M. W. Gray, The endosymbiont hypothesis revisited, Int. Rev. Cytol, vol.141, pp.233-357, 1992.

J. W. Taanman, The mitochondrial genome: structure, transcription, translation and replication, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1410, issue.2, pp.103-123, 1999.

M. Eisenberg?bord and M. Schuldiner, Ground control to major TOM: mitochondria?nucleus communication, The FEBS Journal, vol.284, issue.2, pp.196-210, 2016.

I. Tzameli, The evolving role of mitochondria in metabolism, Trends in Endocrinology & Metabolism, vol.23, issue.9, pp.417-419, 2012.

J. B. Spinelli and M. C. Haigis, The multifaceted contributions of mitochondria to cellular metabolism, Nature Cell Biology, vol.20, issue.7, pp.745-754, 2018.

F. J. Bock and S. W. Tait, Mitochondria as multifaceted regulators of cell death, Nature Reviews Molecular Cell Biology, vol.21, issue.2, pp.85-100, 2019.

C. N. De-souza-breda, G. G. Davanzo, P. J. Basso, N. O. Saraiva-câmara, and P. M. Moraes-vieira, Mitochondria as central hub of the immune system, Redox Biol, vol.26, 2019.

L. Papa, M. Djedaini, and R. Hoffman, Mitochondrial Role in Stemness and Differentiation of Hematopoietic Stem Cells, Stem Cells International, vol.2019, pp.1-10, 2019.

A. J. Roger, S. A. Muñoz-gómez, and R. Kamikawa, The Origin and Diversification of Mitochondria, Current Biology, vol.27, issue.21, pp.R1177-R1192, 2017.

S. E. Calvo and V. K. Mootha, The Mitochondrial Proteome and Human Disease, Annual Review of Genomics and Human Genetics, vol.11, issue.1, pp.25-44, 2010.

A. Rodriguez, J. Nakhle, E. Griessinger, and M. Vignais, Intercellular mitochondria trafficking highlighting the dual role of mesenchymal stem cells as both sensors and rescuers of tissue injury, Cell Cycle, vol.17, issue.6, pp.712-721, 2018.
URL : https://hal.archives-ouvertes.fr/inserm-01855876

Y. Hekmatshoar, J. Nakhle, M. Galloni, and M. Vignais, The role of metabolism and tunneling nanotube-mediated intercellular mitochondria exchange in cancer drug resistance, Biochemical Journal, vol.475, issue.14, pp.2305-2328, 2018.
URL : https://hal.archives-ouvertes.fr/inserm-01855869

C. Frezza, Mitochondrial metabolites: undercover signalling molecules, Interface Focus, vol.7, issue.2, p.20160100, 2017.

I. Martínez-reyes and N. S. Chandel, Mitochondrial TCA cycle metabolites control physiology and disease, Nature Communications, vol.11, issue.1, 2020.

S. Grazioli and J. Pugin, Mitochondrial Damage-Associated Molecular Patterns: From Inflammatory Signaling to Human Diseases, Frontiers in Immunology, vol.9, 2018.

J. S. Bhatti, G. K. Bhatti, and P. H. Reddy, Mitochondrial dysfunction and oxidative stress in metabolic disorders ? A step towards mitochondria based therapeutic strategies, Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, vol.1863, issue.5, pp.1066-1077, 2017.

G. S. Gorman, P. F. Chinnery, S. Dimauro, M. Hirano, Y. Koga et al., Mitochondrial diseases, Nature Reviews Disease Primers, vol.2, issue.1, 2016.

Y. Zhu, A. E. Dean, N. Horikoshi, C. Heer, D. R. Spitz et al., Emerging evidence for targeting mitochondrial metabolic dysfunction in cancer therapy, Journal of Clinical Investigation, vol.128, issue.9, pp.3682-3691, 2018.

S. Mukherjee and A. Ghosh, Molecular mechanism of mitochondrial respiratory chain assembly and its relation to mitochondrial diseases, Mitochondrion, vol.53, pp.1-20, 2020.

L. A. Zinovkina, Mechanisms of Mitochondrial DNA Repair in Mammals, Biochemistry (Moscow), vol.83, issue.3, pp.233-249, 2018.

, Real-time structured methods: systems analysis, Choice Reviews Online, vol.31, issue.08, p.31-4405-31-4405, 1994.

P. Sharma and H. Sampath, Mitochondrial DNA Integrity: Role in Health and Disease, Cells, vol.8, issue.2, p.100, 2019.

O. M. Russell, G. S. Gorman, R. N. Lightowlers, and D. M. Turnbull, Mitochondrial Diseases: Hope for the Future, Cell, vol.181, issue.1, pp.168-188, 2020.

G. Pfe?er, K. Majamaa, D. M. Turnbull, D. Thorburn, and P. F. Chinnery, Treatment for mitochondrial disorders, Cochrane Database Syst. Rev, vol.004426, 2012.

P. A. Gammage and C. Frezza, Mitochondrial DNA: the overlooked oncogenome?, BMC Biology, vol.17, issue.1, 2019.

K. G. Roth, I. Mambetsariev, P. Kulkarni, and R. Salgia, The Mitochondrion as an Emerging Therapeutic Target in Cancer, Trends in Molecular Medicine, vol.26, issue.1, pp.119-134, 2020.

W. Zong, J. D. Rabinowitz, and E. White, Mitochondria and Cancer, Molecular Cell, vol.61, issue.5, pp.667-676, 2016.

Y. S. Ju, L. B. Alexandrov, M. Gerstung, I. Martincorena, S. Nik-zainal et al., Origins and functional consequences of somatic mitochondrial DNA mutations in human cancer, eLife, vol.3, 2014.

J. B. Stewart, B. Alaei-mahabadi, R. Sabarinathan, T. Samuelsson, J. Gorodkin et al., Simultaneous DNA and RNA Mapping of Somatic Mitochondrial Mutations across Diverse Human Cancers, PLOS Genetics, vol.11, issue.6, p.e1005333, 2015.

V. Zickermann, C. Wirth, H. Nasiri, K. Siegmund, H. Schwalbe et al., Mechanistic insight from the crystal structure of mitochondrial complex I, Science, vol.347, issue.6217, pp.44-49, 2015.

J. Zhu, K. R. Vinothkumar, and J. Hirst, Structure of mammalian respiratory complex I, Nature, vol.536, issue.7616, pp.354-358, 2016.

A. E. Frazier, D. R. Thorburn, and A. G. Compton, Mitochondrial energy generation disorders: genes, mechanisms, and clues to pathology, Journal of Biological Chemistry, vol.294, issue.14, pp.5386-5395, 2017.

H. K. Kim, Y. H. Noh, B. Nilius, K. S. Ko, B. D. Rhee et al., Current and upcoming mitochondrial targets for cancer therapy, Seminars in Cancer Biology, vol.47, pp.154-167, 2017.

S. Zhou, S. Kachhap, W. Sun, G. Wu, A. Chuang et al., Frequency and phenotypic implications of mitochondrial DNA mutations in human squamous cell cancers of the head and neck, Proceedings of the National Academy of Sciences, vol.104, issue.18, pp.7540-7545, 2007.

W. Sun, S. Zhou, S. S. Chang, T. Mcfate, A. Verma et al., Mitochondrial Mutations Contribute to HIF1 Accumulation via Increased Reactive Oxygen Species and Up-regulated Pyruvate Dehydrogenease Kinase 2 in Head and Neck Squamous Cell Carcinoma, Clinical Cancer Research, vol.15, issue.2, pp.476-484, 2009.

H. Imanishi, K. Hattori, R. Wada, K. Ishikawa, S. Fukuda et al., Mitochondrial DNA Mutations Regulate Metastasis of Human Breast Cancer Cells, PLoS ONE, vol.6, issue.8, p.e23401, 2011.

Y. Yu, F. Lv, H. Lin, G. Qian, Y. S. Jiang et al., Mitochondrial ND3 G10398A mutation: a biomarker for breast cancer, Genetics and Molecular Research, vol.14, issue.4, pp.17426-17431, 2015.

G. Gasparre, A. M. Porcelli, E. Bonora, L. F. Pennisi, M. Toller et al., Disruptive mitochondrial DNA mutations in complex I subunits are markers of oncocytic phenotype in thyroid tumors, Proceedings of the National Academy of Sciences, vol.104, issue.21, pp.9001-9006, 2007.

C. Evangelisti, D. De-biase, I. Kurelac, C. Ceccarelli, H. Prokisch et al., A mutation screening of oncogenes, tumor suppressor gene TP53 and nuclear encoded mitochondrial complex I genes in oncocytic thyroid tumors, BMC Cancer, vol.15, issue.1, 2015.

R. K. Gopal, K. Kübler, S. E. Calvo, P. Polak, D. Livitz et al., Widespread Chromosomal Losses and Mitochondrial DNA Alterations as Genetic Drivers in Hürthle Cell Carcinoma, Cancer Cell, vol.34, issue.2, pp.242-255.e5, 2018.

J. V. Philley, A. Kannan, W. Qin, E. R. Sauter, M. Ikebe et al., Complex-I Alteration and Enhanced Mitochondrial Fusion Are Associated With Prostate Cancer Progression, Journal of Cellular Physiology, vol.231, issue.6, pp.1364-1374, 2015.

H. Kim, T. Komiyama, C. Inomoto, H. Kamiguchi, H. Kajiwara et al., Mutations in the Mitochondrial ND1 Gene Are Associated with Postoperative Prognosis of Localized Renal Cell Carcinoma, International Journal of Molecular Sciences, vol.17, issue.12, p.2049, 2016.

W. Gao, K. Xu, P. Li, and B. Tang, Functional roles of superoxide and hydrogen peroxide generated by mitochondrial DNA mutation in regulating tumorigenicity of HepG2 cells, Cell Biochemistry and Function, vol.29, issue.5, pp.400-407, 2011.

S. Deborde and R. J. Wong, How Schwann cells facilitate cancer progression in nerves, Cellular and Molecular Life Sciences, vol.74, issue.24, pp.4405-4420, 2017.

M. King and G. Attardi, Human cells lacking mtDNA: repopulation with exogenous mitochondria by complementation, Science, vol.246, issue.4929, pp.500-503, 1989.

G. Hofhaus and G. Attardi, Efficient selection and characterization of mutants of a human cell line which are defective in mitochondrial DNA-encoded subunits of respiratory NADH dehydrogenase., Molecular and Cellular Biology, vol.15, issue.2, pp.964-974, 1995.

K. Polyak, Y. Li, H. Zhu, C. Lengauer, J. K. Willson et al., Somatic mutations of the mitochondrial genome in human colorectal tumours, Nature Genetics, vol.20, issue.3, pp.291-293, 1998.

J. S. Park, L. K. Sharma, H. Li, R. Xiang, D. Holstein et al., A heteroplasmic, not homoplasmic, mitochondrial DNA mutation promotes tumorigenesis via alteration in reactive oxygen species generation and apoptosis, Human Molecular Genetics, vol.18, issue.9, pp.1578-1589, 2009.

L. K. Sharma, H. Fang, J. Liu, R. Vartak, J. Deng et al., Mitochondrial respiratory complex I dysfunction promotes tumorigenesis through ROS alteration and AKT activation, Human Molecular Genetics, vol.20, issue.23, pp.4605-4616, 2011.

E. Bonora, A. M. Porcelli, G. Gasparre, A. Biondi, A. Ghelli et al., Defective Oxidative Phosphorylation in Thyroid Oncocytic Carcinoma Is Associated with Pathogenic Mitochondrial DNA Mutations Affecting Complexes I and III, Cancer Research, vol.66, issue.12, pp.6087-6096, 2006.

L. Iommarini, I. Kurelac, M. Capristo, M. A. Calvaruso, V. Giorgio et al., Different mtDNA mutations modify tumor progression in dependence of the degree of respiratory complex I impairment, Human Molecular Genetics, vol.23, issue.6, pp.1453-1466, 2013.

C. Calabrese, L. Iommarini, I. Kurelac, M. A. Calvaruso, M. Capristo et al., Respiratory complex I is essential to induce a Warburg profile in mitochondria-defective tumor cells, Cancer & Metabolism, vol.1, issue.1, p.11, 2013.

K. Ishikawa, K. Takenaga, M. Akimoto, N. Koshikawa, A. Yamaguchi et al., ROS-Generating Mitochondrial DNA Mutations Can Regulate Tumor Cell Metastasis, Science, vol.320, issue.5876, pp.661-664, 2008.

A. Cruz-bermúdez, C. G. Vallejo, R. J. Vicente-blanco, M. E. Gallardo, M. Á. Fernández-moreno et al., Enhanced tumorigenicity by mitochondrial DNA mild mutations, Oncotarget, vol.6, issue.15, pp.13628-13643, 2015.

R. K. Singh, S. Saini, D. Verma, P. Kalaiarasan, and R. N. Bamezai, Mitochondrial ND5 mutation mediated elevated ROS regulates apoptotic pathway epigenetically in a P53 dependent manner for generating pro-cancerous phenotypes, Mitochondrion, vol.35, pp.35-43, 2017.

B. Schöpf, H. Weissensteiner, G. Schäfer, F. Fazzini, P. Charoentong et al., OXPHOS remodeling in high-grade prostate cancer involves mtDNA mutations and increased succinate oxidation, Nature Communications, vol.11, issue.1, 2020.

I. Amelio, F. Cutruzzolá, A. Antonov, M. Agostini, and G. Melino, Serine and glycine metabolism in cancer, Trends in Biochemical Sciences, vol.39, issue.4, pp.191-198, 2014.

G. S. Ducker and J. D. Rabinowitz, One-Carbon Metabolism in Health and Disease, Cell Metabolism, vol.25, issue.1, pp.27-42, 2017.

L. Yang, J. C. Garcia-canaveras, Z. Chen, L. Wang, L. Liang et al., Serine Catabolism Feeds NADH when Respiration Is Impaired, Cell Metabolism, vol.31, issue.4, pp.809-821.e6, 2020.

T. To, A. M. Cuadros, H. Shah, W. H. Hung, Y. Li et al., A Compendium of Genetic Modifiers of Mitochondrial Dysfunction Reveals Intra-organelle Buffering, Cell, vol.179, issue.5, pp.1222-1238.e17, 2019.

J. Rutter, D. R. Winge, and J. D. Schiffman, Succinate dehydrogenase ? Assembly, regulation and role in human disease, Mitochondrion, vol.10, issue.4, pp.393-401, 2010.

W. A. Flavahan, Y. Drier, S. E. Johnstone, M. L. Hemming, D. R. Tarjan et al., Altered chromosomal topology drives oncogenic programs in SDH-deficient GISTs, Nature, vol.575, issue.7781, pp.229-233, 2019.

S. M. Aghamir, R. Heshmat, M. Ebrahimi, S. E. Ketabchi, S. Parichehreh-dizaji et al., <p>The Impact Of <em>Succinate Dehydrogenase</em> Gene (SDH) Mutations In Renal Cell Carcinoma (RCC): A Systematic Review</p>, OncoTargets and Therapy, vol.Volume 12, pp.7929-7940, 2019.

, Real-time structured methods: systems analysis, Choice Reviews Online, vol.31, issue.08, p.31-4405-31-4405, 1994.

A. Bezawork-geleta, H. Wen, L. Dong, B. Yan, J. Vider et al., Alternative assembly of respiratory complex II connects energy stress to metabolic checkpoints, Nature Communications, vol.9, issue.1, 2018.

E. Dalla-pozza, I. Dando, R. Pacchiana, E. Liboi, M. T. Scupoli et al., Regulation of succinate dehydrogenase and role of succinate in cancer, Seminars in Cell & Developmental Biology, vol.98, pp.4-14, 2020.

A. P. Gimenez-roqueplo, J. Favier, P. Rustin, J. J. Mourad, P. F. Plouin et al., The R22X Mutation of the SDHD Gene in Hereditary Paraganglioma Abolishes the Enzymatic Activity of Complex II in the Mitochondrial Respiratory Chain and Activates the Hypoxia Pathway, The American Journal of Human Genetics, vol.69, issue.6, pp.1186-1197, 2001.

M. A. Selak, S. M. Armour, E. D. Mackenzie, H. Boulahbel, D. G. Watson et al., Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-? prolyl hydroxylase, Cancer Cell, vol.7, issue.1, pp.77-85, 2005.

S. Movafagh, S. Crook, and K. Vo, Regulation of Hypoxia-Inducible Factor-1a by Reactive Oxygen Species : New Developments in an Old Debate, Journal of Cellular Biochemistry, vol.116, issue.5, pp.696-703, 2015.

J. Favier, L. Amar, and A. Gimenez-roqueplo, Paraganglioma and phaeochromocytoma: from genetics to personalized medicine, Nature Reviews Endocrinology, vol.11, issue.2, pp.101-111, 2014.

K. Kluckova and D. A. Tennant, Metabolic implications of hypoxia and pseudohypoxia in pheochromocytoma and paraganglioma, Cell and Tissue Research, vol.372, issue.2, pp.367-378, 2018.

Y. Tsukada, J. Fang, H. Erdjument-bromage, M. E. Warren, C. H. Borchers et al., Histone demethylation by a family of JmjC domain-containing proteins, Nature, vol.439, issue.7078, pp.811-816, 2005.

S. Ito, A. C. D?alessio, O. V. Taranova, K. Hong, L. C. Sowers et al., Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification, Nature, vol.466, issue.7310, pp.1129-1133, 2010.

P. Melamed, Y. Yosefzon, C. David, A. Tsukerman, and L. Pnueli, Tet Enzymes, Variants, and Differential Effects on Function, Frontiers in Cell and Developmental Biology, vol.6, 2018.

M. Xiao, H. Yang, W. Xu, S. Ma, H. Lin et al., Inhibition of -KG-dependent histone and DNA demethylases by fumarate and succinate that are accumulated in mutations of FH and SDH tumor suppressors, Genes & Development, vol.26, issue.12, pp.1326-1338, 2012.

J. K. Killian, S. Y. Kim, M. Miettinen, C. Smith, M. Merino et al., Succinate Dehydrogenase Mutation Underlies Global Epigenomic Divergence in Gastrointestinal Stromal Tumor, Cancer Discovery, vol.3, issue.6, pp.648-657, 2013.

E. Letouzé, C. Martinelli, C. Loriot, N. Burnichon, N. Abermil et al., SDH Mutations Establish a Hypermethylator Phenotype in Paraganglioma, Cancer Cell, vol.23, issue.6, pp.739-752, 2013.

A. Morin, J. Goncalves, S. Moog, L. Castro-vega, S. Job et al., TET-Mediated Hypermethylation Primes SDH-Deficient Cells for HIF2?-Driven Mesenchymal Transition, Cell Reports, vol.30, issue.13, pp.4551-4566.e7, 2020.

C. Loriot, M. Domingues, A. Berger, M. Menara, M. Ruel et al., Deciphering the molecular basis of invasiveness in Sdhb-deficient cells, Oncotarget, vol.6, issue.32, pp.32955-32965, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01373908

P. P. Aspuria, S. Y. Lunt, L. Väremo, L. Vergnes, M. Gozo et al., Succinate dehydrogenase inhibition leads to epithelial-mesenchymal transition and reprogrammed carbon metabolism, Cancer & Metabolism, vol.2, issue.1, 2014.

J. Hadoux, J. Favier, J. Scoazec, S. Leboulleux, A. Al-ghuzlan et al., SDHB mutations are associated with response to temozolomide in patients with metastatic pheochromocytoma or paraganglioma, International Journal of Cancer, vol.135, issue.11, pp.2711-2720, 2014.

C. Fan, W. Liu, H. Cao, C. Wen, L. Chen et al., O6-methylguanine DNA methyltransferase as a promising target for the treatment of temozolomide-resistant gliomas, Cell Death & Disease, vol.4, issue.10, pp.e876-e876, 2013.

P. L. Sulkowski, R. K. Sundaram, S. Oeck, C. D. Corso, Y. Liu et al., Krebs-cycle-deficient hereditary cancer syndromes are defined by defects in homologous-recombination DNA repair, Nature Genetics, vol.50, issue.8, pp.1086-1092, 2018.

S. V. Babu, Safe knee surgery, International Journal of Orthopaedics Sciences, vol.6, issue.3, pp.26-31, 2020.

C. Lussey-lepoutre, K. E. Hollinshead, C. Ludwig, M. Menara, A. Morin et al., Loss of succinate dehydrogenase activity results in dependency on pyruvate carboxylation for cellular anabolism, Nature Communications, vol.6, issue.1, 2015.

S. Cardaci, L. Zheng, G. Mackay, N. J. Van-den-broek, E. D. Mackenzie et al., Pyruvate carboxylation enables growth of SDH-deficient cells by supporting aspartate biosynthesis, Nature Cell Biology, vol.17, issue.10, pp.1317-1326, 2015.

K. Birsoy, T. Wang, W. W. Chen, E. Freinkman, M. Abu-remaileh et al., An Essential Role of the Mitochondrial Electron Transport Chain in Cell Proliferation Is to Enable Aspartate Synthesis, Cell, vol.162, issue.3, pp.540-551, 2015.

L. B. Sullivan, D. Y. Gui, A. M. Hosios, L. N. Bush, E. Freinkman et al., Supporting Aspartate Biosynthesis Is an Essential Function of Respiration in Proliferating Cells, Cell, vol.162, issue.3, pp.552-563, 2015.

S. E. Weinberg, B. D. Singer, E. M. Steinert, C. A. Martinez, M. M. Mehta et al., Mitochondrial complex III is essential for suppressive function of regulatory T cells, Nature, vol.565, issue.7740, pp.495-499, 2019.

E. Ansó, S. E. Weinberg, L. P. Diebold, B. J. Thompson, S. Malinge et al., The mitochondrial respiratory chain is essential for haematopoietic stem cell function, Nature Cell Biology, vol.19, issue.6, pp.614-625, 2017.

L. P. Diebold, H. J. Gil, P. Gao, C. A. Martinez, S. E. Weinberg et al., Mitochondrial complex III is necessary for endothelial cell proliferation during angiogenesis, Nature Metabolism, vol.1, issue.1, pp.158-171, 2019.

P. J. Mullen, R. Yu, J. Longo, M. C. Archer, and L. Z. Penn, The interplay between cell signalling and the mevalonate pathway in cancer, Nature Reviews Cancer, vol.16, issue.11, pp.718-731, 2016.

G. H. Mcgregor, A. D. Campbell, S. K. Fey, S. Tumanov, D. Sumpton et al., Targeting the Metabolic Response to Statin-Mediated Oxidative Stress Produces a Synergistic Antitumor Response, Cancer Research, vol.80, issue.2, pp.175-188, 2019.

M. T. Snaebjornsson, S. Janaki-raman, and A. Schulze, Greasing the Wheels of the Cancer Machine: The Role of Lipid Metabolism in Cancer, Cell Metabolism, vol.31, issue.1, pp.62-76, 2020.

A. Carracedo, L. C. Cantley, and P. P. Pandolfi, Cancer metabolism: fatty acid oxidation in the limelight, Nature Reviews Cancer, vol.13, issue.4, pp.227-232, 2013.

C. Yao, G. Liu, R. Wang, S. H. Moon, R. W. Gross et al., Identifying off-target effects of etomoxir reveals that carnitine palmitoyltransferase I is essential for cancer cell proliferation independent of ?-oxidation, PLOS Biology, vol.16, issue.3, p.e2003782, 2018.

R. S. O?connor, L. Guo, S. Ghassemi, N. W. Snyder, A. J. Worth et al., The CPT1a inhibitor, etomoxir induces severe oxidative stress at commonly used concentrations, Scientific Reports, vol.8, issue.1, p.6289, 2018.

B. Raud, D. G. Roy, A. S. Divakaruni, T. N. Tarasenko, R. Franke et al., Etomoxir Actions on Regulatory and Memory T Cells Are Independent of Cpt1a-Mediated Fatty Acid Oxidation, Cell Metabolism, vol.28, issue.3, pp.504-515.e7, 2018.

J. Van-den-bossche and G. J. Van-der-windt, Fatty Acid Oxidation in Macrophages and T Cells: Time for Reassessment?, Cell Metabolism, vol.28, issue.4, pp.538-540, 2018.

I. Y. Benador, M. Veliova, M. Liesa, and O. S. Shirihai, Mitochondria Bound to Lipid Droplets: Where Mitochondrial Dynamics Regulate Lipid Storage and Utilization, Cell Metabolism, vol.29, issue.4, pp.827-835, 2019.

I. Y. Benador, M. Veliova, K. Mahdaviani, A. Petcherski, J. D. Wikstrom et al., Mitochondria Bound to Lipid Droplets Have Unique Bioenergetics, Composition, and Dynamics that Support Lipid Droplet Expansion, Cell Metabolism, vol.27, issue.4, pp.869-885.e6, 2018.

A. L. Cruz, E. D. Barreto, N. P. Fazolini, J. P. Viola, and P. T. Bozza, Lipid droplets: platforms with multiple functions in cancer hallmarks, Cell Death & Disease, vol.11, issue.2, p.105, 2020.

A. N. Patananan, T. Wu, P. Chiou, and M. A. Teitell, Modifying the Mitochondrial Genome, Cell Metabolism, vol.23, issue.5, pp.785-796, 2016.

C. F. Wenceslau, C. G. Mccarthy, T. Szasz, K. Spitler, S. Goulopoulou et al., Mitochondrial damage-associated molecular patterns and vascular function, European Heart Journal, vol.35, issue.18, pp.1172-1177, 2014.

, Real-time structured methods: systems analysis, Choice Reviews Online, vol.31, issue.08, p.31-4405-31-4405, 1994.

Q. Zhang, M. Raoof, Y. Chen, Y. Sumi, T. Sursal et al., Circulating mitochondrial DAMPs cause inflammatory responses to injury, Nature, vol.464, issue.7285, pp.104-107, 2010.

L. Galluzzi, J. M. Bravo-san-pedro, O. Kepp, and G. Kroemer, Regulated cell death and adaptive stress responses, Cellular and Molecular Life Sciences, vol.73, issue.11-12, pp.2405-2410, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01301985

K. Nakahira, S. Hisata, and A. M. Choi, The Roles of Mitochondrial Damage-Associated Molecular Patterns in Diseases, Antioxidants & Redox Signaling, vol.23, issue.17, pp.1329-1350, 2015.

L. M. Murray and A. D. Krasnodembskaya, Concise Review: Intercellular Communication Via Organelle Transfer in the Biology and Therapeutic Applications of Stem Cells, STEM CELLS, vol.37, issue.1, pp.14-25, 2018.

M. V. Berridge and J. Neuzil, The mobility of mitochondria: Intercellular trafficking in health and disease, Clinical and Experimental Pharmacology and Physiology, vol.44, pp.15-20, 2017.

L. H. Boudreau, A. Duchez, N. Cloutier, D. Soulet, N. Martin et al., Platelets release mitochondria serving as substrate for bactericidal group IIA-secreted phospholipase A2 to promote inflammation, Blood, vol.124, issue.14, pp.2173-2183, 2014.

Z. Al-amir-dache, A. Otandault, R. Tanos, B. Pastor, R. Meddeb et al., Blood contains circulating cell?free respiratory competent mitochondria, The FASEB Journal, vol.34, issue.3, pp.3616-3630, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02504546

Å. Fransson, A. Ruusala, and P. Aspenström, The atypical Rho GTPases Miro-1 and Miro-2 have essential roles in mitochondrial trafficking, Biochemical and Biophysical Research Communications, vol.344, issue.2, pp.500-510, 2006.

M. Saotome, D. Safiulina, G. Szabadkai, S. Das, A. Fransson et al., Bidirectional Ca2+-dependent control of mitochondrial dynamics by the Miro GTPase, Proceedings of the National Academy of Sciences, vol.105, issue.52, pp.20728-20733, 2008.

T. Ahmad, S. Mukherjee, B. Pattnaik, M. Kumar, S. Singh et al., Miro1 regulates intercellular mitochondrial transport & enhances mesenchymal stem cell rescue efficacy, The EMBO Journal, vol.33, pp.n/a-n/a, 2014.

Y. Wang, X. Chen, W. Cao, and Y. Shi, Plasticity of mesenchymal stem cells in immunomodulation: pathological and therapeutic implications, Nature Immunology, vol.15, issue.11, pp.1009-1016, 2014.

M. E. Castro-manrreza and J. J. Montesinos, Immunoregulation by Mesenchymal Stem Cells: Biological Aspects and Clinical Applications, Journal of Immunology Research, vol.2015, pp.1-20, 2015.

A. C. Court, A. Le?gatt, P. Luz?crawford, E. Parra, V. Aliaga?tobar et al., Mitochondrial transfer from MSCs to T cells induces Treg differentiation and restricts inflammatory response, EMBO reports, vol.21, issue.2, 2020.

P. Luz-crawford, J. Hernandez, F. Djouad, N. Luque-campos, A. Caicedo et al., Mesenchymal stem cell repression of Th17 cells is triggered by mitochondrial transfer, Stem Cell Research & Therapy, vol.10, issue.1, 2019.
URL : https://hal.archives-ouvertes.fr/inserm-02376241

M. V. Jackson, T. J. Morrison, D. F. Doherty, D. F. Mcauley, M. A. Matthay et al., Mitochondrial Transfer via Tunneling Nanotubes is an Important Mechanism by Which Mesenchymal Stem Cells Enhance Macrophage Phagocytosis in the In Vitro and In Vivo Models of ARDS, STEM CELLS, vol.34, issue.8, pp.2210-2223, 2016.

T. J. Morrison, M. V. Jackson, E. K. Cunningham, A. Kissenpfennig, D. F. Mcauley et al., Mesenchymal Stromal Cells Modulate Macrophages in Clinically Relevant Lung Injury Models by Extracellular Vesicle Mitochondrial Transfer, American Journal of Respiratory and Critical Care Medicine, vol.196, issue.10, pp.1275-1286, 2017.

K. P. Hough, J. L. Trevor, J. G. Strenkowski, Y. Wang, B. K. Chacko et al., Exosomal transfer of mitochondria from airway myeloid-derived regulatory cells to T cells, Redox Biology, vol.18, pp.54-64, 2018.

F. Puhm, T. Afonyushkin, U. Resch, G. Obermayer, M. Rohde et al., Mitochondria Are a Subset of Extracellular Vesicles Released by Activated Monocytes and Induce Type I IFN and TNF Responses in Endothelial Cells, Circulation Research, vol.125, issue.1, pp.43-52, 2019.

M. Mahrouf-yorgov, L. Augeul, C. C. Da-silva, M. Jourdan, M. Rigolet et al., Mesenchymal stem cells sense mitochondria released from damaged cells as danger signals to activate their rescue properties, Cell Death & Differentiation, vol.24, issue.7, pp.1224-1238, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01827519

, Real-time structured methods: systems analysis, Choice Reviews Online, vol.31, issue.08, p.31-4405-31-4405, 1994.

J. Pollara, R. W. Edwards, L. Lin, V. A. Bendersky, and T. V. Brennan, Circulating mitochondria in deceased organ donors are associated with immune activation and early allograft dysfunction, JCI Insight, vol.3, issue.15, 2018.

X. Song, W. Hu, H. Yu, H. Wang, Y. Zhao et al., Existence of Circulating Mitochondria in Human and Animal Peripheral Blood, International Journal of Molecular Sciences, vol.21, issue.6, p.2122, 2020.

A. Acquistapace, T. Bru, P. Lesault, F. Figeac, A. E. Coudert et al., Human Mesenchymal Stem Cells Reprogram Adult Cardiomyocytes Toward a Progenitor-Like State Through Partial Cell Fusion and Mitochondria Transfer, STEM CELLS, vol.29, issue.5, pp.812-824, 2011.
URL : https://hal.archives-ouvertes.fr/inserm-00591072

M. N. Islam, S. R. Das, M. T. Emin, M. Wei, L. Sun et al., Mitochondrial transfer from bone-marrow?derived stromal cells to pulmonary alveoli protects against acute lung injury, Nature Medicine, vol.18, issue.5, pp.759-765, 2012.

J. Pasquier, B. S. Guerrouahen, H. Al-thawadi, P. Ghiabi, M. Maleki et al., Preferential transfer of mitochondria from endothelial to cancer cells through tunneling nanotubes modulates chemoresistance, Journal of Translational Medicine, vol.11, issue.1, p.94, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02314804

J. L. Spees, S. D. Olson, M. J. Whitney, and D. J. Prockop, Mitochondrial transfer between cells can rescue aerobic respiration, Proceedings of the National Academy of Sciences, vol.103, issue.5, pp.1283-1288, 2006.

L. Dong, J. Kovarova, M. Bajzikova, A. Bezawork-geleta, D. Svec et al., Horizontal transfer of whole mitochondria restores tumorigenic potential in mitochondrial DNA-deficient cancer cells, eLife, vol.6, 2017.

A. S. Tan, J. W. Baty, L. Dong, A. Bezawork-geleta, B. Endaya et al., Mitochondrial Genome Acquisition Restores Respiratory Function and Tumorigenic Potential of Cancer Cells without Mitochondrial DNA, Cell Metabolism, vol.21, issue.1, pp.81-94, 2015.

H. Han, J. Hu, Q. Yan, J. Zhu, Z. Zhu et al., Bone marrow-derived mesenchymal stem cells rescue injured H9c2 cells via transferring intact mitochondria through tunneling nanotubes in an in vitro simulated ischemia/reperfusion model, Molecular Medicine Reports, vol.13, issue.2, pp.1517-1524, 2015.

K. Liu, K. Ji, L. Guo, W. Wu, H. Lu et al., Mesenchymal stem cells rescue injured endothelial cells in an in vitro ischemia?reperfusion model via tunneling nanotube like structure-mediated mitochondrial transfer, Microvascular Research, vol.92, pp.10-18, 2014.

X. Li, Y. Zhang, S. C. Yeung, Y. Liang, X. Liang et al., Mitochondrial Transfer of Induced Pluripotent Stem Cell?Derived Mesenchymal Stem Cells to Airway Epithelial Cells Attenuates Cigarette Smoke?Induced Damage, American Journal of Respiratory Cell and Molecular Biology, vol.51, issue.3, pp.455-465, 2014.

D. Jiang, F. Gao, Y. Zhang, D. S. Wong, Q. Li et al., Mitochondrial transfer of mesenchymal stem cells effectively protects corneal epithelial cells from mitochondrial damage, Cell Death & Disease, vol.7, issue.11, pp.e2467-e2467, 2016.

V. A. Babenko, D. N. Silachev, L. D. Zorova, I. B. Pevzner, A. A. Khutornenko et al., Improving the Post-Stroke Therapeutic Potency of Mesenchymal Multipotent Stromal Cells by Cocultivation With Cortical Neurons: The Role of Crosstalk Between Cells, STEM CELLS Translational Medicine, vol.4, issue.9, pp.1011-1020, 2015.

R. Moschoi, V. Imbert, M. Nebout, J. Chiche, D. Mary et al., Protective mitochondrial transfer from bone marrow stromal cells to acute myeloid leukemic cells during chemotherapy, Blood, vol.128, issue.2, pp.253-264, 2016.

J. Lu, X. Zheng, F. Li, Y. Yu, Z. Chen et al., Tunneling nanotubes promote intercellular mitochondria transfer followed by increased invasiveness in bladder cancer cells, Oncotarget, vol.8, issue.9, pp.15539-15552, 2017.

A. Caicedo, V. Fritz, J. Brondello, M. Ayala, I. Dennemont et al., MitoCeption as a new tool to assess the effects of mesenchymal stem/stromal cell mitochondria on cancer cell metabolism and function, Scientific Reports, vol.5, issue.1, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01834600

M. Bajzikova, J. Kovarova, A. R. Coelho, S. Boukalova, S. Oh et al., Reactivation of Dihydroorotate Dehydrogenase-Driven Pyrimidine Biosynthesis Restores Tumor Growth of Respiration-Deficient Cancer Cells, Cell Metabolism, vol.29, issue.2, pp.399-416.e10, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02324441

M. Lö?er, E. A. Carrey, E. O. Zameitat, and . Acid, More Than Just an Intermediate of Pyrimidine de novo Synthesis, J. Genet. Genom. Yi Chuan Xue Bao, vol.42, pp.207-219, 2015.

, Issue Information, Molecular Ecology, vol.29, issue.21, p.31, 2020.

E. Zameitat, G. Freymark, C. D. Dietz, M. Lo?ffler, and M. Bo?lker, Functional Expression of Human Dihydroorotate Dehydrogenase (DHODH) in pyr4 Mutants of Ustilago maydis Allows Target Validation of DHODH Inhibitors In Vivo, Applied and Environmental Microbiology, vol.73, issue.10, pp.3371-3379, 2007.

J. Levoux, A. Prola, P. Lafuste, M. Gervais, L. Braud et al., Platelets Promote Pro-Angiogenic Activity of Mesenchymal Stem Cells Via Mitochondrial Transfer and Metabolic Reprogramming, SSRN Electronic Journal, 2020.

A. Maeda and B. Fadeel, Mitochondria released by cells undergoing TNF-?-induced necroptosis act as danger signals, Cell Death & Disease, vol.5, issue.7, pp.e1312-e1312, 2014.

M. Zhu, A. S. Barbas, L. Lin, U. Scheuermann, M. Bishawi et al., Mitochondria Released by Apoptotic Cell Death Initiate Innate Immune Responses, ImmunoHorizons, vol.2, issue.11, pp.384-397, 2018.

D. M. Spencer, J. R. Dye, C. A. Piantadosi, and D. S. Pisetsky, The release of microparticles and mitochondria from RAW 264.7 murine macrophage cells undergoing necroptotic cell death in vitro, Experimental Cell Research, vol.363, issue.2, pp.151-159, 2018.

A. Singh, S. Periasamy, M. Malik, C. S. Bakshi, L. Stephen et al., Necroptotic debris including damaged mitochondria elicits sepsis-like syndrome during late-phase tularemia, Cell Death Discovery, vol.3, issue.1, 2017.

C. T. Chu, J. Ji, R. K. Dagda, J. F. Jiang, Y. Y. Tyurina et al., Cardiolipin externalization to the outer mitochondrial membrane acts as an elimination signal for mitophagy in neuronal cells, Nature Cell Biology, vol.15, issue.10, pp.1197-1205, 2013.

S. S. Iyer, Q. He, J. R. Janczy, E. I. Elliott, Z. Zhong et al., Mitochondrial Cardiolipin Is Required for Nlrp3 Inflammasome Activation, Immunity, vol.39, issue.2, pp.311-323, 2013.

C. R. Marlein, L. Zaitseva, R. E. Piddock, S. D. Robinson, D. R. Edwards et al., NADPH oxidase-2 derived superoxide drives mitochondrial transfer from bone marrow stromal cells to leukemic blasts, Blood, vol.130, issue.14, pp.1649-1660, 2017.

S. W. Ryter and A. M. Choi, Regulation of autophagy in oxygen-dependent cellular stress, Curr. Pharm. Des, vol.19, pp.2747-2756, 2013.

G. S. Shadel and T. L. Horvath, Mitochondrial ROS Signaling in Organismal Homeostasis, Cell, vol.163, issue.3, pp.560-569, 2015.

J. M. Archibald, Endosymbiosis and Eukaryotic Cell Evolution, Current Biology, vol.25, issue.19, pp.R911-R921, 2015.

P. Bajpai, A. Darra, and A. Agrawal, Microbe-mitochondrion crosstalk and health: An emerging paradigm, Mitochondrion, vol.39, pp.20-25, 2018.

L. Zitvogel, R. Daillère, M. P. Roberti, B. Routy, and G. Kroemer, Anticancer effects of the microbiome and its products, Nature Reviews Microbiology, vol.15, issue.8, pp.465-478, 2017.

P. D. Cani, M. Van-hul, C. Lefort, C. Depommier, M. Rastelli et al., Microbial regulation of organismal energy homeostasis, Nature Metabolism, vol.1, issue.1, pp.34-46, 2019.

M. J. Houghton, A. Kerimi, V. Mouly, S. Tumova, and G. Williamson, Gut microbiome catabolites as novel modulators of muscle cell glucose metabolism, The FASEB Journal, vol.33, issue.2, pp.1887-1898, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02360290

G. Kroemer and L. Zitvogel, The breakthrough of the microbiota, Nature Reviews Immunology, vol.18, issue.2, pp.87-88, 2018.

R. A. Quinn, A. V. Melnik, A. Vrbanac, T. Fu, K. A. Patras et al., Global chemical effects of the microbiome include new bile-acid conjugations, Nature, vol.579, issue.7797, pp.123-129, 2020.

B. Routy, E. Le-chatelier, L. Derosa, C. P. Duong, M. T. Alou et al., Gut microbiome influences efficacy of PD-1?based immunotherapy against epithelial tumors, Science, vol.359, issue.6371, pp.91-97, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02126484

M. Santoni, F. Piva, A. Conti, A. Santoni, A. Cimadamore et al., Re: Gut Microbiome Influences Efficacy of PD-1-based Immunotherapy Against Epithelial Tumors, European Urology, vol.74, issue.4, pp.521-522, 2018.

S. Bullman, C. S. Pedamallu, E. Sicinska, T. E. Clancy, X. Zhang et al., Analysis ofFusobacteriumpersistence and antibiotic response in colorectal cancer, Science, vol.358, issue.6369, pp.1443-1448, 2017.

V. V. Gurevich, Protein multi-functionality: introduction, Cellular and Molecular Life Sciences, vol.76, issue.22, pp.4405-4406, 2019.

J. B. Xavier, V. B. Young, J. Skufca, F. Ginty, T. Testerman et al., The Cancer Microbiome: Distinguishing Direct and Indirect Effects Requires a Systemic View, Trends in Cancer, vol.6, issue.3, pp.192-204, 2020.

T. Mashimo, K. Pichumani, V. Vemireddy, K. J. Hatanpaa, D. K. Singh et al., Acetate Is a Bioenergetic Substrate for Human Glioblastoma and Brain Metastases, Cell, vol.159, issue.7, pp.1603-1614, 2014.

S. A. Comerford, Z. Huang, X. Du, Y. Wang, L. Cai et al., Acetate Dependence of Tumors, Cell, vol.159, issue.7, pp.1591-1602, 2014.

Z. T. Schug, B. Peck, D. T. Jones, Q. Zhang, S. Grosskurth et al., Acetyl-CoA Synthetase 2 Promotes Acetate Utilization and Maintains Cancer Cell Growth under Metabolic Stress, Cancer Cell, vol.27, issue.1, pp.57-71, 2015.

A. W. El-hattab, A. M. Zarante, M. Almannai, and F. Scaglia, Therapies for mitochondrial diseases and current clinical trials, Molecular Genetics and Metabolism, vol.122, issue.3, pp.1-9, 2017.

D. Khayat, T. L. Kurtz, and P. W. Stacpoole, The changing landscape of clinical trials for mitochondrial diseases: 2011 to present, Mitochondrion, vol.50, pp.51-57, 2020.

V. Weissig, Drug Development for the Therapy of Mitochondrial Diseases, Trends in Molecular Medicine, vol.26, issue.1, pp.40-57, 2020.

C. Vignal, S. Uretsky, S. Fitoussi, A. Galy, L. Blouin et al., Safety of rAAV2/2- ND4 Gene Therapy for Leber Hereditary Optic Neuropathy, Ophthalmology, vol.125, issue.6, pp.945-947, 2018.

R. D. Koilkonda, H. Yu, T. Chou, W. J. Feuer, M. Ruggeri et al., Safety and Effects of the Vector for the Leber Hereditary Optic Neuropathy Gene Therapy Clinical Trial, JAMA Ophthalmology, vol.132, issue.4, p.409, 2014.

H. Cwerman-thibault, S. Augustin, C. Lechauve, J. Ayache, S. Ellouze et al., Nuclear expression of mitochondrial ND4 leads to the protein assembling in complex I and prevents optic atrophy and visual loss, Molecular Therapy - Methods & Clinical Development, vol.2, p.15003, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01121801

C. Choong and H. Mochizuki, Gene therapy targeting mitochondrial pathway in Parkinson?s disease, Journal of Neural Transmission, vol.124, issue.2, pp.193-207, 2016.

S. Miller and M. M. Muqit, Therapeutic approaches to enhance PINK1/Parkin mediated mitophagy for the treatment of Parkinson?s disease, Neuroscience Letters, vol.705, pp.7-13, 2019.

P. Ge, V. L. Dawson, and T. M. Dawson, PINK1 and Parkin mitochondrial quality control: a source of regional vulnerability in Parkinson?s disease, Molecular Neurodegeneration, vol.15, issue.1, pp.1-18, 2020.

A. M. Roushandeh, Y. Kuwahara, and M. H. Roudkenar, Mitochondrial transplantation as a potential and novel master key for treatment of various incurable diseases, Cytotechnology, vol.71, issue.2, pp.647-663, 2019.

A. Masuzawa, K. M. Black, C. A. Pacak, M. Ericsson, R. J. Barnett et al., Transplantation of autologously derived mitochondria protects the heart from ischemia-reperfusion injury, American Journal of Physiology-Heart and Circulatory Physiology, vol.304, issue.7, pp.H966-H982, 2013.

A. K. Kaza, I. Wamala, I. Friehs, J. D. Kuebler, R. H. Rathod et al., Myocardial rescue with autologous mitochondrial transplantation in a porcine model of ischemia/reperfusion, The Journal of Thoracic and Cardiovascular Surgery, vol.153, issue.4, pp.934-943, 2017.

D. B. Cowan, R. Yao, V. Akurathi, E. R. Snay, J. K. Thedsanamoorthy et al., Intracoronary Delivery of Mitochondria to the Ischemic Heart for Cardioprotection, PLOS ONE, vol.11, issue.8, p.e0160889, 2016.

B. Shin, M. Y. Saeed, J. J. Esch, A. Guariento, D. Blitzer et al., A Novel Biological Strategy for Myocardial Protection by Intracoronary Delivery of Mitochondria: Safety and Efficacy, JACC: Basic to Translational Science, vol.4, issue.8, pp.871-888, 2019.

H. Jabbari, A. M. Roushandeh, M. K. Rostami, M. T. Razavi-toosi, M. A. Shokrgozar et al., Mitochondrial transplantation ameliorates ischemia/reperfusion-induced kidney injury in rat, Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, vol.1866, issue.8, p.165809, 2020.

P. Huang, C. Kuo, H. Lee, N. I. Shen, F. Cheng et al., Transferring Xenogenic Mitochondria Provides Neural Protection against Ischemic Stress in Ischemic Rat Brains, Cell Transplantation, vol.25, issue.5, pp.913-927, 2016.

V. V. Gurevich, Protein multi-functionality: introduction, Cellular and Molecular Life Sciences, vol.76, issue.22, pp.4405-4406, 2019.

Z. Zhang, Z. Ma, C. Yan, K. Pu, M. Wu et al., Muscle-derived autologous mitochondrial transplantation: A novel strategy for treating cerebral ischemic injury, Behavioural Brain Research, vol.356, pp.322-331, 2019.

J. L. Gollihue, S. P. Patel, K. C. Eldahan, D. H. Cox, R. R. Donahue et al., Effects of Mitochondrial Transplantation on Bioenergetics, Cellular Incorporation, and Functional Recovery after Spinal Cord Injury, Journal of Neurotrauma, vol.35, issue.15, pp.1800-1818, 2018.

S. Fang, J. Roan, J. Lee, M. Chiu, M. Lin et al., Transplantation of viable mitochondria attenuates neurologic injury after spinal cord ischemia, The Journal of Thoracic and Cardiovascular Surgery, 2019.

G. Nascimento-dos-santos, E. De-souza-ferreira, R. Lani, C. C. Faria, V. G. Araújo et al., Neuroprotection from optic nerve injury and modulation of oxidative metabolism by transplantation of active mitochondria to the retina, Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, vol.1866, issue.5, p.165686, 2020.

I. P. Doulamis, A. Guariento, T. Duignan, A. Orfany, T. Kido et al., Mitochondrial transplantation for myocardial protection in diabetic hearts, European Journal of Cardio-Thoracic Surgery, vol.57, issue.5, pp.836-845, 2019.

A. Fu, X. Shi, H. Zhang, and B. Fu, Mitotherapy for Fatty Liver by Intravenous Administration of Exogenous Mitochondria in Male Mice, Frontiers in Pharmacology, vol.8, p.241, 2017.

J. Chang, S. Wu, K. Liu, Y. Chen, C. Chuang et al., Allogeneic/xenogeneic transplantation of peptide-labeled mitochondria in Parkinson's disease: restoration of mitochondria functions and attenuation of 6-hydroxydopamine?induced neurotoxicity, Translational Research, vol.170, pp.40-56.e3, 2016.

X. Shi, M. Zhao, C. Fu, and A. Fu, Intravenous administration of mitochondria for treating experimental Parkinson's disease, Mitochondrion, vol.34, pp.91-100, 2017.

O. Robicsek, H. M. Ene, R. Karry, O. Ytzhaki, E. Asor et al., Isolated Mitochondria Transfer Improves Neuronal Differentiation of Schizophrenia-Derived Induced Pluripotent Stem Cells and Rescues Deficits in a Rat Model of the Disorder, Schizophrenia Bulletin, vol.44, issue.2, pp.432-442, 2017.

J. Chang, H. Chang, Y. Wu, W. Cheng, T. Lin et al., Mitochondrial transplantation regulates antitumour activity, chemoresistance and mitochondrial dynamics in breast cancer, Journal of Experimental & Clinical Cancer Research, vol.38, issue.1, 2019.

C. Sun, X. Liu, B. Wang, Z. Wang, Y. Liu et al., Endocytosis-mediated mitochondrial transplantation: Transferring normal human astrocytic mitochondria into glioma cells rescues aerobic respiration and enhances radiosensitivity, Theranostics, vol.9, issue.12, pp.3595-3607, 2019.

A. Pour, P. Kenney, M. C. Kheradvar, and A. , Bioenergetics Consequences of Mitochondrial Transplantation in Cardiomyocytes, J. Am. Heart Assoc, vol.2020, 14501.

S. M. Emani, B. L. Piekarski, D. Harrild, P. J. Del-nido, and J. D. Mccully, Autologous mitochondrial transplantation for dysfunction after ischemia-reperfusion injury, The Journal of Thoracic and Cardiovascular Surgery, vol.154, issue.1, pp.286-289, 2017.

A. Sharma, G. C. Fonarow, J. Butler, J. A. Ezekowitz, and G. M. Felker, Coenzyme Q10 and Heart Failure, Circulation: Heart Failure, vol.9, issue.4, p.e002639, 2016.