S. O. Meroueh, K. Z. Bencze, D. Hesek, M. Lee, J. F. Fisher et al., Three-dimensional structure of the bacterial cell wall peptidoglycan, Proceedings of the National Academy of Sciences, vol.103, issue.12, pp.4404-4409, 2006.

A. Typas, M. Banzhaf, C. A. Gross, and W. Vollmer, From the regulation of peptidoglycan synthesis to bacterial growth and morphology, Nature Reviews Microbiology, vol.10, issue.2, pp.123-136, 2011.

A. J. Egan and W. Vollmer, The physiology of bacterial cell division, Annals of the New York Academy of Sciences, vol.1277, issue.1, pp.8-28, 2012.

W. Vollmer, Bacterial growthdoesrequire peptidoglycan hydrolases, Molecular Microbiology, vol.86, issue.5, pp.1031-1035, 2012.

M. Daffé and H. Marrakchi, Unraveling the Structure of the Mycobacterial Envelope, Microbiology Spectrum, vol.7, issue.4, 2019.

V. Anantharaman and L. Aravind, Evolutionary history, structural features and biochemical diversity of the NlpC/P60 superfamily of enzymes, Genome Biology, vol.4, issue.2, p.R11, 2003.

E. C. Hett, M. C. Chao, and E. J. Rubin, Interaction and Modulation of Two Antagonistic Cell Wall Enzymes of Mycobacteria, PLoS Pathogens, vol.6, issue.7, p.e1001020, 2010.

H. Botella, J. Vaubourgeix, M. H. Lee, N. Song, W. Xu et al., Mycobacterium tuberculosis protease MarP activates a peptidoglycan hydrolase during acid stress, The EMBO Journal, vol.36, issue.4, pp.536-548, 2017.

C. C. Boutte, C. E. Baer, K. Papavinasasundaram, W. Liu, M. R. Chase et al., A cytoplasmic peptidoglycan amidase homologue controls mycobacterial cell wall synthesis, eLife, vol.5, 2016.

K. J. Wu, C. C. Boutte, T. R. Ioerger, and E. J. Rubin, Mycobacterium smegmatis HtrA Blocks the Toxic Activity of a Putative Cell Wall Amidase, Cell Reports, vol.27, issue.8, pp.2468-2479.e3, 2019.

S. Senzani, D. Li, A. Bhaskar, C. Ealand, J. Chang et al., An Amidase_3 domain-containing N-acetylmuramyl-L-alanine amidase is required for mycobacterial cell division, Scientific Reports, vol.7, issue.1, pp.1-16, 2017.

J. He, W. Fu, S. Zhao, C. Zhang, T. Sun et al., Lack of MSMEG_6281, a peptidoglycan amidase, affects cell wall integrity and virulence of Mycobacterium smegmatis, Microbial Pathogenesis, vol.128, pp.405-413, 2019.

X. Li, J. He, W. Fu, P. Cao, S. Zhang et al., Effect of Mycobacterium tuberculosis Rv3717 on cell division and cell adhesion, Microbial Pathogenesis, vol.117, pp.184-190, 2018.

J. Miao, H. Liu, Y. Qu, W. Fu, K. Qi et al., Effect of peptidoglycan amidase MSMEG_6281 on fatty acid metabolism in Mycobacterium smegmatis, Microbial Pathogenesis, vol.140, p.103939, 2020.

D. M. Prigozhin, D. Mavrici, J. P. Huizar, H. J. Vansell, and T. Alber, Structural and Biochemical Analyses ofMycobacterium tuberculosis N-Acetylmuramyl-l-alanine Amidase Rv3717 Point to a Role in Peptidoglycan Fragment Recycling, Journal of Biological Chemistry, vol.288, issue.44, pp.31549-31555, 2013.

A. Kumar, S. Kumar, D. Kumar, A. Mishra, R. P. Dewangan et al., The structure of Rv3717 reveals a novel amidase fromMycobacterium tuberculosis, Acta Crystallographica Section D Biological Crystallography, vol.69, issue.12, pp.2543-2554, 2013.

C. Heidrich, M. F. Templin, A. Ursinus, M. Merdanovic, J. Berger et al., Involvement of N-acetylmuramyl-l-alanine amidases in cell separation and antibiotic-induced autolysis of Escherichia coli, Molecular Microbiology, vol.41, issue.1, pp.167-178, 2001.

C. Heidrich, A. Ursinus, J. Berger, H. Schwarz, and J. Ho?ltje, Effects of Multiple Deletions of Murein Hydrolases on Viability, Septum Cleavage, and Sensitivity to Large Toxic Molecules in Escherichia coli, Journal of Bacteriology, vol.184, issue.22, pp.6093-6099, 2002.

J. Van-heijenoort, Peptidoglycan Hydrolases of Escherichia coli, Microbiology and Molecular Biology Reviews, vol.75, issue.4, pp.636-663, 2011.

C. Healy, A. Gouzy, and S. Ehrt, Peptidoglycan Hydrolases RipA and Ami1 Are Critical for Replication and Persistence of Mycobacterium tuberculosis in the Host, mBio, vol.11, issue.2, 2020.

M. D. Johansen, J. Herrmann, and L. Kremer, Non-tuberculous mycobacteria and the rise of Mycobacterium abscessus, Nature Reviews Microbiology, vol.18, issue.7, pp.392-407, 2020.
URL : https://hal.archives-ouvertes.fr/inserm-02494720

A. Bernut, J. Herrmann, K. Kissa, J. Dubremetz, J. Gaillard et al., Mycobacterium abscessuscording prevents phagocytosis and promotes abscess formation, Proceedings of the National Academy of Sciences, vol.111, issue.10, pp.E943-E952, 2014.

A. Bernut, J. Herrmann, D. Ordway, and L. Kremer, The Diverse Cellular and Animal Models to Decipher the Physiopathological Traits of Mycobacterium abscessus Infection, Frontiers in Cellular and Infection Microbiology, vol.7, p.100, 2017.

A. V. Gutiérrez, A. Viljoen, E. Ghigo, J. Herrmann, and L. Kremer, Glycopeptidolipids, a Double-Edged Sword of the Mycobacterium abscessus Complex, Frontiers in Microbiology, vol.9, 2018.

B. Li, M. Ye, L. Zhao, Q. Guo, J. Chen et al., Glycopeptidolipid Genotype Correlates With the Severity of Mycobacterium abscessus Lung Disease, The Journal of Infectious Diseases, vol.221, issue.Supplement_2, pp.S257-S262, 2020.

M. Richard, A. V. Gutiérrez, A. Viljoen, D. Rodriguez-rincon, F. Roquet-baneres et al., Mutations in the MAB_2299c TetR Regulator Confer Cross-Resistance to Clofazimine and Bedaquiline in Mycobacterium abscessus, Antimicrob. Agents Chemother, vol.63, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02137498

G. L. Woods, B. A. Brown-elliott, P. S. Conville, E. P. Desmond, G. S. Hall et al., Susceptibility Testing of Mycobacteria, Nocardiae, and Other Aerobic Actinomycetes, pp.978-979, 2011.

P. D. Adams, P. V. Afonine, G. Bunkóczi, V. B. Chen, I. W. Davis et al., PHENIX: A comprehensive Python-based system for macromolecular structure solution, Acta Crystallogr. Sect. D Biol. Crystallogr, vol.66, pp.213-221, 2010.

P. Emsley, B. Lohkamp, W. G. Scott, and K. Cowtan, Features and development of Coot, Acta Crystallogr. Sect. D Biol. Crystallogr, vol.66, pp.486-501, 2010.

S. Dallakyan and A. J. Olson, Small-Molecule Library Screening by Docking with PyRx, Methods Mol. Biol, vol.1263, pp.243-250, 2015.

O. Trott and A. J. Olson, AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading, J. Comput. Chem, vol.31, pp.455-461, 2009.

R. L. Lamason, M. P. Mohideen, J. R. Mest, A. C. Wong, H. L. Norton et al., a Putative Cation Exchanger, Affects Pigmentation in Zebrafish and Humans, vol.310, pp.1782-1786, 2005.

F. H. Niesen, H. Berglund, and M. Vedadi, The use of differential scanning fluorimetry to detect ligand interactions that promote protein stability, Nat. Protoc, vol.2, pp.2212-2221, 2007.

C. K. Stover, V. F. De-la-cruz, T. R. Fuerst, J. E. Burlein, L. A. Benson et al., New use of BCG for recombinant vaccines, Nat. Cell Biol, vol.351, pp.456-460, 1991.

C. Chaput, C. Ecobichon, N. Pouradier, J. Rousselle, A. Namane et al., Role of theN-Acetylmuramoyl-l-Alanyl Amidase, AmiA, ofHelicobacter pyloriin Peptidoglycan Metabolism, Daughter Cell Separation, and Virulence, Microb. Drug Resist, vol.22, pp.477-486, 2016.

I. Halloum, S. Carrère-kremer, M. Blaise, A. Viljoen, A. Bernut et al., Deletion of a dehydratase important for intracellular growth and cording renders rough Mycobacterium abscessus avirulent, Proc. Natl. Acad. Sci, vol.113, pp.4228-4237, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02086925

A. Bernut, A. Viljoen, C. Dupont, G. Sapriel, M. Blaise et al., Insights into the smooth-to-rough transitioning in Mycobacterium bolletii unravels a functional Tyr residue conserved in all mycobacterial MmpL family members, Mol. Microbiol, vol.99, pp.866-883, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02137603

M. W. Pantoliano, E. C. Petrella, J. D. Kwasnoski, V. S. Lobanov, J. Myslik et al., High-Density Miniaturized Thermal Shift Assays as a General Strategy for Drug Discovery, J. Biomol. Screen, vol.6, pp.429-440, 2001.

M. Lo, A. Aulabaugh, G. Jin, R. Cowling, J. Bard et al., Evaluation of fluorescence-based thermal shift assays for hit identification in drug discovery, Anal. Biochem, vol.332, pp.153-159, 2004.

W. Tian, C. Chen, X. Lei, J. Zhao, and J. Liang, CASTp 3.0: Computed atlas of surface topography of proteins, Nucleic Acids Res, vol.46, pp.363-367, 2018.

J. Hugonnet, L. W. Tremblay, H. I. Boshoff, C. E. Barry, and J. S. Blanchard, Meropenem-Clavulanate Is Effective Against Extensively Drug-Resistant Mycobacterium tuberculosis, Science, vol.323, pp.1215-1218, 2009.

V. Dubée, A. Bernut, M. Cortes, T. Lesne, D. Dorchene et al., Lactamase inhibition by avibactam in Mycobacterium abscessus, J. Antimicrob. Chemother, vol.70, pp.1051-1058, 2015.

A. Lefebvre, V. Moigne, A. Bernut, C. Veckerlé, F. Compain et al., Inhibition of the ?-Lactamase BlaMab by Avibactam Improves the In Vitro and In Vivo Efficacy of Imipenem against Mycobacterium abscessus, Antimicrob. Agents Chemother, p.61, 2017.

E. C. Hett and E. J. Rubin, Bacterial Growth and Cell Division: A Mycobacterial Perspective

. Microbiol, Mol. Biol. Rev, vol.72, pp.126-156, 2008.

D. Böth, G. Schneider, and R. Schnell, Peptidoglycan Remodeling in Mycobacterium tuberculosis: Comparison of Structures and Catalytic Activities of RipA and RipB, J. Mol. Biol, vol.413, pp.247-260, 2011.

A. Ruggiero, D. Marasco, F. Squeglia, S. Soldini, E. M. Pedone et al., Structure and Functional Regulation of RipA, a Mycobacterial Enzyme Essential for Daughter Cell Separation, Structure, vol.18, pp.1184-1190, 2010.

D. Mavrici, M. J. Marakalala, J. M. Holton, D. M. Prigozhin, C. L. Gee et al., Mycobacterium tuberculosis FtsX extracellular domain activates the peptidoglycan hydrolase, RipC. Proc. Natl. Acad. Sci, vol.111, pp.8037-8042, 2014.

D. Böth, E. M. Steiner, A. Izumi, G. Schneider, and R. Schnell, RipD (Rv1566c) from Mycobacterium tuberculosis: adaptation of an NlpC/p60 domain to a non-catalytic peptidoglycan-binding function, Biochemical Journal, vol.457, issue.1, pp.33-41, 2013.

E. C. Hett, M. C. Chao, L. Deng, and E. J. Rubin, A Mycobacterial Enzyme Essential for Cell Division Synergizes with Resuscitation-Promoting Factor, PLoS Pathog, 2008.

D. J. Martinelli and J. M. Pavelka, The RipA and RipB Peptidoglycan Endopeptidases Are Individually Nonessential to Mycobacterium smegmatis, J. Bacteriol, vol.198, pp.1464-1475, 2016.

M. Lavollay, M. Fourgeaud, J. L. Herrmann, L. Dubost, A. Marie et al., The Peptidoglycan of Mycobacterium abscessus Is Predominantly Cross-Linked by L,D-Transpeptidases, Journal of Bacteriology, vol.193, issue.3, pp.778-782, 2010.

H. Botella, G. Yang, O. Ouerfelli, S. Ehrt, C. F. Nathan et al., Distinct Spatiotemporal Dynamics of Peptidoglycan Synthesis between Mycobacterium smegmatis and Mycobacterium tuberculosis, mBio, vol.8, issue.5, 2017.

V. Dubois, A. Pawlik, A. Bories, V. Le-moigne, O. Sismeiro et al., Mycobacterium abscessus virulence traits unraveled by transcriptomic profiling in amoeba and macrophages, PLOS Pathogens, vol.15, issue.11, p.e1008069, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02379161