. A. Leinwand, Dietary phytoestrogens present in soy dramatically increase cardiotoxicity in male mice receiving a chemotherapeutic tyrosine kinase inhibitor, Molecular and Cellular Endocrinology, vol.399, pp.330-335, 2015.

S. M. Gordon, H. Li, X. Zhu, A. S. Shah, L. J. Lu et al., A Comparison of the Mouse and Human Lipoproteome: Suitability of the Mouse Model for Studies of Human Lipoproteins, Journal of Proteome Research, vol.14, issue.6, pp.2686-2695, 2015.

, Issue Information, Molecular Ecology, vol.29, issue.21, pp.4890-4916, 2020.

C. L. Blenck, P. A. Harvey, J. F. Reckelhoff, and L. A. Leinwand, The Importance of Biological Sex and Estrogen in Rodent Models of Cardiovascular Health and Disease, Circulation Research, vol.118, issue.8, pp.1294-1312, 2016.

R. Ventura-clapier, E. Dworatzek, U. Seeland, G. Kararigas, J. Arnal et al., Sex in basic research: concepts in the cardiovascular field, Cardiovascular Research, vol.113, issue.7, pp.711-724, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01608731

E. K. Johnson, S. J. Matkovich, and J. M. Nerbonne, Regional Differences in mRNA and lncRNA Expression Profiles in Non-Failing Human Atria and Ventricles, Scientific Reports, vol.8, issue.1, 2018.

C. Cui, W. Yang, J. Shi, Y. Zhou, J. Yang et al., Identification and Analysis of Human Sex-biased MicroRNAs, Genomics, Proteomics & Bioinformatics, vol.16, issue.3, pp.200-211, 2018.

C. L. Trexler, A. T. Odell, M. Y. Jeong, R. D. Dowell, and L. A. Leinwand, Transcriptome and Functional Profile of Cardiac Myocytes Is Influenced by Biological Sex, Circulation: Cardiovascular Genetics, vol.10, issue.5, 2017.

P. Matarrese, P. Tieri, S. Anticoli, B. Ascione, M. Conte et al., Correction: X-chromosome-linked miR548am-5p is a key regulator of sex disparity in the susceptibility to mitochondria-mediated apoptosis, Cell Death & Disease, vol.10, issue.11, pp.1-12, 2019.

E. Dubois-deruy, M. Cuvelliez, J. Fiedler, H. Charrier, P. Mulder et al., MicroRNAs regulating superoxide dismutase 2 are new circulating biomarkers of heart failure, Scientific Reports, vol.7, issue.1, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02267416

Z. Liu, Y. Gou, H. Zhang, H. Zuo, H. Zhang et al., Estradiol improves cardiovascular function through up-regulation of SOD2 on vascular wall, Redox Biology, vol.3, pp.88-99, 2014.

H. Sanchez-ruderisch, A. M. Queirós, D. Fliegner, C. Eschen, G. Kararigas et al., Sex-specific regulation of cardiac microRNAs targeting mitochondrial proteins in pressure overload, Biology of Sex Differences, vol.10, issue.1, pp.1-10, 2019.

C. M. Stary, L. Xu, L. Li, X. Sun, Y. Ouyang et al., Inhibition of miR-181a protects female mice from transient focal cerebral ischemia by targeting astrocyte estrogen receptor-?, Molecular and Cellular Neuroscience, vol.82, pp.118-125, 2017.

C. M. Stary, L. Xu, L. Li, X. Sun, Y. Ouyang et al., Inhibition of miR-181a protects female mice from transient focal cerebral ischemia by targeting astrocyte estrogen receptor-?, Molecular and Cellular Neuroscience, vol.82, pp.118-125, 2017.

J. Hanna, G. S. Hossain, and J. Kocerha, The Potential for microRNA Therapeutics and Clinical Research, Frontiers in Genetics, vol.10, 2019.

V. Vijay, T. Han, C. L. Moland, J. C. Kwekel, J. C. Fuscoe et al., Sexual Dimorphism in the Expression of Mitochondria-Related Genes in Rat Heart at Different Ages, PLOS ONE, vol.10, issue.1, p.e0117047, 2015.

C. V. Demonacos, N. Karayanni, E. Hatzoglou, C. Tsiriyiotis, D. A. Spandidos et al., Mitochondrial genes as sites of primary action of steroid hormones, Steroids, vol.61, issue.4, pp.226-232, 1996.

T. Schwend and J. Å. Gustafsson, False positives in MALDI-TOF detection of ER? in mitochondria, Biochemical and Biophysical Research Communications, vol.343, issue.3, pp.707-711, 2006.

S. Yang, R. Liu, E. J. Perez, Y. Wen, S. M. Stevens et al., Mitochondrial localization of estrogen receptor, Proceedings of the National Academy of Sciences, vol.101, issue.12, pp.4130-4135, 2004.

A. G. Psarra and C. E. Sekeris, Steroid and thyroid hormone receptors in mitochondria, IUBMB Life, vol.60, issue.4, pp.210-223, 2008.

S. Solakidi, A. G. Psarra, S. Nikolaropoulos, and C. E. Sekeris, Estrogen receptors ? and ? (ER? and ER?) and androgen receptor (AR) in human sperm: localization of ER? and AR in mitochondria of the midpiece, Human Reproduction, vol.20, issue.12, pp.3481-3487, 2005.

A. Jusic and Y. Devaux, Mitochondrial noncoding RNA-regulatory network in cardiovascular disease, Basic Research in Cardiology, vol.115, issue.3, 2020.

P. Stammet, E. Goretti, M. Vausort, L. Zhang, D. R. Wagner et al., Circulating microRNAs after cardiac arrest*, Critical Care Medicine, vol.40, issue.12, pp.3209-3214, 2012.

A. Jusic and Y. Devaux, Noncoding RNAs in Hypertension, Hypertension, vol.74, issue.3, pp.477-492, 2019.

. Boileau, . Cardenas, . Courtois, . Zhang, . Rodosthenous et al., MiR-574-5p: A Circulating Marker of Thoracic Aortic Aneurysm, International Journal of Molecular Sciences, vol.20, issue.16, p.3924, 2019.

E. Van-rooij and E. N. Olson, MicroRNA therapeutics for cardiovascular disease: opportunities and obstacles, Nature Reviews Drug Discovery, vol.11, issue.11, pp.860-872, 2012.

, Issue Information, Molecular Ecology, vol.29, issue.21, pp.4890-4917, 2020.

B. C. Bernardo, J. Y. Ooi, A. Matsumoto, Y. K. Tham, S. Singla et al., Sex differences in response to miRNA-34a therapy in mouse models of cardiac disease: identification of sex-, disease- and treatment-regulated miRNAs, The Journal of Physiology, vol.594, issue.20, pp.5959-5974, 2016.

R. D. Patten, Models of gender differences in cardiovascular disease, Drug Discovery Today: Disease Models, vol.4, issue.4, pp.227-232, 2007.

R. Ventura-clapier, M. Moulin, J. Piquereau, C. Lemaire, M. Mericskay et al., Mitochondria: a central target for sex differences in pathologies, Clinical Science, vol.131, issue.9, pp.803-822, 2017.

S. Ounzain, R. Micheletti, T. Beckmann, B. Schroen, M. Alexanian et al., Genome-wide profiling of the cardiac transcriptome after myocardial infarction identifies novel heart-specific long non-coding RNAs, European Heart Journal, vol.36, issue.6, pp.353-368, 2014.

A. P. Arnold and X. Chen, What does the ?four core genotypes? mouse model tell us about sex differences in the brain and other tissues?, Frontiers in Neuroendocrinology, vol.30, issue.1, pp.1-9, 2009.

B. Sun, Y. Yin, and J. Xiao, An In Vivo Estrogen Deficiency Mouse Model for Screening Exogenous Estrogen Treatments of Cardiovascular Dysfunction After Menopause, Journal of Visualized Experiments, vol.150, issue.150, 2019.

M. E. Nilsson, L. Vandenput, ?. Tivesten, A. Norlén, M. K. Lagerquist et al., Measurement of a Comprehensive Sex Steroid Profile in Rodent Serum by High-Sensitive Gas Chromatography-Tandem Mass Spectrometry, Endocrinology, vol.156, issue.7, pp.2492-2502, 2015.

S. V. Koebele and H. A. Bimonte-nelson, Modeling menopause: The utility of rodents in translational behavioral endocrinology research, Maturitas, vol.87, pp.5-17, 2016.

V. R. Souza, E. R. Mendes, M. Casaro, A. T. Antiorio, F. A. Oliveira et al., Description of Ovariectomy Protocol in Mice, Methods in Molecular Biology, pp.303-309, 2018.

S. Novella, A. P. Dantas, G. Segarra, L. Novensà, C. Bueno et al., Gathering of aging and estrogen withdrawal in vascular dysfunction of senescent accelerated mice, Experimental Gerontology, vol.45, issue.11, pp.868-874, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00631687

N. Yousefzadeh, K. Kashfi, S. Jeddi, and A. Ghasemi, Ovariectomized rat model of osteoporosis: A practical guide, EXCLI J, vol.19, pp.89-107, 2020.

X. Vidal-gómez, S. Novella, I. Pérez-monzó, M. Garabito, A. P. Dantas et al., Decreased bioavailability of nitric oxide in aorta from ovariectomized senescent mice. Role of cyclooxygenase, Experimental Gerontology, vol.76, pp.1-8, 2016.

M. Jänne, H. K. Deol, S. G. Power, S. Yee, and G. L. Hammond, Human Sex Hormone-Binding Globulin Gene Expression in Transgenic Mice, Molecular Endocrinology, vol.12, issue.1, pp.123-136, 1998.

K. M. Mcnamara, D. T. Harwood, U. Simanainen, K. A. Walters, M. Jimenez et al., Measurement of sex steroids in murine blood and reproductive tissues by liquid chromatography?tandem mass spectrometry, The Journal of Steroid Biochemistry and Molecular Biology, vol.121, issue.3-5, pp.611-618, 2010.

J. F. Nelson, L. S. Felicio, P. K. Randall, C. Sims, and C. E. Finch, A Longitudinal Study of Estrous Cyclicity in Aging C57BL/6J Mice: I. Cycle Frequency, Length and Vaginal Cytology1, Biology of Reproduction, vol.27, issue.2, pp.327-339, 1982.

M. K. Mohamed and A. A. Abdel-rahman, Effect of long-term ovariectomy and estrogen replacement on the expression of estrogen receptor gene in female rats, European Journal of Endocrinology, vol.142, pp.307-314, 2000.

L. P. Mayer, C. A. Dyer, R. L. Eastgard, P. B. Hoyer, and C. L. Banka, Atherosclerotic Lesion Development in a Novel Ovary-Intact Mouse Model of Perimenopause, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.25, issue.9, pp.1910-1916, 2005.

H. L. Brooks, D. P. Pollow, and P. B. Hoyer, The VCD Mouse Model of Menopause and Perimenopause for the Study of Sex Differences in Cardiovascular Disease and the Metabolic Syndrome, Physiology, vol.31, issue.4, pp.250-257, 2016.

P. Habibi, A. Alihemmati, M. Nasirzadeh, H. Yousefi, M. Habibi et al., Involvement of microRNA-133 and -29 in cardiac disturbances in diabetic ovariectomized rats, Iran J. Basic Med. Sci, vol.19, pp.1177-1185, 2016.

N. Wang, L. Sun, S. Zhang, R. Wei, F. Xie et al., MicroRNA-23a Participates in Estrogen Deficiency Induced Gap Junction Remodeling of Rats by Targeting GJA1, International Journal of Biological Sciences, vol.11, issue.4, pp.390-403, 2015.

, Issue Information, Molecular Ecology, vol.29, issue.21, pp.4890-4918, 2020.

A. S. Wilhelmson, M. Lantero-rodriguez, E. Svedlund-eriksson, I. Johansson, P. Fogelstrand et al., Testosterone Protects Against Atherosclerosis in Male Mice by Targeting Thymic Epithelial Cells?Brief Report, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.38, issue.7, pp.1519-1527, 2018.

S. Movérare-skrtic, K. Venken, N. Andersson, M. K. Lindberg, J. Svensson et al., Dihydrotestosterone Treatment Results in Obesity and Altered Lipid Metabolism in Orchidectomized Mice*, Obesity, vol.14, issue.4, pp.662-672, 2006.

J. Wu, P. W. Hadoke, I. Mair, W. G. Lim, E. Miller et al., Modulation of neointimal lesion formation by endogenous androgens is independent of vascular androgen receptor, Cardiovascular Research, vol.103, issue.2, pp.281-290, 2014.

L. Chodari, H. Dariushnejad, and V. Ghorbanzadeh, Voluntary wheel running and testosterone replacement increases heart angiogenesis through miR-132 in castrated diabetic rats, Physiology International, vol.106, issue.1, pp.48-58, 2019.

M. Markiewicz, S. Znoyko, L. Stawski, A. Ghatnekar, G. Gilkeson et al., A Role for Estrogen Receptor-? and Estrogen Receptor-? in Collagen Biosynthesis in Mouse Skin, Journal of Investigative Dermatology, vol.133, issue.1, pp.120-127, 2013.

. Carreau, . Genissel, . Bilinska, and . Levallet, Sources of oestrogen in the testis and reproductive tract of the male, International Journal of Andrology, vol.22, issue.4, pp.211-223, 1999.

Y. Zhao, C. Deng, W. Lu, J. Xiao, D. Ma et al., let-7 MicroRNAs Induce Tamoxifen Sensitivity by Downregulation of Estrogen Receptor ? Signaling in Breast Cancer, Molecular Medicine, vol.17, issue.11-12, pp.1233-1241, 2011.

Y. Zhao, C. Deng, W. Lu, J. Xiao, D. Ma et al., let-7 MicroRNAs Induce Tamoxifen Sensitivity by Downregulation of Estrogen Receptor ? Signaling in Breast Cancer, Molecular Medicine, vol.17, issue.11-12, pp.1233-1241, 2011.

T. Song, S. Gong, J. Zhou, M. Zhong, and G. Su, microRNA regulation of the expression of the estrogen receptor in endometrial cancer, Mol. Med. Rep, vol.3, pp.387-392, 2010.

S. Devanathan, T. Whitehead, G. G. Schweitzer, N. Fettig, A. Kovacs et al., An Animal Model with a Cardiomyocyte-Specific Deletion of Estrogen Receptor Alpha: Functional, Metabolic, and Differential Network Analysis, PLoS ONE, vol.9, issue.7, p.e101900, 2014.

B. O. Nilsson, E. Ekblad, T. Heine, and J. A. Gustafsson, Increased magnitude of relaxation to oestrogen in aorta from oestrogen receptor beta knock-out mice, Journal of Endocrinology, vol.166, issue.2, pp.R5-R9, 2000.

M. Meyer, E. R. Prossnitz, and M. Barton, GPER/GPR30 and Regulation of Vascular Tone and Blood Pressure, Immunol. Endocr. Metab. Agents Med. Chem, vol.11, pp.255-261, 2011.

A. Billon-galés, A. Krust, C. Fontaine, A. Abot, G. Flouriot et al., Activation function 2 (AF2) of estrogen receptor-? is required for the atheroprotective action of estradiol but not to accelerate endothelial healing, Proceedings of the National Academy of Sciences, vol.108, issue.32, pp.13311-13316, 2011.

M. Adlanmerini, R. Solinhac, A. Abot, A. Fabre, I. Raymond-letron et al., Mutation of the palmitoylation site of estrogen receptor in vivo reveals tissue-specific roles for membrane versus nuclear actions, Proceedings of the National Academy of Sciences, vol.111, issue.2, pp.E283-E290, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-01015486

Y. Itoh, R. Mackie, K. Kampf, S. Domadia, J. D. Brown et al., Four Core Genotypes mouse model: localization of the Sry transgene and bioassay for testicular hormone levels, BMC Research Notes, vol.8, issue.1, p.69, 2015.

B. Manwani, F. Liu, V. Scranton, M. D. Hammond, L. H. Sansing et al., Differential effects of aging and sex on stroke induced inflammation across the lifespan, Experimental Neurology, vol.249, pp.120-131, 2013.

V. H. Huxley, S. S. Kemp, C. Schramm, S. Sieveking, S. Bingaman et al., Sex differences influencing micro- and macrovascular endothelial phenotype in vitro, The Journal of Physiology, vol.596, issue.17, pp.3929-3949, 2018.

K. Shah, C. E. Mccormack, and N. A. Bradbury, Do you know the sex of your cells?, American Journal of Physiology-Cell Physiology, vol.306, issue.1, pp.C3-C18, 2014.

H. R. Dash, N. Rawat, and S. Das, Alternatives to amelogenin markers for sex determination in humans and their forensic relevance, Molecular Biology Reports, vol.47, issue.3, pp.2347-2360, 2020.

A. Settin, E. Elsobky, A. Hammad, and A. Al-erany, Rapid Sex Determination Using PCR Technique Compared to Classic Cytogenetics, Int. J. Heal. Sci, vol.2, pp.49-52, 2008.

F. M. Hassan, H. A. Razik, M. S. Wadie, and D. S. Abdelfattah, XIST and RPS4Y1 long non-coding RNA transcriptome as sex biomarkers in different body fluids, Egyptian Journal of Forensic Sciences, vol.9, issue.1, 2019.

, Mario Botta: architectures 1980-1990, Choice Reviews Online, vol.29, issue.09, p.29-4890-29-4890, 1992.

A. C. Boese, S. C. Kim, K. Yin, J. Lee, and M. H. Hamblin, Sex differences in vascular physiology and pathophysiology: estrogen and androgen signaling in health and disease, American Journal of Physiology-Heart and Circulatory Physiology, vol.313, issue.3, pp.H524-H545, 2017.

M. Marino, P. Galluzzo, and P. Ascenzi, Estrogen Signaling Multiple Pathways to Impact Gene Transcription, Current Genomics, vol.7, issue.8, pp.497-508, 2006.

S. Novella, D. Pérez?cremades, A. Mompeón, and C. Hermenegildo, Mechanisms underlying the influence of oestrogen on cardiovascular physiology in women, The Journal of Physiology, vol.597, issue.19, pp.4873-4886, 2019.

K. H. Kim, B. D. Young, and J. R. Bender, Endothelial estrogen receptor isoforms and cardiovascular disease, Molecular and Cellular Endocrinology, vol.389, issue.1-2, pp.65-70, 2014.

R. A. Davey and M. Grossmann, Androgen Receptor Structure, Function and Biology: From Bench to Bedside, Clin. Biochem. Rev, vol.37, pp.3-15, 2016.

A. J. Begam, J. Selvaraj, and M. Nanjan, Estrogen receptor agonists/antagonists in breast cancer therapy: A critical review, vol.71, pp.257-274, 2017.

J. A. Arnott, S. Martinkovich, S. L. Planey, and D. Shah, Selective estrogen receptor modulators: tissue specificity and clinical utility, Clinical Interventions in Aging, vol.9, p.1437, 2014.

L. Hooper, P. A. Kroon, E. B. Rimm, J. S. Cohn, I. Harvey et al., Flavonoids, flavonoid-rich foods, and cardiovascular risk: a meta-analysis of randomized controlled trials, The American Journal of Clinical Nutrition, vol.88, issue.1, pp.38-50, 2008.

J. Arnal, F. Lenfant, R. Metivier, G. Flouriot, D. Henrion et al., Membrane and Nuclear Estrogen Receptor Alpha Actions: From Tissue Specificity to Medical Implications, Physiological Reviews, vol.97, issue.3, pp.1045-1087, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01533249

M. M. Miller, P. D. Mcmullen, M. E. Andersen, and R. A. Clewell, Multiple receptors shape the estrogen response pathway and are critical considerations for the future of in vitro-based risk assessment efforts, Critical Reviews in Toxicology, vol.47, issue.7, pp.570-586, 2017.

K. So?tysik and P. Czekaj, ER?36 ? Another piece of the estrogen puzzle, European Journal of Cell Biology, vol.94, issue.12, pp.611-625, 2015.

P. E. Stevis, D. C. Deecher, L. Suhadolnik, L. M. Mallis, and D. E. Frail, Differential Effects of Estradiol and Estradiol-BSA Conjugates, Endocrinology, vol.140, issue.11, pp.5455-5458, 1999.

W. R. Harrington, S. H. Kim, C. C. Funk, Z. Madak-erdogan, R. Schiff et al., Estrogen Dendrimer Conjugates that Preferentially Activate Extranuclear, Nongenomic Versus Genomic Pathways of Estrogen Action, Molecular Endocrinology, vol.20, issue.3, pp.491-502, 2006.

K. L. Chambliss, Q. Wu, S. Oltmann, E. S. Konaniah, M. Umetani et al., Non-nuclear estrogen receptor ? signaling promotes cardiovascular protection but not uterine or breast cancer growth in mice, Journal of Clinical Investigation, vol.120, issue.7, pp.2319-2330, 2010.

Z. Madak-erdogan, S. H. Kim, P. Gong, Y. C. Zhao, H. Zhang et al., Design of pathway preferential estrogens that provide beneficial metabolic and vascular effects without stimulating reproductive tissues, Science Signaling, vol.9, issue.429, pp.ra53-ra53, 2016.

M. J. Sikora, M. D. Johnson, A. V. Lee, and S. Oesterreich, Endocrine Response Phenotypes Are Altered by Charcoal-Stripped Serum Variability, Endocrinology, vol.157, issue.10, pp.3760-3766, 2016.

W. V. Welshons, L. H. Grady, K. S. Engler, and B. M. Judy, Control of proliferation of MCF-7 breast cancer cells in a commercial preparation of charcoal-stripped adult bovine serum, Breast Cancer Research and Treatment, vol.23, issue.1-2, pp.97-104, 1992.

W. V. Welshons, M. F. Wolf, C. S. Murphy, and V. C. Jordan, Estrogenic activity of phenol red, Molecular and Cellular Endocrinology, vol.57, issue.3, pp.169-178, 1988.

Y. Berthois, J. A. Katzenellenbogen, and B. S. Katzenellenbogen, Phenol red in tissue culture media is a weak estrogen: implications concerning the study of estrogen-responsive cells in culture., Proceedings of the National Academy of Sciences, vol.83, issue.8, pp.2496-2500, 1986.

, Figure 2?figure supplement 1. Representative images used in the experiment, sampled from http://commons.wikimedia.org/wiki/Main_Page under the Creative Commons Attribution 4.0 International Public License https://creativecommons.org/licenses/by/4.0/., © 2020 by the authors. Licensee MDPI