E. J. Benjamin, M. J. Blaha, S. E. Chiuve, M. Cushman, S. R. Das et al., Heart Disease and Stroke Statistics?2017 Update: A Report From the American Heart Association, Circulation, vol.135, issue.10, pp.146-603, 2017.

M. Al-hariri, K. Zibara, W. Farhat, Y. Hashem, N. Soudani et al., Cigarette Smoking-Induced Cardiac Hypertrophy, Vascular Inflammation and Injury Are Attenuated by Antioxidant Supplementation in an Animal Model, Frontiers in Pharmacology, vol.7, 2016.

S. Dikalov, H. Itani, B. Richmond, L. Arslanbaeva, A. Vergeade et al., Tobacco smoking induces cardiovascular mitochondrial oxidative stress, promotes endothelial dysfunction, and enhances hypertension, American Journal of Physiology-Heart and Circulatory Physiology, vol.316, issue.3, pp.H639-H646, 2019.

S. C. Gupta, D. Hevia, S. Patchva, B. Park, W. Koh et al., Upsides and Downsides of Reactive Oxygen Species for Cancer: The Roles of Reactive Oxygen Species in Tumorigenesis, Prevention, and Therapy, Antioxidants & Redox Signaling, vol.16, issue.11, pp.1295-1322, 2012.

D. B. Zorov, M. Juhaszova, and S. J. Sollott, Mitochondrial Reactive Oxygen Species (ROS) and ROS-Induced ROS Release, Physiological Reviews, vol.94, issue.3, pp.909-950, 2014.

H. Tsutsui, S. Kinugawa, and S. Matsushima, Oxidative stress and heart failure, American Journal of Physiology-Heart and Circulatory Physiology, vol.301, issue.6, pp.H2181-H2190, 2011.

I. Liguori, G. Russo, F. Curcio, G. Bulli, L. Aran et al., Oxidative stress, aging, and diseases, Clinical Interventions in Aging, vol.Volume 13, pp.757-772, 2018.

M. Sharifi-rad, N. V. Anil-kumar, P. Zucca, E. M. Varoni, L. Dini et al., Lifestyle, Oxidative Stress, and Antioxidants: Back and Forth in the Pathophysiology of Chronic Diseases, Frontiers in Physiology, vol.11, 2020.

E. Dubois-deruy, M. Cuvelliez, J. Fiedler, H. Charrier, P. Mulder et al., MicroRNAs regulating superoxide dismutase 2 are new circulating biomarkers of heart failure, Scientific Reports, vol.7, issue.1, pp.1-10, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02267416

M. Strassburger, W. Bloch, S. Sulyok, J. Schüller, A. F. Keist et al., Heterozygous deficiency of manganese superoxide dismutase results in severe lipid peroxidation and spontaneous apoptosis in murine myocardium in vivo, Free Radical Biology and Medicine, vol.38, issue.11, pp.1458-1470, 2005.

X. Li, Y. Lin, S. Wang, S. Zhou, J. Ju et al., Extracellular Superoxide Dismutase Is Associated With Left Ventricular Geometry and Heart Failure in Patients With Cardiovascular Disease, Journal of the American Heart Association, vol.9, issue.15, 2020.

H. S. Tehrani and A. A. Moosavi-movahedi, Catalase and its mysteries, Prog. Biophys. Mol. Biol, vol.140, pp.5-12, 2018.

G. Detienne, W. De-haes, L. Mergan, S. L. Edwards, L. Temmerman et al., Beyond ROS clearance: Peroxiredoxins in stress signaling and aging, Ageing Research Reviews, vol.44, pp.33-48, 2018.

K. Kuzuya, S. Ichihara, Y. Suzuki, C. Inoue, G. Ichihara et al., Proteomics analysis identified peroxiredoxin 2 involved in early-phase left ventricular impairment in hamsters with cardiomyopathy, PLOS ONE, vol.13, issue.2, p.e0192624, 2018.

J. Ibarrola, V. Arrieta, R. Sádaba, E. Martinez-martinez, A. Garcia-peña et al., Galectin-3 down-regulates antioxidant peroxiredoxin-4 in human cardiac fibroblasts: a new pathway to induce cardiac damage, Clinical Science, vol.132, issue.13, pp.1471-1485, 2018.

C. Cieniewski-bernard, P. Mulder, J. Henry, H. Drobecq, E. Dubois et al., Proteomic Analysis of Left Ventricular Remodeling in an Experimental Model of Heart Failure, Journal of Proteome Research, vol.7, issue.11, pp.5004-5016, 2008.

B. Kalyanaraman, Teaching the basics of redox biology to medical and graduate students: Oxidants, antioxidants and disease mechanisms, Redox Biology, vol.1, issue.1, pp.244-257, 2013.

T. J. Park, J. H. Park, G. S. Lee, J. S. Lee, J. H. Shin et al., Quantitative proteomic analyses reveal that GPX4 downregulation during myocardial infarction contributes to ferroptosis in cardiomyocytes, Cell Death & Disease, vol.10, issue.11, 2019.

H. Tsutsui, S. Kinugawa, and S. Matsushima, Mitochondrial oxidative stress and dysfunction in myocardial remodelling, Cardiovascular Research, vol.81, issue.3, pp.449-456, 2008.

M. N. Sack, F. Y. Fyhrquist, O. J. Saijonmaa, V. Fuster, and J. C. Kovacic, Basic Biology of Oxidative Stress and the Cardiovascular System, Journal of the American College of Cardiology, vol.70, issue.2, pp.196-211, 2017.

J. R. Burgoyne, H. Mongue-din, P. Eaton, and A. M. Shah, Redox Signaling in Cardiac Physiology and Pathology, Circulation Research, vol.111, issue.8, pp.1091-1106, 2012.

D. Moris, M. Spartalis, E. Tzatzaki, E. Spartalis, G. S. Karachaliou et al., The role of reactive oxygen species in myocardial redox signaling and regulation, Annals of Translational Medicine, vol.5, issue.16, pp.324-324, 2017.

. Lismont, . Revenco, and . Fransen, Peroxisomal Hydrogen Peroxide Metabolism and Signaling in Health and Disease, International Journal of Molecular Sciences, vol.20, issue.15, p.3673, 2019.

S. Kasai, S. Shimizu, Y. Tatara, J. Mimura, and K. Itoh, Regulation of Nrf2 by Mitochondrial Reactive Oxygen Species in Physiology and Pathology, Biomolecules, vol.10, issue.2, p.320, 2020.

X. Loyer, C. Heymes, and J. L. Samuel, CONSTITUTIVE NITRIC OXIDE SYNTHASES IN THE HEART FROM HYPERTROPHY TO FAILURE, Clinical and Experimental Pharmacology and Physiology, vol.35, issue.4, pp.483-488, 2008.

J. Hammond and J. L. Balligand, Nitric oxide synthase and cyclic GMP signaling in cardiac myocytes: From contractility to remodeling, Journal of Molecular and Cellular Cardiology, vol.52, issue.2, pp.330-340, 2012.

S. Lancel, F. Qin, S. L. Lennon, J. Zhang, X. Tong et al., Short Communication: Oxidative Posttranslational Modifications Mediate Decreased SERCA Activity and Myocyte Dysfunction in G?q-Overexpressing Mice, Circulation Research, vol.107, issue.2, pp.228-232, 2010.

S. F. Steinberg, Oxidative Stress and Sarcomeric Proteins, Circulation Research, vol.112, issue.2, pp.393-405, 2013.

N. Hermida, L. Michel, H. Esfahani, E. Dubois-deruy, J. Hammond et al., Cardiac myocyte ?3-adrenergic receptors prevent myocardial fibrosis by modulating oxidant stress-dependent paracrine signaling, European Heart Journal, vol.39, issue.10, pp.888-898, 2017.

S. Serpillon, B. C. Floyd, R. S. Gupte, S. George, M. Kozicky et al., Superoxide production by NAD(P)H oxidase and mitochondria is increased in genetically obese and hyperglycemic rat heart and aorta before the development of cardiac dysfunction. The role of glucose-6-phosphate dehydrogenase-derived NADPH, American Journal of Physiology-Heart and Circulatory Physiology, vol.297, issue.1, pp.H153-H162, 2009.

E. J. Anderson, A. P. Kypson, E. Rodriguez, C. A. Anderson, E. J. Lehr et al., Substrate-Specific Derangements in Mitochondrial Metabolism and Redox Balance in the Atrium of the Type 2 Diabetic Human Heart, Journal of the American College of Cardiology, vol.54, issue.20, pp.1891-1898, 2009.

A. Fortuno, G. San-jose, M. U. Moreno, O. Beloqui, J. Diez et al., Phagocytic NADPH Oxidase Overactivity Underlies Oxidative Stress in Metabolic Syndrome, Diabetes, vol.55, issue.1, pp.209-215, 2005.

A. L. Sverdlov, A. Elezaby, F. Qin, J. B. Behring, I. Luptak et al., Mitochondrial Reactive Oxygen Species Mediate Cardiac Structural, Functional, and Mitochondrial Consequences of Diet?Induced Metabolic Heart Disease, Journal of the American Heart Association, vol.5, issue.1, 2016.

E. M. Jeong, J. Chung, H. Liu, Y. Go, S. Gladstein et al., Role of Mitochondrial Oxidative Stress in Glucose Tolerance, Insulin Resistance, and Cardiac Diastolic Dysfunction, Journal of the American Heart Association, vol.5, issue.5, 2016.

B. Niemann, Y. Chen, M. Teschner, L. Li, R. E. Silber et al., Obesity Induces Signs of Premature Cardiac Aging in Younger Patients, Journal of the American College of Cardiology, vol.57, issue.5, pp.577-585, 2011.

S. Jiménez-gonzález, G. Marín-royo, R. Jurado-lópez, M. V. Bartolomé, A. Romero-miranda et al., The Crosstalk between Cardiac Lipotoxicity and Mitochondrial Oxidative Stress in the Cardiac Alterations in Diet-Induced Obesity in Rats, Cells, vol.9, issue.2, p.451, 2020.

J. M. Li, N. P. Gall, D. J. Grieve, M. Chen, and A. M. Shah, Activation of NADPH Oxidase During Progression of Cardiac Hypertrophy to Failure, Hypertension, vol.40, issue.4, pp.477-484, 2002.

D. F. Dai, S. C. Johnson, J. J. Villarin, M. T. Chin, M. Nieves-cintrón et al., Mitochondrial Oxidative Stress Mediates Angiotensin II?Induced Cardiac Hypertrophy and G?q Overexpression?Induced Heart Failure, Circulation Research, vol.108, issue.7, pp.837-846, 2011.

D. F. Dai, E. J. Hsieh, Y. Liu, T. Chen, R. P. Beyer et al., Mitochondrial proteome remodelling in pressure overload-induced heart failure: the role of mitochondrial oxidative stress, Cardiovascular Research, vol.93, issue.1, pp.79-88, 2011.

T. Ide, H. Tsutsui, S. Hayashidani, D. Kang, N. Suematsu et al., Mitochondrial DNA Damage and Dysfunction Associated With Oxidative Stress in Failing Hearts After Myocardial Infarction, Circulation Research, vol.88, issue.5, pp.529-535, 2001.

N. Merabet, J. Bellien, E. Glevarec, L. Nicol, D. Lucas et al., Soluble epoxide hydrolase inhibition improves myocardial perfusion and function in experimental heart failure, Journal of Molecular and Cellular Cardiology, vol.52, issue.3, pp.660-666, 2012.

M. Santillo, A. Colantuoni, P. Mondola, B. Guida, and S. Damiano, NOX signaling in molecular cardiovascular mechanisms involved in the blood pressure homeostasis, Frontiers in Physiology, vol.6, 2015.

X. Weng, L. Yu, P. Liang, L. Li, X. Dai et al., A crosstalk between chromatin remodeling and histone H3K4 methyltransferase complexes in endothelial cells regulates angiotensin II-induced cardiac hypertrophy, Journal of Molecular and Cellular Cardiology, vol.82, pp.48-58, 2015.

D. Sorescu, D. Weiss, B. Lasse?gue, R. E. Clempus, K. Szo?cs et al., Superoxide Production and Expression of Nox Family Proteins in Human Atherosclerosis, Circulation, vol.105, issue.12, pp.1429-1435, 2002.

J. R. Erickson, M. Joiner, X. Guan, W. Kutschke, J. Yang et al., A Dynamic Pathway for Calcium-Independent Activation of CaMKII by Methionine Oxidation, Cell, vol.133, issue.3, pp.462-474, 2008.

M. G. Scioli, G. Storti, F. D?amico, R. Rodríguez-guzmán, F. Centofanti et al., Oxidative Stress and New Pathogenetic Mechanisms in Endothelial Dysfunction: Potential Diagnostic Biomarkers and Therapeutic Targets, Journal of Clinical Medicine, vol.9, issue.6, p.1995, 2020.

S. Umar and A. Van-der-laarse, Nitric oxide and nitric oxide synthase isoforms in the normal, hypertrophic, and failing heart, Molecular and Cellular Biochemistry, vol.333, issue.1-2, pp.191-201, 2009.

H. Cai and D. G. Harrison, Endothelial Dysfunction in Cardiovascular Diseases: The Role of Oxidant Stress, Circulation Research, vol.87, issue.10, pp.840-844, 2000.

L. Ma, K. Wang, J. Shang, C. Cao, P. Zhen et al., Anti-Peroxynitrite Treatment Ameliorated Vasorelaxation of Resistance Arteries in Aging Rats: Involvement with NO-sGC-cGKs Pathway, PLoS ONE, vol.9, issue.8, p.e104788, 2014.

H. Mollnau, M. Oelze, M. August, M. Wendt, A. Daiber et al., Mechanisms of Increased Vascular Superoxide Production in an Experimental Model of Idiopathic Dilated Cardiomyopathy, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.25, issue.12, pp.2554-2559, 2005.

F. Scialò, D. J. Fernández-ayala, and A. Sanz, Role of Mitochondrial Reverse Electron Transport in ROS Signaling: Potential Roles in Health and Disease, Frontiers in Physiology, vol.8, p.428, 2017.

J. P. Mazat, A. Devin, and S. Ransac, Modelling mitochondrial ROS production by the respiratory chain, Cellular and Molecular Life Sciences, vol.77, issue.3, pp.455-465, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02402081

J. S. Bhatti, G. K. Bhatti, and P. H. Reddy, Mitochondrial dysfunction and oxidative stress in metabolic disorders ? A step towards mitochondria based therapeutic strategies, Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, vol.1863, issue.5, pp.1066-1077, 2017.

B. Niemann, S. Rohrbach, M. R. Miller, D. E. Newby, V. Fuster et al., Oxidative Stress and Cardiovascular Risk: Obesity, Diabetes, Smoking, and Pollution, Journal of the American College of Cardiology, vol.70, issue.2, pp.230-251, 2017.

H. Bugger and K. Pfeil, Mitochondrial ROS in myocardial ischemia reperfusion and remodeling, Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, vol.1866, issue.7, p.165768, 2020.

A. M. Rababa'h, A. N. Guillory, R. Mustafa, and T. Hijjawi, Oxidative Stress and Cardiac Remodeling: An Updated Edge, Current Cardiology Reviews, vol.14, issue.1, pp.53-59, 2018.

T. Gori and T. Münzel, Oxidative stress and endothelial dysfunction: Therapeutic implications, Annals of Medicine, vol.43, issue.4, pp.259-272, 2011.

J. S. Stamler, J. A. Osborne, O. Jaraki, L. E. Rabbani, M. Mullins et al., Adverse vascular effects of homocysteine are modulated by endothelium-derived relaxing factor and related oxides of nitrogen., Journal of Clinical Investigation, vol.91, issue.1, pp.308-318, 1993.

K. S. Mccully and . Homocystinuria, Homocystinuria, Arteriosclerosis, Methylmalonic Aciduria, and Methyltransferase Deficiency: A Key Case Revisited, Nutrition Reviews, vol.50, issue.1, pp.7-12, 2009.

G. Cianciolo, A. De-pascalis, L. Di-lullo, C. Ronco, C. Zannini et al., Folic Acid and Homocysteine in Chronic Kidney Disease and Cardiovascular Disease Progression: Which Comes First, Cardiorenal Medicine, vol.7, issue.4, pp.255-266, 2017.

E. S. Stroes, E. E. Van-faassen, M. Yo, P. Martasek, P. Boer et al., Folic Acid Reverts Dysfunction of Endothelial Nitric Oxide Synthase, Circulation Research, vol.86, issue.11, pp.1129-1134, 2000.
URL : https://hal.archives-ouvertes.fr/hal-01478414

H. H. Hagar, FOLIC ACID AND VITAMIN B12 SUPPLEMENTATION ATTENUATES ISOPRENALINE-INDUCED MYOCARDIAL INFARCTION IN EXPERIMENTAL HYPERHOMOCYSTEINEMIC RATS, Pharmacological Research, vol.46, issue.3, pp.213-219, 2002.

M. A. Farhangi, G. Nameni, G. Hajiluian, and M. Mesgari-abbasi, Cardiac tissue oxidative stress and inflammation after vitamin D administrations in high fat- diet induced obese rats, BMC Cardiovascular Disorders, vol.17, issue.1, pp.1-7, 2017.

P. Leme-goto, M. Cinato, F. Merachli, B. Vons, T. Jimenez et al., In vitro and in vivo cardioprotective and metabolic efficacy of vitamin E TPGS/Apelin, Journal of Molecular and Cellular Cardiology, vol.138, pp.165-174, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02989450

M. Wallert, M. Ziegler, X. Wang, A. Maluenda, X. Xu et al., ?-Tocopherol preserves cardiac function by reducing oxidative stress and inflammation in ischemia/reperfusion injury, Redox Biology, vol.26, p.101292, 2019.

M. J. Banez, M. I. Geluz, A. Chandra, T. Hamdan, O. S. Biswas et al., A systemic review on the antioxidant and anti-inflammatory effects of resveratrol, curcumin, and dietary nitric oxide supplementation on human cardiovascular health, Nutrition Research, vol.78, pp.11-26, 2020.

A. Agouni, A. H. Lagrue-lak-hal, H. A. Mostefai, A. Tesse, P. Mulder et al., Red Wine Polyphenols Prevent Metabolic and Cardiovascular Alterations Associated with Obesity in Zucker Fatty Rats (Fa/Fa), PLoS ONE, vol.4, issue.5, p.e5557, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00410351

T. Farkhondeh, S. L. Folgado, A. M. Pourbagher-shahri, M. Ashrafizadeh, and S. Samarghandian, The therapeutic effect of resveratrol: Focusing on the Nrf2 signaling pathway, Biomedicine & Pharmacotherapy, vol.127, p.110234, 2020.

G. J. Dyck, P. Raj, S. Zieroth, J. J. Dyck, and J. A. Ezekowitz, The Effects of Resveratrol in Patients with Cardiovascular Disease and Heart Failure: A Narrative Review, International Journal of Molecular Sciences, vol.20, issue.4, p.904, 2019.

J. P. Huang, S. C. Hsu, D. E. Li, K. H. Chen, C. Y. Kuo et al., Resveratrol Mitigates High-Fat Diet?Induced Vascular Dysfunction by Activating the Akt/eNOS/NO and Sirt1/ER Pathway, Journal of Cardiovascular Pharmacology, vol.72, issue.5, pp.231-241, 2018.

A. Y. Chan, V. W. Dolinsky, C. M. Soltys, B. Viollet, S. Baksh et al., Resveratrol Inhibits Cardiac Hypertrophy via AMP-activated Protein Kinase and Akt, Journal of Biological Chemistry, vol.283, issue.35, pp.24194-24201, 2008.

M. M. Sung, S. K. Das, J. Levasseur, N. J. Byrne, D. Fung et al., Resveratrol Treatment of Mice With Pressure-Overload?Induced Heart Failure Improves Diastolic Function and Cardiac Energy Metabolism, Circulation: Heart Failure, vol.8, issue.1, pp.128-137, 2015.

M. Tanno, A. Kuno, T. Yano, T. Miura, S. Hisahara et al., Induction of Manganese Superoxide Dismutase by Nuclear Translocation and Activation of SIRT1 Promotes Cell Survival in Chronic Heart Failure, Journal of Biological Chemistry, vol.285, issue.11, pp.8375-8382, 2010.

H. N. Sabbah, Targeting mitochondrial dysfunction in the treatment of heart failure, Expert Review of Cardiovascular Therapy, vol.14, issue.12, pp.1305-1313, 2016.

T. Senoner and W. Dichtl, Oxidative Stress in Cardiovascular Diseases: Still a Therapeutic Target?, Nutrients, vol.11, issue.9, p.2090, 2019.

A. E. Dikalova, A. T. Bikineyeva, K. Budzyn, R. R. Nazarewicz, L. Mccann et al., Therapeutic Targeting of Mitochondrial Superoxide in Hypertension, Circulation Research, vol.107, issue.1, pp.106-116, 2010.

R. Ni, T. Cao, S. Xiong, J. Ma, G. C. Fan et al., Therapeutic inhibition of mitochondrial reactive oxygen species with mito-TEMPO reduces diabetic cardiomyopathy, Free Radical Biology and Medicine, vol.90, pp.12-23, 2016.

G. F. Kelso, C. M. Porteous, C. V. Coulter, G. Hughes, W. K. Porteous et al., Selective Targeting of a Redox-active Ubiquinone to Mitochondria within Cells, Journal of Biological Chemistry, vol.276, issue.7, pp.4588-4596, 2000.

S. Kim, J. Song, P. Ernst, M. N. Latimer, C. M. Ha et al., MitoQ regulates redox-related noncoding RNAs to preserve mitochondrial network integrity in pressure-overload heart failure, American Journal of Physiology-Heart and Circulatory Physiology, vol.318, issue.3, pp.H682-H695, 2020.

V. A. Rao, S. R. Klein, S. J. Bonar, J. Zielonka, N. Mizuno et al., The Antioxidant Transcription Factor Nrf2 Negatively Regulates Autophagy and Growth Arrest Induced by the Anticancer Redox Agent Mitoquinone, Journal of Biological Chemistry, vol.285, issue.45, pp.34447-34459, 2010.

A. K. Doughan and S. I. Dikalov, Mitochondrial Redox Cycling of Mitoquinone Leads to Superoxide Production and Cellular Apoptosis, Antioxidants & Redox Signaling, vol.9, issue.11, pp.1825-1836, 2007.

K. L. Pokrzywinski, T. G. Biel, D. Kryndushkin, and V. A. Rao, Therapeutic Targeting of the Mitochondria Initiates Excessive Superoxide Production and Mitochondrial Depolarization Causing Decreased mtDNA Integrity, PLOS ONE, vol.11, issue.12, p.e0168283, 2016.

I. M. Lee, N. R. Cook, J. M. Gaziano, D. Gordon, P. M. Ridker et al., Vitamin E in the Primary Prevention of Cardiovascular Disease and Cancer, JAMA, vol.294, issue.1, p.56, 2005.

J. F. Toole, M. R. Malinow, L. E. Chambless, J. D. Spence, L. C. Pettigrew et al., Lowering Homocysteine in Patients With Ischemic Stroke to Prevent Recurrent Stroke, Myocardial Infarction, and Death, JAMA, vol.291, issue.5, p.565, 2004.

E. Lonn, Effects of Long-term Vitamin E Supplementation on Cardiovascular Events and Cancer, JAMA, vol.293, issue.11, p.1338, 2005.

K. H. Bønaa, I. Njølstad, P. M. Ueland, H. Schirmer, A. Tverdal et al., Homocysteine Lowering and Cardiovascular Events after Acute Myocardial Infarction, New England Journal of Medicine, vol.354, issue.15, pp.1578-1588, 2006.

T. Münzel, G. G. Camici, C. Maack, N. R. Bonetti, V. Fuster et al., Impact of Oxidative Stress on the Heart and Vasculature, Journal of the American College of Cardiology, vol.70, issue.2, pp.212-229, 2017.

R. T. Mankowski, L. You, T. W. Buford, C. Leeuwenburgh, T. M. Manini et al., Higher dose of resveratrol elevated cardiovascular disease risk biomarker levels in overweight older adults ? A pilot study, Experimental Gerontology, vol.131, p.110821, 2020.

J. Tomé-carneiro, M. Gonzálvez, M. Larrosa, M. J. Yáñez-gascón, F. J. García-almagro et al., One-Year Consumption of a Grape Nutraceutical Containing Resveratrol Improves the Inflammatory and Fibrinolytic Status of Patients in Primary Prevention of Cardiovascular Disease, The American Journal of Cardiology, vol.110, issue.3, pp.356-363, 2012.

R. C. Macedo, A. Vieira, D. P. Marin, and R. Otton, Effects of chronic resveratrol supplementation in military firefighters undergo a physical fitness test ? A placebo-controlled, double blind study, Chemico-Biological Interactions, vol.227, pp.89-95, 2015.

S. Timmers, E. Konings, L. Bilet, R. H. Houtkooper, T. Van de weijer et al., Calorie Restriction-like Effects of 30 Days of Resveratrol Supplementation on Energy Metabolism and Metabolic Profile in Obese Humans, Cell Metabolism, vol.14, issue.5, pp.612-622, 2011.

K. Fujitaka, H. Otani, F. Jo, H. Jo, E. Nomura et al., Modified resveratrol Longevinex improves endothelial function in adults with metabolic syndrome receiving standard treatment, Nutrition Research, vol.31, issue.11, pp.842-847, 2011.

H. Imamura, T. Yamaguchi, D. Nagayama, A. Saiki, K. Shirai et al., Resveratrol Ameliorates Arterial Stiffness Assessed by Cardio-Ankle Vascular Index in Patients With Type 2 Diabetes Mellitus, International Heart Journal, vol.58, issue.4, pp.577-583, 2017.

S. M. Van-der-made, J. Plat, and R. P. Mensink, Resveratrol Does Not Influence Metabolic Risk Markers Related to Cardiovascular Health in Overweight and Slightly Obese Subjects: A Randomized, Placebo-Controlled Crossover Trial, PLOS ONE, vol.10, issue.3, p.e0118393, 2015.

J. Olesen, L. Gliemann, R. Biensø, J. Schmidt, Y. Hellsten et al., Exercise training, but not resveratrol, improves metabolic and inflammatory status in skeletal muscle of aged men, The Journal of Physiology, vol.592, issue.8, pp.1873-1886, 2014.

B. Agarwal, M. J. Campen, M. M. Channell, S. J. Wherry, B. Varamini et al., Resveratrol for primary prevention of atherosclerosis: Clinical trial evidence for improved gene expression in vascular endothelium, International Journal of Cardiology, vol.166, issue.1, pp.246-248, 2013.

, Figure 2?figure supplement 1. Representative images used in the experiment, sampled from http://commons.wikimedia.org/wiki/Main_Page under the Creative Commons Attribution 4.0 International Public License https://creativecommons.org/licenses/by/4.0/., © 2020 by the authors. Licensee MDPI