H. H. Andersen, K. B. Johnsen, and T. Moos, Iron deposits in the chronically inflamed central nervous system and contributes to neurodegeneration, Cell Mol Life Sci, vol.71, issue.9, pp.1607-1629, 2014.

R. W. Wong, D. C. Richa, P. Hahn, W. R. Green, and J. L. Dunaief, Iron toxicity as a potential factor in AMD, Retina, vol.27, issue.8, pp.997-1003, 2007.

D. B. Kell, Iron behaving badly: inappropriate iron chelation as a major contributor to the aetiology of vascular and other progressive inflammatory and degenerative diseases, BMC Med Genomics, vol.2, issue.2, 2009.

G. Moiseyev, Y. Chen, Y. Takahashi, B. X. Wu, and M. Jx, RPE65 is the isomerohydrolase in the retinoid visual cycle, Proc Natl Acad Sci, vol.102, issue.35, pp.12413-12421, 2005.

H. Shichi, Microsomal electron transfer system of bovine retinal pigment epithelium, Exp Eye Res, vol.8, issue.1, pp.60-68, 1969.

J. P. Gnana-prakasam, P. M. Martin, S. B. Smith, and V. Ganapathy, Expression and function of ironregulatory proteins in retina, IUBMB Life, vol.62, issue.5, pp.363-70, 2010.

D. Song and J. L. Dunaief, Retinal iron homeostasis in health and disease, Front Aging Neurosci, vol.5, p.24, 2013.

P. Hahn, G. S. Ying, J. Beard, and J. L. Dunaief, Iron levels in human retina: sex difference and increase with age, Neuroreport, vol.17, issue.17, pp.1803-1809, 2006.

A. Ciudin, C. Hernandez, and R. Simo, Iron overload in diabetic retinopathy: a cause or a consequence of impaired mechanisms?, Exp Diabetes Res, 2010.

P. Hahn, A. H. Milam, and J. L. Dunaief, Maculas affected by age-related macular degeneration contain increased chelatable iron in the retinal pigment epithelium and Bruch's membrane, Arch Ophthalmol, vol.121, issue.8, pp.1099-105, 2003.

A. G. Junemann, P. Stopa, B. Michalke, A. Chaudhri, U. Reulbach et al., Levels of aqueous humor trace elements in patients with non-exsudative age-related macular degeneration: a case-control study, PLoS One, vol.8, issue.2, p.56734, 2013.

B. S. Rogers, R. C. Symons, K. Komeima, J. Shen, W. Xiao et al., Differential sensitivity of cones to iron-mediated oxidative damage, Invest Ophthalmol Vis Sci, vol.48, issue.1, pp.438-483, 2007.

M. G. Yefimova, J. C. Jeanny, N. Keller, C. Sergeant, X. Guillonneau et al., Impaired retinal iron homeostasis associated with defective phagocytosis in Royal College of Surgeons rats, Invest Ophthalmol Vis Sci, vol.43, issue.2, pp.537-582, 2002.

E. Picard, L. Jonet, C. Sergeant, M. H. Vesvres, F. Behar-cohen et al., Overexpressed or intraperitoneally injected human transferrin prevents photoreceptor degeneration in rd10 mice, Mol Vis, vol.16, pp.2612-2637, 2010.

E. Deleon, M. Lederman, E. Berenstein, T. Meir, M. Chevion et al., Alteration in iron metabolism during retinal degeneration in rd10 mouse, Invest Ophthalmol Vis Sci, vol.50, issue.3, pp.1360-1365, 2009.

N. Boddaert, L. Quan-sang, K. H. Rotig, A. Leroy-willig, A. Gallet et al., Selective iron chelation in Friedreich ataxia: biologic and clinical implications, Blood, vol.110, issue.1, pp.401-409, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00687082

D. Devos, C. Moreau, J. C. Devedjian, J. Kluza, M. Petrault et al., Targeting chelatable iron as a therapeutic modality in Parkinson's disease, Antioxid Redox Signal, vol.21, issue.2, pp.195-210, 2014.

M. Hadziahmetovic, M. Pajic, S. Grieco, Y. Song, D. Song et al., The Oral Iron Chelator Deferiprone Protects Against Retinal Degeneration Induced through Diverse Mechanisms, Transl Vis Sci Technol, vol.1, issue.3, p.2, 2012.

M. Hadziahmetovic, M. Pajic, S. Grieco, Y. Song, D. Song et al., The Oral Iron Chelator Deferiprone Protects Against Retinal Degeneration Induced through Diverse Mechanisms, Transl Vis Sci Technol, vol.1, issue.2, pp.7-27, 2012.

M. Hadziahmetovic, Y. Song, N. Wolkow, J. Iacovelli, S. Grieco et al., The oral iron chelator deferiprone protects against iron overloadinduced retinal degeneration, Invest Ophthalmol Vis Sci, vol.52, issue.2, pp.959-68, 2011.

A. Obolensky, E. Berenshtein, M. Lederman, B. Bulvik, R. Alper-pinus et al., Zinc-desferrioxamine attenuates retinal degeneration in the rd10 mouse model of retinitis pigmentosa, Free Radic Biol Med, vol.51, issue.8, pp.1482-91, 2011.

J. S. Baath, W. C. Lam, M. Kirby, and C. A. , Deferoxamine-related ocular toxicity: incidence and outcome in a pediatric population, Retina, vol.28, issue.6, pp.894-903, 2008.

A. Wong, V. Alder, D. Robertson, J. Papadimitriou, J. Maserei et al., Liver iron depletion and toxicity of the iron chelator deferiprone (L1, CP20) in the guinea pig, Biometals, vol.10, issue.4, pp.247-56, 1997.

E. Picard, I. Fontaine, L. Jonet, F. Guillou, F. Behar-cohen et al., The protective role of transferrin in Muller glial cells after iron-induced toxicity, Mol Vis, vol.14, pp.928-969, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02657871

E. Picard, I. Ranchon-cole, L. Jonet, C. Beaumont, F. Behar-cohen et al., Light-induced retinal degeneration correlates with changes in iron metabolism gene expression, ferritin level, and aging, Invest Ophthalmol Vis Sci, vol.52, issue.3, pp.1261-74, 2011.

M. G. Yefimova, J. C. Jeanny, X. Guillonneau, N. Keller, J. Nguyen-legros et al., Iron, ferritin, transferrin, and transferrin receptor in the adult rat retina, Invest Ophthalmol Vis Sci, vol.41, issue.8, pp.2343-51, 2000.
URL : https://hal.archives-ouvertes.fr/hal-02695689

W. K. Noell, V. S. Walker, B. S. Kang, and S. Berman, Retinal damage by light in rats, Invest Ophthalmol, vol.5, issue.5, pp.450-73, 1966.

R. E. Marc, B. W. Jones, C. B. Watt, F. Vazquez-chona, D. K. Vaughan et al., Extreme retinal remodeling triggered by light damage: implications for age related macular degeneration, Mol Vis, vol.14, pp.782-806, 2008.

P. M. Martin, J. P. Gnana-prakasam, P. Roon, R. G. Smith, S. B. Smith et al., Expression and polarized localization of the hemochromatosis gene product HFE in retinal pigment epithelium, Invest Ophthalmol Vis Sci, vol.47, issue.10, pp.4238-4282, 2006.

T. H. Margrain, M. Boulton, J. Marshall, and D. H. Sliney, Do blue light filters confer protection against age-related macular degeneration?, Prog Retin Eye Res, vol.23, issue.5, pp.523-554, 2004.

A. R. Wielgus, R. J. Collier, E. Martin, F. B. Lih, K. B. Tomer et al., Blue light induced A2E oxidation in rat eyes--experimental animal model of dry AMD, Photochem Photobiol Sci, vol.9, issue.11, pp.1505-1517, 2010.

M. Hadziahmetovic, U. Kumar, Y. Song, S. Grieco, D. Song et al., Microarray analysis of murine retinal light damage reveals changes in iron regulatory, complement, and antioxidant genes in the neurosensory retina and isolated RPE, Invest Ophthalmol Vis Sci, vol.53, issue.9, pp.5231-5272, 2012.

M. W. Hentze, M. U. Muckenthaler, B. Galy, and C. C. , Two to tango: regulation of Mammalian iron metabolism, Cell, vol.142, issue.1, pp.24-38, 2010.

M. Rutar, J. M. Provis, and K. Valter, Brief exposure to damaging light causes focal recruitment of macrophages, and long-term destabilization of photoreceptors in the albino rat retina, Curr Eye Res, vol.35, issue.7, pp.631-674, 2010.

A. M. Santos, D. Martin-oliva, R. M. Ferrer-martin, M. Tassi, R. Calvente et al., Microglial response to light-induced photoreceptor degeneration in the mouse retina, J Comp Neurol, vol.518, issue.4, pp.477-92, 2010.

D. T. Organisciak and D. K. Vaughan, Retinal light damage: mechanisms and protection, Prog Retin Eye Res, vol.29, issue.2, pp.113-147, 2010.

E. Touchard, L. Kowalczuk, C. Bloquel, M. C. Naud, P. Bigey et al., The ciliary smooth muscle electrotransfer: basic principles and potential for sustained intraocular production of therapeutic proteins, J Gene Med, vol.12, issue.11, pp.904-923, 2010.

R. E. Fleming, M. C. Migas, C. C. Holden, A. Waheed, R. S. Britton et al., Transferrin receptor 2: continued expression in mouse liver in the face of iron overload and in hereditary hemochromatosis, Proc Natl Acad Sci, vol.97, issue.5, pp.2214-2223, 2000.

D. Wysokinski, J. Blasiak, M. Dorecka, M. Kowalska, J. Robaszkiewicz et al., Variability of the transferrin receptor 2 gene in AMD, Dis Markers, p.507356, 2014.

T. H. Kim, Y. Zhao, M. J. Barber, D. K. Kuharsky, and Y. Xm, Bid-induced cytochrome c release is mediated by a pathway independent of mitochondrial permeability transition pore and Bax, J Biol Chem, vol.275, issue.50, pp.39474-81, 2000.

S. Fassl, C. Leisser, S. Huettenbrenner, S. Maier, G. Rosenberger et al., Transferrin ensures survival of ovarian carcinoma cells when apoptosis is induced by TNFalpha, Oncogene, vol.22, issue.51, pp.8343-55, 2003.

V. Lesnikov, N. Gorden, N. Fausto, E. Spaulding, J. Campbell et al., Transferrin fails to provide protection against Fas-induced hepatic injury in mice with deletion of functional transferrin-receptor type 2, Apoptosis, vol.13, issue.8, pp.1005-1017, 2008.

K. Mangano, P. Fagone, D. Mauro, M. Ascione, E. Maiello et al., The immunobiology of apotransferrin in type 1 diabetes, Clin Exp Immunol, vol.169, issue.3, pp.244-52, 2012.

T. Saksida, D. Miljkovic, G. Timotijevic, I. Stojanovic, S. Mijatovic et al., Apotransferrin inhibits interleukin-2 expression and protects mice from experimental autoimmune encephalomyelitis, J Neuroimmunol, vol.262, issue.1-2, pp.72-80, 2013.

W. Pierpaoli, D. Bulian, and S. Arrighi, Transferrin treatment corrects aging-related immunologic and hormonal decay in old mice, Exp Gerontol, vol.35, issue.3, pp.401-409, 2000.

M. C. Mcgahan, A. M. Grimes, and F. Ln, Transferrin inhibits the ocular inflammatory response, Exp Eye Res, vol.58, issue.4, pp.509-520, 1994.

M. Rutar, R. Natoli, K. Valter, and J. M. Provis, Early focal expression of the chemokine Ccl2 by Muller cells during exposure to damage-inducing bright continuous light, Invest Ophthalmol Vis Sci, vol.52, issue.5, pp.2379-88, 2011.

F. Sennlaub, C. Auvynet, B. Calippe, S. Lavalette, L. Poupel et al., CCR2(+) monocytes infiltrate atrophic lesions in age-related macular disease and mediate photoreceptor degeneration in experimental subretinal inflammation in Cx3cr1 deficient mice, EMBO Mol Med, vol.5, issue.11, pp.1775-93, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-00912837

S. Joly, M. Francke, E. Ulbricht, S. Beck, M. Seeliger et al., Cooperative phagocytes: resident microglia and bone marrow immigrants remove dead photoreceptors in retinal lesions, Am J Pathol, vol.174, issue.6, pp.2310-2333, 2009.

D. Milatovic, S. Zaja-milatovic, K. S. Montine, F. S. Shie, and M. Tj, Neuronal oxidative damage and dendritic degeneration following activation of CD14-dependent innate immune response in vivo, J Neuroinflammation, vol.1, issue.1, p.20, 2004.

Y. Q. Ni, G. Z. Xu, W. Z. Hu, L. Shi, Y. W. Qin et al., Neuroprotective effects of naloxone against light-induced photoreceptor degeneration through inhibiting retinal microglial activation, Invest Ophthalmol Vis Sci, vol.49, issue.6, pp.2589-98, 2008.

D. Yang, S. G. Elner, L. R. Lin, V. N. Reddy, H. R. Petty et al., Association of superoxide anions with retinal pigment epithelial cell apoptosis induced by mononuclear phagocytes, Invest Ophthalmol Vis Sci, vol.50, issue.10, pp.4998-5005, 2009.

T. Lin, G. B. Walker, K. Kurji, E. Fang, G. Law et al., Parainflammation associated with advanced glycation endproduct stimulation of RPE in vitro: implications for age-related degenerative diseases of the eye, Cytokine, vol.62, issue.3, pp.369-81, 2013.

S. Laye, S. Liege, K. S. Li, E. Moze, and P. J. Neveu, Physiological significance of the interleukin 1 receptor accessory protein, Neuroimmunomodulation, vol.9, issue.4, pp.225-255, 2001.
URL : https://hal.archives-ouvertes.fr/hal-02672636

S. Ali, M. Huber, C. Kollewe, S. C. Bischoff, W. Falk et al., IL-1 receptor accessory protein is essential for IL-33-induced activation of T lymphocytes and mast cells, Proc Natl Acad Sci, vol.104, issue.47, pp.18660-18665, 2007.

D. Vera-mudry, M. C. Kronenberg, S. Komatsu, S. , and A. Gd, LEGENDS Figure 1: Time-related distribution of transferrin after intravitreal injection in normal rats, Adult Wistar rat received one intravitreal injection of transferrin (Tf) labeled with fluorochrom, vol.41, pp.813-838, 2013.

, Tf-Alexa 488 (left) co-localized (right) with Müller glial cells stained with anti-cellular retinaldehyde-binding protein (CRALBP) antibody (middle). (B-C) Higher magnification revealed Tf-Alexa on apical side of retinal pigment epithelium revealed with anti-RPE65 antibody (red) (B), and at photoreceptors segments layers stained with rhodopsin (red, asterisk) (C). (D) Tf-Alexa merged (yellow) with transferrin receptor 1 (red), Alexa 488 (green). (A) Two hours after injection

, Alexa co-localized with transferrin receptor 2 (red) in inner segments, outer nuclear layer and inner plexiform layer. (F) Six hours after injection, Tf-Alexa was in overall retina and additionally detected in choroid (Ch) vessels. (G-H) Transferrin levels were quantified in posterior segment tissues (G) and ocular fluids (H) by ELISA assay, 6 and 24 hours after Tf injection. All values are represented as mean± SEM. Student's t-test

*. , , p.1

;. Ch:-choroid and . Gcl, Ganglion cell layer; INL: Inner nuclear layer; IPL: Inner plexiform layer; IS: Inner segment; ONL: Outer nuclear layer; OPL: Outer plexiform layer; OS: Outer segment; RPE: retinal pigment epithelium

, Figure 2: IVT injections of transferrin have no retinal toxicity

, In vivo retinal structure recorded by optical coherence tomography (OCT) 7 days after first transferrin (Tf) IVT injection (D7) and 7 days after the second Tf injection (D14) in rats, demonstrated no retinal histological modifications. (B) Measurement of outer nuclear layer (ONL) from OCT pictures in control not injected rats and rats