M. Goyal, B. K. Menon, W. H. Van-zwam, D. W. Dippel, P. J. Mitchell et al., Endovascular thrombectomy after large-vessel ischaemic stroke: a meta-analysis of individual patient data from five randomised trials, Lancet, vol.387, pp.1723-1754, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01876049

C. A. Molina, Futile recanalization in mechanical embolectomy trials: a call to improve selection of patients for revascularization, Stroke, vol.41, issue.5, pp.842-845, 2010.

S. I. Savitz, J. C. Baron, M. A. Yenari, N. Sanossian, and M. Fisher, Reconsidering Neuroprotection in the Reperfusion Era, Stroke, vol.48, issue.12, pp.3413-3419, 2017.

J. Baron, Protecting the ischaemic penumbra as an adjunct to thrombectomy for acute stroke, Nature Reviews Neurology, vol.14, issue.6, pp.325-337, 2018.

D. Silva, D. A. Fink, J. N. Christensen, S. Ebinger, M. Bladin et al., Assessing reperfusion and recanalization as markers of clinical outcomes after intravenous thrombolysis in the echoplanar imaging thrombolytic evaluation trial (EPITHET), Stroke, vol.40, issue.8, pp.2872-2876, 2009.

A. Eilaghi, J. Brooks, C. Esterre, L. Zhang, R. H. Swartz et al., Reperfusion is a stronger predictor of good clinical outcome than recanalization in ischemic stroke, Radiology, vol.269, issue.1, pp.240-248, 2013.

T. H. Cho, N. Nighoghossian, I. K. Mikkelsen, L. Derex, M. Hermier et al., Reperfusion within 6 hours outperforms recanalization in predicting penumbra salvage, lesion growth, final infarct, and clinical outcome, Stroke, vol.46, issue.6, pp.1582-1591, 2015.

M. El-amki and S. Wegener, Improving Cerebral Blood Flow after Arterial Recanalization: A Novel Therapeutic Strategy in Stroke, Int J Mol Sci, vol.18, issue.12, 2017.

A. Ames, R. L. Wright, M. Kowada, J. M. Thurston, and G. Majno, Cerebral ischemia. II. The no-reflow phenomenon, Am J Pathol, vol.52, issue.2, pp.437-53, 1968.

J. R. Little, F. W. Kerr, and T. M. Sundt, Microcirculatory Obstruction in Focal Cerebral Ischemia: An Electron Microscopic Investigation in Monkeys Stroke, vol.7, pp.25-30, 1976.

M. Yemisci, Y. Gursoy-ozdemir, A. Vural, A. Can, K. Topalkara et al., Pericyte contraction induced by oxidative-nitrative stress impairs capillary reflow despite successful opening of an occluded cerebral artery, Nat Med, vol.15, issue.9, pp.1031-1038, 2009.

F. E. Burrows, N. Bray, A. Denes, S. M. Allan, and I. Schiessl, Delayed reperfusion deficits after experimental stroke account for increased pathophysiology, J Cereb Blood Flow Metab, 2015.

J. P. Desilles, V. Syvannarath, D. Meglio, L. Ducroux, C. Boisseau et al., Downstream Microvascular Thrombosis in Cortical Venules Is an Early Response to Proximal Cerebral Arterial Occlusion, J Am Heart Assoc, vol.7, issue.5, 2018.

C. N. Hall, C. Reynell, B. Gesslein, N. B. Hamilton, A. Mishra et al., Capillary pericytes regulate cerebral blood flow in health and disease, Nature, vol.508, issue.7494, pp.55-60, 2014.

R. A. Hill, L. Tong, P. Yuan, S. Murikinati, S. Gupta et al., Regional Blood Flow in the Normal and Ischemic Brain Is Controlled by Arteriolar Smooth Muscle Cell Contractility and Not by Capillary Pericytes, Neuron, vol.87, issue.1, pp.95-110, 2015.

T. Dalkara and E. M. Arsava, Can restoring incomplete microcirculatory reperfusion improve stroke outcome after thrombolysis?, J Cereb Blood Flow Metab, vol.32, issue.12, pp.2091-2100, 2012.

T. Dalkara, Pericytes: A Novel Target to Improve Success of Recanalization Therapies, Stroke, vol.50, issue.10, pp.2985-2991, 2019.

M. Goyal, K. M. Fargen, A. S. Turk, J. Mocco, D. S. Liebeskind et al., 2C or not 2C: defining an improved revascularization grading scale and the need for standardization of angiography outcomes in stroke trials, J Neurointerv Surg, vol.6, issue.2, pp.83-89, 2014.

N. E. Lecouffe, M. Kappelhof, K. M. Treurniet, H. F. Lingsma, G. Zhang et al., What Should Be the Angiographic Target for Endovascular Treatment in Ischemic Stroke?, Stroke, vol.2, issue.6, pp.1790-1796, 2020.

G. Zaharchuk, Arterial spin-labeled perfusion imaging in acute ischemic stroke, Stroke, 2014.

G. W. Harston, T. W. Okell, F. Sheerin, U. Schulz, P. Mathieson et al., Quantification of Serial Cerebral Blood Flow in Acute Stroke Using Arterial Spin Labeling, Stroke, vol.48, issue.1, pp.123-130, 2017.

B. P. Soares, E. Tong, J. Hom, S. C. Cheng, J. Bredno et al., Reperfusion is a more accurate predictor of follow-up infarct volume than recanalization: a proof of concept using CT in acute ischemic stroke patients, Stroke, vol.41, issue.1, pp.34-40, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02076790

A. D. Horsch, J. W. Dankbaar, J. M. Niesten, T. Van-seeters, I. C. Van-der-schaaf et al., Predictors of reperfusion in patients with acute ischemic stroke, AJNR Am J Neuroradiol, 2015.

F. Carbone, G. Busto, M. Padroni, A. Bernardoni, S. Colagrande et al., Radiologic Cerebral Reperfusion at 24 h Predicts Good Clinical Outcome, Transl Stroke Res, vol.10, issue.2, pp.178-188, 2019.

G. W. Albers, V. N. Thijs, L. Wechsler, S. Kemp, G. Schlaug et al., Magnetic resonance imaging profiles predict clinical response to early reperfusion: the diffusion and perfusion imaging evaluation for understanding stroke evolution (DEFUSE) study, Ann Neurol, 2006.

G. W. Albers, M. Goyal, R. Jahan, A. Bonafe, H. C. Diener et al., Relationships Between Imaging Assessments and Outcomes in Solitaire With the Intention for Thrombectomy as Primary Endovascular Treatment for Acute Ischemic Stroke, Stroke, vol.46, issue.10, pp.2786-94, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01954333

B. C. Campbell, P. J. Mitchell, T. J. Kleinig, H. M. Dewey, L. Churilov et al., Endovascular Therapy for Ischemic Stroke with Perfusion-Imaging Selection, N Engl J Med, 2015.

G. W. Albers, Thrombectomy for stroke at 6 to 16 hours with selection by perfusion imaging, N. Engl. J. Med, 2018.

M. Gauberti, B. Lapergue, S. Martinez-de-lizarrondo, V. D. Richard, S. Bracard et al., Ischemia-Reperfusion Injury After Endovascular Thrombectomy for Ischemic Stroke, Stroke, vol.49, issue.12, pp.3071-3074, 2018.

N. Nagaraja, J. R. Forder, S. Warach, and J. G. Merino, Reversible diffusion-weighted imaging lesions in acute ischemic stroke: A systematic review, Neurology, vol.94, issue.13, pp.571-587, 2020.

R. B. Morawetz, U. Degirolami, R. G. Ojemann, F. W. Marcoux, and R. M. Crowell, Cerebral blood flow determined by hydrogen clearance during middle cerebral artery occlusion in unanesthetized monkeys, Stroke, vol.9, issue.2, pp.143-152, 1978.

P. A. Li, J. Vogel, M. Smith, Q. P. He, W. Kuschinsky et al., Capillary patency after transient middle cerebral artery occlusion of 2 h duration, Neurosci Lett, vol.253, issue.3, pp.191-195, 1998.

E. M. Arsava, A. Arat, M. A. Topcuoglu, A. Peker, M. Yemisci et al., Angiographic Microcirculatory Obstructions Distal to Occlusion Signify Poor Outcome after Endovascular Treatment for Acute Ischemic Stroke, Transl Stroke Res, vol.9, issue.1, pp.44-50, 2018.

S. Okazaki, H. Yamagami, T. Yoshimoto, Y. Morita, H. Yamamoto et al., Cerebral hyperperfusion on arterial spin labeling MRI after reperfusion therapy is related to hemorrhagic transformation, J Cereb Blood Flow Metab, vol.37, issue.9, pp.3087-3090, 2017.

G. J. Del-zoppo, F. R. Sharp, W. D. Heiss, and G. W. Albers, Heterogeneity in the penumbra, J Cereb Blood Flow Metab, vol.31, issue.9, pp.1836-51, 2011.

J. Bai and P. D. Lyden, Revisiting cerebral postischemic reperfusion injury: new insights in understanding reperfusion failure, hemorrhage, and edema, Int J Stroke, vol.10, issue.2, pp.143-52, 2015.

J. C. Baron, H. Yamauchi, M. Fujioka, and M. Endres, Selective neuronal loss in ischemic stroke and cerebrovascular disease, J Cereb Blood Flow Metab, vol.34, issue.1, pp.2-18, 2014.

J. V. Guadagno, P. S. Jones, F. I. Aigbirhio, D. Wang, T. D. Fryer et al., Selective neuronal loss in rescued penumbra relates to initial hypoperfusion, Brain, vol.131, pp.2666-78, 2008.

R. S. Morris, S. Jones, P. Alawneh, J. A. Hong, Y. T. Fryer et al., Relationships between selective neuronal loss and microglial activation after ischaemic stroke in man, Brain, vol.141, issue.7, pp.2098-2111, 2018.

D. Saur, R. Buchert, R. Knab, C. Weiller, and J. Rother, Iomazenil-single-photon emission computed tomography reveals selective neuronal loss in magnetic resonance-defined mismatch areas, Stroke, vol.37, issue.11, pp.2713-2722, 2006.

S. Ejaz, J. V. Emmrich, S. J. Sawiak, D. J. Williamson, and J. C. Baron, Cortical selective neuronal loss, impaired behavior, and normal magnetic resonance imaging in a new rat model of true transient ischemic attacks, Stroke, vol.46, issue.4, pp.1084-92, 2015.

K. M. Sicard, N. Henninger, M. Fisher, T. Q. Duong, and C. F. Ferris, Long-term changes of functional MRIbased brain function, behavioral status, and histopathology after transient focal cerebral ischemia in rats, Stroke, vol.37, issue.10, pp.2593-600, 2006.

E. Carrera, P. S. Jones, R. S. Morris, J. Alawneh, Y. T. Hong et al., Is neural activation within the rescued penumbra impeded by selective neuronal loss?, Brain, vol.136, pp.1816-1845, 2013.

D. M. Feeney, J. C. Baron, and . Diaschisis, Stroke, vol.17, issue.5, pp.817-847, 1986.

S. Iglesias, G. Marchal, F. Viader, and J. C. Baron, Delayed intrahemispheric remote hypometabolism. Correlations with early recovery after stroke, Cerebrovasc Dis, vol.10, issue.5, pp.391-402, 2000.

C. Wang, P. Miao, J. Liu, S. Wei, Y. Guo et al., Cerebral blood flow features in chronic subcortical stroke: Lesion location-dependent study, Brain Res, vol.1706, pp.177-183, 2019.

, Groin puncture to recanalization delay (min), median (IQR), vol.30, pp.16-46

, Admission MRI to recanalization delay (min), median (IQR), vol.84, pp.55-101

, Stroke onset* to recanalization delay (min), median (IQR), vol.196, pp.154-230

, Last-time-seen-well to recanalization delay (min), median (IQR) hr follow-up DWI-lesion volume (mL), median (IQR), pp.13-19

, Admission to follow-up DWI lesion volume change (mL), median (IQR)

, IQR=Interquartile range; mTICI= modified Treatment In Cerebral Ischemia; NIHSS=National Institutes of Health Stroke Scale

. Mrs=modified-rankin-scale, Onset of symptoms: for stroke with unknown time, time when the patient was found symptomatic; ?: ?8-point decrease in 24hr NIHSS relative to baseline