T. Kibret, D. Richer, and J. Beyene, Bias in identification of the best treatment in a Bayesian network meta-analysis for binary outcome: a simulation study, Clin Epidemiol, vol.6, pp.451-460, 2014.

L. Trinquart, N. Attiche, A. Bafeta, R. Porcher, and P. Ravaud, Uncertainty in Treatment Rankings: Reanalysis of Network Meta-analyses of Randomized Trials, Annals of Internal Medicine, vol.164, issue.10, p.666, 2016.

L. Mbuagbaw, B. Rochwerg, R. Jaeschke, D. Heels-andsell, W. Alhazzani et al., Approaches to interpreting and choosing the best treatments in network meta-analyses, Systematic Reviews, vol.6, issue.1, p.79, 2017.

A. A. Veroniki, S. E. Straus, G. Rücker, and A. C. Tricco, Is providing uncertainty intervals in treatment ranking helpful in a network meta-analysis?, Journal of Clinical Epidemiology, vol.100, pp.122-129, 2018.

A. Chaimani, G. Salanti, S. Leucht, J. R. Geddes, and A. Cipriani, Common pitfalls and mistakes in the set-up, analysis and interpretation of results in network meta-analysis: what clinicians should look for in a published article, Evidence Based Mental Health, vol.20, issue.3, pp.88-94, 2017.

M. Petropoulou, A. Nikolakopoulou, A. Veroniki, P. Rios, A. Vafaei et al., Bibliographic study showed improving statistical methodology of network meta-analyses published between 1999 and 2015, Journal of Clinical Epidemiology, vol.82, pp.20-28, 2017.

A. Chaimani, D. M. Caldwell, T. Li, J. P. Higgins, and G. Salanti, Additional considerations are required when preparing a protocol for a systematic review with multiple interventions, Journal of Clinical Epidemiology, vol.83, pp.65-74, 2017.

G. Salanti, A. E. Ades, and J. P. Ioannidis, Graphical methods and numerical summaries for presenting results from multiple-treatment meta-analysis: an overview and tutorial, Journal of Clinical Epidemiology, vol.64, issue.2, pp.163-171, 2011.

G. Rücker and G. Schwarzer, Ranking treatments in frequentist network meta-analysis works without resampling methods, BMC Medical Research Methodology, vol.15, issue.1, p.58, 2015.

A. Chaimani and G. Salanti, Visualizing Assumptions and Results in Network Meta-analysis: The Network Graphs Package, The Stata Journal: Promoting communications on statistics and Stata, vol.15, issue.4, pp.905-950, 2015.

G. Salanti, C. Del-giovane, A. Chaimani, D. M. Caldwell, and J. P. Higgins, Evaluating the Quality of Evidence from a Network Meta-Analysis, PLoS ONE, vol.9, issue.7, p.e99682, 2014.

A. Chaimani, J. P. Higgins, D. Mavridis, P. Spyridonos, and G. Salanti, Graphical Tools for Network Meta-Analysis in STATA, PLoS ONE, vol.8, issue.10, p.e76654, 2013.

S. Brin and L. Page, The anatomy of a large-scale hypertextual Web search engine, Computer Networks and ISDN Systems, vol.30, issue.1-7, pp.107-117, 1998.

J. Blanchet, G. Gallego, and V. Goyal, A Markov Chain Approximation to Choice Modeling, Operations Research, vol.64, issue.4, pp.886-905, 2016.

E. Sbidian, A. Chaimani, and I. Garcia-doval, Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis, Cochrane Database Syst Rev, vol.22, issue.12, p.11535, 2017.

O. C. Ibe and . Chap, Discrete-Time Markov Chains, Markov Processes for Stochastic Modeling, vol.2013, pp.59-84, 2013.

C. M. Grinstead, W. Peterson, and J. L. Snell, Probability Tales, 2011.

A. N. Langville and C. D. Meyer, Deeper Inside PageRank, Internet Mathematics, vol.1, issue.3, pp.335-380, 2004.

B. Hutton, G. Salanti, D. M. Caldwell, A. Chaimani, C. H. Schmid et al., The PRISMA Extension Statement for Reporting of Systematic Reviews Incorporating Network Meta-analyses of Health Care Interventions: Checklist and Explanations, Annals of Internal Medicine, vol.162, issue.11, p.777, 2015.

M. A. Puhan, H. J. Schunemann, M. H. Murad, T. Li, R. Brignardello-petersen et al., A GRADE Working Group approach for rating the quality of treatment effect estimates from network meta-analysis, BMJ, vol.349, issue.sep24 5, pp.g5630-g5630, 2014.

A. Nikolakopoulou, J. P. Higgins, T. Papakonstantinou, A. Chaimani, C. Del-giovane et al., CINeMA: An approach for assessing confidence in the results of a network meta-analysis, PLOS Medicine, vol.17, issue.4, p.e1003082, 2020.
URL : https://hal.archives-ouvertes.fr/inserm-02909298

P. H. Garthwaite, J. B. Kadane, and A. O'hagan, Statistical Methods for Eliciting Probability Distributions, Journal of the American Statistical Association, vol.100, issue.470, pp.680-701, 2005.

D. E. Morris, J. E. Oakley, and J. A. Crowe, A web-based tool for eliciting probability distributions from experts, Environmental Modelling & Software, vol.52, pp.1-4, 2014.

I. R. White, Network Meta-analysis, The Stata Journal: Promoting communications on statistics and Stata, vol.15, issue.4, pp.951-985, 2015.

A. Chaimani and G. Salanti, Visualizing Assumptions and Results in Network Meta-analysis: The Network Graphs Package, The Stata Journal: Promoting communications on statistics and Stata, vol.15, issue.4, pp.905-950, 2015.

P. Créquit, L. Trinquart, A. Yavchitz, and P. Ravaud, Wasted research when systematic reviews fail to provide a complete and up-to-date evidence synthesis: the example of lung cancer, BMC Medicine, vol.14, issue.1, p.8, 2016.

P. Créquit, L. Trinquart, and P. Ravaud, Live cumulative network meta-analysis: protocol for second-line treatments in advanced non-small-cell lung cancer with wild-type or unknown status for epidermal growth factor receptor, BMJ Open, vol.6, issue.8, p.e011841, 2016.

A. Nikolakopoulou, D. Mavridis, T. A. Furukawa, A. Cipriani, A. C. Tricco et al., Living network meta-analysis compared with pairwise meta-analysis in comparative effectiveness research: empirical study, BMJ, vol.360, p.k585, 2018.

A. Nikolakopoulou, D. Mavridis, M. Egger, and G. Salanti, Continuously updated network meta-analysis and statistical monitoring for timely decision-making, Statistical Methods in Medical Research, vol.27, issue.5, pp.1312-1330, 2016.

J. H. Elliott, A. Synnot, and T. Turner, Living systematic review: 1. Introduction-the why, what, when, and how, J Clin Epidemiol, vol.91, pp.23-30, 2017.

, Supplemental Information 10: Coding for meta-analysis and recalculation of original data for STATA 13.1 (StataCorp, College Station, TX)., StataCorp. Stata Statistical Software. College Station, TX: StataCorp LP