O. Warburg, F. Wind, and E. Negelein, The Metabolism of Tumors in the Body, J. Gen. Physiol, vol.8, pp.519-530, 1927.

D. F. Quail and J. A. Joyce, Microenvironmental regulation of tumor progression and metastasis, Nat. Med, vol.19, pp.1423-1437, 2013.

B. Elenbaas and R. A. Weinberg, Heterotypic signaling between epithelial tumor cells and fibroblasts in carcinoma formation, Exp. Cell Res, vol.264, pp.169-184, 2001.

S. Pavlides, D. Whitaker-menezes, R. Castello-cros, N. Flomenberg, A. K. Witkiewicz et al., The reverse Warburg effect: Aerobic glycolysis in cancer associated fibroblasts and the tumor stroma, Cell Cycle, vol.8, pp.3984-4001, 2009.

S. E. Kuzet and C. Gaggioli, Fibroblast activation in cancer: When seed fertilizes soil, Cell Tissue Res, vol.365, pp.607-619, 2016.

A. Sakamoto, S. Kunou, K. Shimada, M. Tsunoda, T. Aoki et al., Pyruvate secreted from patient-derived cancer-associated fibroblasts supports survival of primary lymphoma cells, Cancer Sci, vol.110, pp.269-278, 2019.

T. Fiaschi, A. Marini, E. Giannoni, M. L. Taddei, P. Gandellini et al., Reciprocal Metabolic Reprogramming through Lactate Shuttle Coordinately Influences Tumor-Stroma Interplay, Cancer Res, vol.72, pp.5130-5140, 2012.

L. Ippolito, A. Morandi, M. L. Taddei, M. Parri, G. Comito et al., Cancer-associated fibroblasts promote prostate cancer malignancy via metabolic rewiring and mitochondrial transfer, Oncogene, vol.38, pp.5339-5355, 2019.

K. Sun, S. Tang, Y. Hou, L. Xi, Y. Chen et al., Oxidized ATM-mediated glycolysis enhancement in breast cancer-associated fibroblasts contributes to tumor invasion through lactate as metabolic coupling, vol.41, pp.370-383, 2019.

C. M. Sousa, D. E. Biancur, X. Wang, C. J. Halbrook, M. H. Sherman et al., Pancreatic stellate cells support tumour metabolism through autophagic alanine secretion, Nature, vol.536, pp.479-483, 2016.

L. Yang, A. Achreja, T. L. Yeung, L. S. Mangala, D. Jiang et al., Targeting Stromal Glutamine Synthetase in Tumors Disrupts Tumor Microenvironment-Regulated Cancer Cell Growth, Cell Metab, vol.24, pp.685-700, 2016.

H. Zhao, L. Yang, J. Baddour, A. Achreja, V. Bernard et al., Tumor microenvironment derived exosomes pleiotropically modulate cancer cell metabolism

D. Whitaker-menezes, U. E. Martinez-outschoorn, Z. Lin, A. Ertel, N. Flomenberg et al., Evidence for a stromal-epithelial "lactate shuttle" in human tumors: MCT4 is a marker of oxidative stress in cancer-associated fibroblasts, Cell Cycle, vol.10, pp.1772-1783, 2011.

M. C. Haigis, D. A. Sinclair, and . Mammalian, Sirtuins: Biological Insights and Disease Relevance, Annu. Rev. Pathol. Mech. Dis, vol.5, pp.253-295, 2010.

C. O'callaghan and A. Vassilopoulos, Sirtuins at the crossroads of stemness, aging, and cancer, Aging Cell, vol.16, pp.1208-1218, 2017.

A. Pastò, C. Bellio, G. Pilotto, V. Ciminale, M. Silic-benussi et al., Cancer stem cells from epithelial ovarian cancer patients privilege oxidative phosphorylation, and resist glucose deprivation, Oncotarget, vol.5, pp.4305-4319, 2014.

E. Vlashi, C. Lagadec, L. Vergnes, K. Reue, P. Frohnen et al., Metabolic differences in breast cancer stem cells and differentiated progeny, Breast Cancer Res. Treat, vol.146, pp.525-534, 2014.

P. E. Porporato, V. L. Payen, J. Pérez-escuredo, C. J. De-saedeleer, P. Danhier et al., A Mitochondrial Switch Promotes Tumor Metastasis. Cell Rep, vol.8, pp.754-766, 2014.

H. Pelicano, D. Carney, and P. Huang, ROS stress in cancer cells and therapeutic implications. Drug Resist. Updates, vol.7, pp.97-110, 2004.

M. Sciacovelli, E. Gonçalves, T. I. Johnson, V. R. Zecchini, A. S. Da-costa et al., Fumarate is an epigenetic modifier that elicits epithelial-tomesenchymal transition, Nature, vol.537, pp.544-547, 2016.

F. Demircioglu, J. Wang, J. Candido, A. S. Costa, P. Casado et al., Cancer associated fibroblast FAK regulates malignant cell metabolism, Nat. Commun, vol.11, 1290.

M. Curtis, H. A. Kenny, B. Ashcroft, A. Mukherjee, A. Johnson et al., Fibroblasts Mobilize Tumor Cell Glycogen to Promote Proliferation and Metastasis, Cell Metab, vol.29, pp.141-155, 2019.

C. A. Rebbeck, A. M. Leroi, and A. Burt, Mitochondrial Capture by a Transmissible Cancer, vol.331, 2011.

A. S. Tan, J. W. Baty, L. F. Dong, A. Bezawork-geleta, B. Endaya et al., Mitochondrial Genome Acquisition Restores Respiratory Function and Tumorigenic Potential of Cancer Cells without Mitochondrial DNA, Cell Metab, vol.21, pp.81-94, 2015.

C. S. Lin, H. T. Lee, S. Y. Lee, Y. A. Shen, L. S. Wang et al., High Mitochondrial DNA Copy Number and Bioenergetic Function are Associated with Tumor Invasion of Esophageal Squamous Cell Carcinoma Cell Lines, Int. J. Mol. Sci, vol.13, pp.11228-11246, 2012.

J. L. Spees, S. D. Olson, M. J. Whitney, and D. J. Prockop, Mitochondrial transfer between cells can rescue aerobic respiration, Proc. Natl. Acad. Sci, vol.103, pp.1283-1288, 2006.

A. Caicedo, V. Fritz, J. M. Brondello, M. Ayala, I. Dennemont et al., MitoCeption as a new tool to assess the effects of mesenchymal stem/stromal cell mitochondria on cancer cell metabolism and function, Sci. Rep, vol.5, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01834600

R. Moschoi, V. Imbert, M. Nebout, J. Chiche, D. Mary et al., Protective mitochondrial transfer from bone marrow stromal cells to acute myeloid leukemic cells during chemotherapy, Blood, vol.128, pp.253-264, 2016.

J. Pasquier, B. S. Guerrouahen, H. Thawadi, P. Ghiabi, M. Maleki et al., Preferential transfer of mitochondria from endothelial to cancer cells through tunneling nanotubes modulates chemoresistance, J. Transl. Med, vol.94, issue.11, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02314804

R. Burt, A. Dey, S. Aref, M. Aguiar, A. Akarca et al., Activated stromal cells transfer mitochondria to rescue acute lymphoblastic leukemia cells from oxidative stress, Blood, vol.134, pp.1415-1429, 2019.

S. Maji, S. Panda, S. K. Samal, O. Shriwas, R. Rath et al., Bcl-2 Antiapoptotic Family Proteins and Chemoresistance in Cancer, Advances in Cancer Research, vol.137, pp.37-75, 2018.

H. Yan, B. Y. Guo, and S. Zhang, Cancer-associated fibroblasts attenuate Cisplatin-induced apoptosis in ovarian cancer cells by promoting STAT3 signaling, Biochem. Biophys. Res. Commun, vol.470, pp.947-954, 2016.

L. Tao, G. Huang, R. Wang, Y. Pan, Z. He et al., Cancer-associated fibroblasts treated with cisplatin facilitates chemoresistance of lung adenocarcinoma through IL-11/IL-11R/STAT3 signaling pathway, Sci. Rep, vol.6, 2016.

X. Long, W. Xiong, X. Zeng, L. Qi, Y. Cai et al., Cancer-associated fibroblasts promote cisplatin resistance in bladder cancer cells by increasing IGF-1/ER?/Bcl-2 signalling, Cell Death Dis, vol.10, 2019.

K. Louault, T. L. Bonneaud, C. Séveno, P. Gomez-bougie, F. Nguyen et al., Interactions between cancer-associated fibroblasts and tumor cells promote MCL-1 dependency in estrogen receptor-positive breast cancers, Oncogene, vol.38, pp.3261-3273, 2019.
URL : https://hal.archives-ouvertes.fr/inserm-01991165

K. J. Weigel, A. Jakimenko, B. A. Conti, S. E. Chapman, W. J. Kaliney et al., Z.T. CAF-Secreted IGFBPs Regulate Breast Cancer Cell Anoikis. Mol. Cancer Res, vol.12, pp.855-866, 2014.

A. Marusyk, D. P. Tabassum, M. Janiszewska, A. E. Place, A. Trinh et al., Spatial Proximity to Fibroblasts Impacts Molecular Features and Therapeutic Sensitivity of Breast Cancer Cells Influencing Clinical Outcomes, Cancer Res, vol.76, pp.6495-6506, 2016.

T. Armstrong, Type I Collagen Promotes the Malignant Phenotype of Pancreatic Ductal Adenocarcinoma, Clin. Cancer Res, vol.10, pp.7427-7437, 2004.

F. Aoudjit and K. Vuori, Integrin signaling inhibits paclitaxel-induced apoptosis in breast cancer cells, Oncogene, vol.20, pp.4995-5004, 2001.

J. An, A. Enomoto, L. Weng, T. Kato, A. Iwakoshi et al., Significance of cancer-associated fibroblasts in the regulation of gene expression in the leading cells of invasive lung cancer, J. Cancer Res. Clin. Oncol, vol.139, pp.379-388, 2013.

S. Dupont, L. Morsut, M. Aragona, E. Enzo, S. Giulitti et al., Role of YAP/TAZ in mechanotransduction, Nature, vol.474, pp.179-183, 2011.

X. Chen, W. Gu, Q. Wang, X. Fu, Y. Wang et al., C-MYC and BCL-2 mediate YAP-regulated tumorigenesis in OSCC, Oncotarget, vol.9, pp.668-679, 2018.

S. S. Müerköster, V. Werbing, D. Koch, B. Sipos, O. Ammerpohl et al., Role of myofibroblasts in innate chemoresistance of pancreatic carcinoma-Epigenetic downregulation of caspases, Int. J. Cancer, vol.123, pp.1751-1760, 2008.

L. Wang, X. Li, Y. Ren, H. Geng, Q. Zhang et al., Cancer-associated fibroblasts contribute to cisplatin resistance by modulating ANXA 3 in lung cancer cells, Cancer Sci, vol.110, pp.1609-1620, 2019.

C. Duluc, S. Moatassim-billah, M. Chalabi-dchar, A. Perraud, R. Samain et al., Pharmacological targeting of the protein synthesis mTOR/4E-BP1 pathway in cancer-associated fibroblasts abrogates pancreatic tumour chemoresistance, EMBO Mol. Med, vol.7, pp.735-753, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02421448

W. Huanwen, L. Zhiyong, S. Xiaohua, R. Xinyu, W. Kai et al., Intrinsic chemoresistance to gemcitabine is associated with constitutive and laminin-induced phosphorylation of FAK in pancreatic cancer cell lines, Mol. Cancer, vol.8, p.125, 2009.

Z. X. Chen and S. Pervaiz, Bcl-2 induces pro-oxidant state by engaging mitochondrial respiration in tumor cells, Cell Death Differ, vol.14, pp.1617-1627, 2007.

Y. Chen, M. A. Aon, Y. T. Hsu, L. Soane, X. Teng et al., Bcl-xL regulates mitochondrial energetics by stabilizing the inner membrane potential, J. Cell Biol, vol.195, pp.263-276, 2011.

H. Huang, K. Shah, N. A. Bradbury, C. Li, and C. White, Mcl-1 promotes lung cancer cell migration by directly interacting with VDAC to increase mitochondrial Ca 2+ uptake and reactive oxygen species generation, Cell Death Dis, 1482.

R. M. Perciavalle, D. P. Stewart, B. Koss, J. Lynch, S. Milasta et al., Anti-apoptotic MCL-1 localizes to the mitochondrial matrix and couples mitochondrial fusion to respiration, Nat. Cell Biol, vol.14, pp.575-583, 2012.

M. G. Heiden, X. X. Li, E. Gottleib, R. B. Hill, C. B. Thompson et al., Bcl-xL promotes the open configuration of the voltage-dependent anion channel and metabolite passage through the outer mitochondrial membrane, J. Biol. Chem, vol.276, pp.19414-19419, 2001.

K. N. Alavian, H. Li, L. Collis, L. Bonanni, L. Zeng et al., Bcl-xL regulates metabolic efficiency of neurons through interaction with the mitochondrial F1FO ATP synthase, Nat. Cell Biol, vol.13, pp.1224-1233, 2011.

Z. Zhang, Z. Gao, S. Rajthala, D. Sapkota, H. Dongre et al., Metabolic reprogramming of normal oral fibroblasts correlated with increased glycolytic metabolism of oral squamous cell carcinoma and precedes their activation into carcinoma associated fibroblasts, Cell. Mol. Life Sci, vol.77, pp.1115-1133, 2020.

U. E. Martinez-outschoorn, Z. Lin, C. Trimmer, N. Flomenberg, C. Wang et al., Cancer cells metabolically "fertilize" the tumor microenvironment with hydrogen peroxide, driving the Warburg effect: Implications for PET imaging of human tumors, Cell Cycle, vol.10, pp.2504-2520, 2011.

J. S. Sung, C. W. Kang, S. Kang, Y. Jang, Y. C. Chae et al., ITGB4-mediated metabolic reprogramming of cancer-associated fibroblasts, Oncogene, vol.39, pp.664-676, 2020.

T. Bertero, W. M. Oldham, E. M. Grasset, I. Bourget, E. Boulter et al., Tumor-Stroma Mechanics Coordinate Amino Acid Availability to Sustain Tumor Growth and Malignancy, Cell Metab, vol.29, pp.124-140, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01998873

R. Kalluri, The biology and function of fibroblasts in cancer, Nat. Rev. Cancer, vol.16, pp.582-598, 2016.

M. Jain, S. Rivera, E. A. Monclus, L. Synenki, A. Zirk et al., Mitochondrial reactive oxygen species regulate transforming growth factor-? signaling, J. Biol. Chem, vol.288, pp.770-777, 2013.

M. L. Taddei, E. Giannoni, G. Raugei, S. Scacco, A. M. Sardanelli et al., Mitochondrial Oxidative Stress due to Complex I Dysfunction Promotes Fibroblast Activation and Melanoma Cell Invasiveness, J. Signal. Transduct, vol.684592, 2012.

J. Frijhoff, M. Dagnell, M. Augsten, E. Beltrami, M. Giorgio et al., The mitochondrial reactive oxygen species regulator p66Shc controls PDGF-induced signaling and migration through protein tyrosine phosphatase oxidation. Free Radic, Biol. Med, vol.68, pp.268-277, 2014.

Y. Wang, M. Lu, L. Xiong, J. Fan, Y. Zhou et al., Drp1-mediated mitochondrial fission promotes renal fibroblast activation and fibrogenesis, Cell Death Dis, vol.11, 2020.

N. Xie, Z. Tan, S. Banerjee, H. Cui, J. Ge et al., Glycolytic Reprogramming in Myofibroblast Differentiation and Lung Fibrosis, Am. J. Respir. Crit. Care Med, vol.192, pp.1462-1474, 2015.

V. Petrova, M. Annicchiarico-petruzzelli, and G. Melino, Amelio, I. The hypoxic tumour microenvironment, vol.7, 2018.

G. Gentric, V. Mieulet, and F. Mechta-grigoriou, Heterogeneity in Cancer Metabolism: New Concepts in an Old Field, Antioxid. Redox Signal, vol.26, pp.462-485, 2017.
URL : https://hal.archives-ouvertes.fr/inserm-02454376

A. Strickaert, M. Saiselet, G. Dom, X. De-deken, J. E. Dumont et al., Cancer heterogeneity is not compatible with one unique cancer cell metabolic map, vol.36, pp.2637-2642, 2017.

H. M. Begum, H. P. Ta, H. Zhou, Y. Ando, D. Kang et al., Spatial Regulation of Mitochondrial Heterogeneity by Stromal Confinement in Micropatterned Tumor Models, Sci. Rep, vol.9, 2019.

A. Tasdogan, B. Faubert, V. Ramesh, J. M. Ubellacker, B. Shen et al., Metabolic heterogeneity confers differences in melanoma metastatic potential, Nature, vol.577, pp.115-120, 2020.

S. K. Yeo, X. Zhu, T. Okamoto, M. Hao, C. Wang et al., Single-cell RNA-sequencing reveals distinct patterns of cell state heterogeneity in mouse models of breast cancer, Elife, vol.2020

J. Choi, D. H. Kim, W. H. Jung, and J. S. Koo, Metabolic interaction between cancer cells and stromal cells according to breast cancer molecular subtype, Breast Cancer Res, vol.15, 2013.

V. S. Lebleu and R. Kalluri, A peek into cancer-associated fibroblasts: Origins, functions and translational impact, Dis. Model. Mech, vol.11, 2018.

A. Costa, Y. Kieffer, A. Scholer-dahirel, F. Pelon, B. Bourachot et al., Fibroblast Heterogeneity and Immunosuppressive Environment in Human Breast Cancer. Cancer Cell, vol.33, pp.463-479, 2018.

A. M. Givel, Y. Kieffer, A. Scholer-dahirel, P. Sirven, M. Cardon et al., miR200-regulated CXCL12? promotes fibroblast heterogeneity and immunosuppression in ovarian cancers, Nat. Commun, vol.9, 1056.
URL : https://hal.archives-ouvertes.fr/inserm-02437797

J. Qian, S. Olbrecht, B. Boeckx, H. Vos, D. Laoui et al., A pan-cancer blueprint of the heterogeneous tumor microenvironment revealed by single-cell profiling, Cell Res, vol.30, pp.745-762, 2020.

W. Yan, X. Wu, W. Zhou, M. Y. Fong, M. Cao et al., Cancer-cell-secreted exosomal miR-105 promotes tumour growth through the MYC-dependent metabolic reprogramming of stromal cells, Nat. Cell Biol, vol.20, pp.597-609, 2018.

E. A. Zaal and C. R. Berkers, The Influence of Metabolism on Drug Response in Cancer, Front. Oncol, vol.8, p.500, 2018.

I. L. Romero, A. Mukherjee, H. A. Kenny, L. M. Litchfield, and E. Lengyel, Molecular Pathways: Trafficking of Metabolic Resources in the Tumor Microenvironment, Clin. Cancer Res, vol.21, pp.680-686, 2015.

L. M. Becker, J. T. O'connell, A. P. Vo, M. P. Cain, D. Tampe et al., Epigenetic Reprogramming of Cancer-Associated Fibroblasts Deregulates Glucose Metabolism and Facilitates Progression of Breast Cancer

G. Bonuccelli, A. Tsirigos, D. Whitaker-menezes, S. Pavlides, R. G. Pestell et al., Ketones and lactate "fuel" tumor growth and metastasis: Evidence that epithelial cancer cells use oxidative mitochondrial metabolism, Cell Cycle, vol.9, pp.3506-3514, 2010.

N. Ho and B. L. Coomber, Pyruvate dehydrogenase kinase expression and metabolic changes following dichloroacetate exposure in anoxic human colorectal cancer cells, Exp. Cell Res, vol.331, pp.73-81, 2015.

V. L. Payen, E. Mina, V. F. Van-hée, P. E. Porporato, and P. Sonveaux, Monocarboxylate transporters in cancer, Mol. Metab, vol.33, pp.48-66, 2020.

C. S. Hong, N. A. Graham, W. Gu, C. Espindola-camacho, V. Mah et al., MCT1 Modulates Cancer Cell Pyruvate Export and Growth of Tumors that Co-express MCT1 and MCT4, Cell Rep, vol.14, pp.1590-1601, 2016.

F. Morais-santos, S. Granja, V. Miranda-gonçalves, A. H. Moreira, S. Queirós et al., Targeting lactate transport suppresses in vivo breast tumour growth, Oncotarget, vol.6, pp.19177-19189, 2015.

B. B. Patel, E. Ackerstaff, I. S. Serganova, J. E. Kerrigan, R. G. Blasberg et al., Tumor stroma interaction is mediated by monocarboxylate metabolism, Exp. Cell Res, vol.352, pp.20-33, 2017.

C. Corbet, E. Bastien, N. Draoui, B. Doix, L. Mignion et al., Interruption of lactate uptake by inhibiting mitochondrial pyruvate transport unravels direct antitumor and radiosensitizing effects, Nat. Commun, vol.9, 2018.

B. M. Bola, A. L. Chadwick, F. Michopoulos, K. G. Blount, B. A. Telfer et al., Inhibition of Monocarboxylate Transporter-1 (MCT1) by AZD3965 Enhances Radiosensitivity by Reducing Lactate Transport, Mol. Cancer Ther, vol.13, pp.2805-2816, 2014.

D. E. Biancur, J. A. Paulo, B. Ma?achowska, Q. M. Del-rey, C. M. Sousa et al., Compensatory metabolic networks in pancreatic cancers upon perturbation of glutamine metabolism, Nat. Commun, vol.8, 2017.

S. J. Parker, C. R. Amendola, K. E. Hollinshead, Q. Yu, K. Yamamoto et al., Selective alanine transporter utilization creates a targetable metabolic niche in pancreatic cancer

Y. Wang, H. An, T. Liu, C. Qin, H. Sesaki et al., Metformin Improves Mitochondrial Respiratory Activity through Activation of AMPK. Cell Rep, vol.29, pp.1511-1523, 2019.

S. Shao, L. Zhao, G. An, L. Zhang, X. Jing et al., Metformin suppresses HIF-1? expression in cancer-associated fibroblasts to prevent tumor-stromal cross talk in breast cancer, FASEB J, 2020.

S. Xu, Z. Yang, P. Jin, X. Yang, X. Li et al., Metformin Suppresses Tumor Progression by Inactivating Stromal Fibroblasts in Ovarian Cancer, Mol. Cancer Ther, vol.17, pp.1291-1302, 2018.

Z. Zhang, X. Liang, Y. Fan, Z. Gao, L. A. Bindoff et al., Fibroblasts rescue oral squamous cancer cell from metformin-induced apoptosis via alleviating metabolic disbalance and inhibiting AMPK pathway, Cell Cycle, vol.18, pp.949-962, 2019.

K. A. Sarosiek, C. Fraser, N. Muthalagu, P. D. Bhola, W. Chang et al., Developmental Regulation of Mitochondrial Apoptosis by c-Myc Governs Age-and Tissue-Specific Sensitivity to Cancer Therapeutics, Cancer Cell, vol.31, pp.142-156, 2017.

D. Lagares, A. Santos, P. E. Grasberger, F. Liu, C. K. Probst et al., Targeted apoptosis of myofibroblasts with the BH3 mimetic ABT-263 reverses established fibrosis, Sci. Transl. Med, vol.9, 2017.

S. Rizvi, J. C. Mertens, S. F. Bronk, P. Hirsova, H. Dai et al., Platelet-derived Growth Factor Primes Cancer-associated Fibroblasts for Apoptosis, J. Biol. Chem, vol.289, pp.22835-22849, 2014.

M. Cadamuro, S. Brivio, J. Mertens, M. Vismara, A. Moncsek et al., Platelet-derived growth factor-D enables liver myofibroblasts to promote tumor lymphangiogenesis in cholangiocarcinoma, J. Hepatol, vol.70, pp.700-709, 2019.

J. C. Mertens, C. D. Fingas, J. D. Christensen, R. L. Smoot, S. F. Bronk et al., Therapeutic effects of deleting cancer-associated fibroblasts in cholangiocarcinoma, Cancer Res, vol.73, pp.897-907, 2013.