S. F. Pedersen, G. Owsianik, and B. Nilius, TRP channels: an overview, Cell Calcium, vol.38, pp.233-252, 2005.

M. J. Caterina, M. A. Schumacher, M. Tominaga, T. A. Rosen, J. D. Levine et al., The capsaicin receptor: a heat-activated ion channel in the pain pathway, Nature, vol.389, pp.816-824, 1997.

M. Liao, E. Cao, D. Julius, and Y. Cheng, Structure of the TRPV1 ion channel determined by electron cryo-microscopy, Nature, vol.504, pp.107-112, 2013.

D. Julius, TRP channels and pain, Annu. Rev. Cell Dev. Biol, vol.29, pp.355-384, 2013.

J. K. Bujak, D. Kosmala, I. M. Szopa, K. Majchrzak, and P. Bednarczyk, Inflammation, Cancer and Immunity-Implication of TRPV1 Channel, Front. Oncol, vol.9, 2019.

M. V. Storozhuk, O. F. Moroz, and A. V. Zholos, Multifunctional TRPV1 Ion Channels in Physiology and Pathology with Focus on the Brain, Vasculature, and Some Visceral Systems, Biomed Res. Int, vol.5806321, 2019.

T. Voets, G. Droogmans, U. Wissenbach, A. Janssens, V. Flockerzi et al., The principle of temperaturedependent gating in cold-and heat-sensitive TRP channels, Nature, vol.430, pp.748-754, 2004.

S. Jordt, M. Tominaga, and D. Julius, Acid potentiation of the capsaicin receptor determined by a key extracellular site, Proc. Natl. Acad. Sci, vol.97, pp.8134-8139, 2000.

M. J. Caterina, A. Leffler, A. B. Malmberg, W. J. Martin, J. Trafton et al., Impaired Nociception and Pain Sensation in Mice Lacking the Capsaicin Receptor, Science, vol.288, pp.306-313, 2000.

A. Garami, E. Pakai, D. L. Oliveira, A. A. Steiner, S. P. Wanner et al., Thermoregulatory Phenotype of the Trpv1 Knockout Mouse: Thermoeffector Dysbalance with Hyperkinesis, J. Neurosci, vol.31, pp.1721-1733, 2011.

T. Follansbee, Y. Zhou, X. Wu, J. Delahanty, A. Nguyen et al., Signs of chronic itch in the mouse imiquimod model of psoriasiform dermatitis: sex differences and roles of TRPV1 and TRPA1

A. S. Hudson, A. C. Kunstetter, W. C. Damasceno, and S. P. Wanner, Involvement of the TRPV1 channel in the modulation of spontaneous locomotor activity, physical performance and physical exercise-induced physiological responses. Braz, J. Med. Biol. Res, vol.49, 2016.

T. Oh and F. Ohta, Dose-dependent effect of capsaicin on endurance capacity in rats, Br. J. Nutr, vol.90, pp.515-520, 2003.

Z. Luo, L. Ma, Z. Zhao, H. He, D. Yang et al., TRPV1 activation improves exercise endurance and energy metabolism through PGC-1? upregulation in mice, Cell Res, 2011.

K. Sahin, C. Orhan, M. Tuzcu, N. Sahin, F. Erten et al., Capsaicinoids improve consequences of physical activity, Toxicol Rep, vol.5, pp.598-607, 2018.

F. Trudeau and M. Milot, Capsaicin-sensitive nerves and endurance exercise in the rat, Physiol. Behav, vol.59, pp.355-359, 1996.

H. Xin, H. Tanaka, M. Yamaguchi, S. Takemori, A. Nakamura et al., Vanilloid receptor expressed in the sarcoplasmic reticulum of rat skeletal muscle, Biochem. Biophys. Res. Commun, vol.332, pp.756-762, 2005.

P. Cavuoto, A. J. Mcainch, G. Hatzinikolas, A. Janovská, P. Game et al., The expression of receptors for endocannabinoids in human and rodent skeletal muscle, Biochem. Biophys. Res. Commun, vol.364, pp.105-110, 2007.

S. Lotteau, S. Ducreux, C. Romestaing, C. Legrand, and F. V. Coppenolle, Characterization of Functional TRPV1 Channels in the Sarcoplasmic Reticulum of Mouse Skeletal Muscle, PLoS ONE, vol.8, 2013.
URL : https://hal.archives-ouvertes.fr/halsde-00804903

F. Vanden-abeele, S. Lotteau, S. Ducreux, C. Dubois, N. Monnier et al., TRPV1 variants impair intracellular Ca 2+ signaling and may confer susceptibility to malignant hyperthermia, Genet. Med, vol.21, pp.441-450, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02060779

N. Tessier, M. Ducrozet, S. Ducreux, J. Faure, and F. V. Coppenolle, Pathophysiological Role of Trpv1 in Malignant Hyperthermia: Identification of New Variants. BJSTR, vol.12, pp.1-3, 2018.

C. Bosson, J. Rendu, L. Pelletier, A. Abriat, A. Chatagnon et al., Variations in the TRPV1 gene are associated to exertional heat stroke, J. Sci. Med. Sport, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02901925

D. H. Maclennan, M. S. Phillips, and . Malignant, Science, vol.256, pp.789-794, 1992.

J. Thomas and T. Crowhurst, Exertional heat stroke, rhabdomyolysis and susceptibility to malignant hyperthermia, Intern. Med. J, vol.43, pp.1035-1038, 2013.

A. Mahri, S. Bouchama, and A. , Chapter 32-Heatstroke, Thermoregulation: From Basic Neuroscience to Clinical Neurology

A. A. Romanovsky and . Ed, , vol.157, pp.531-545, 2018.

D. Fiszer, M. Shaw, N. A. Fisher, I. M. Carr, P. K. Gupta et al., Next Generation Sequencing of RYR1 and CACNA1S in Malignant Hyperthermia and Exertional Heat Illness, Anesthesiology, vol.122, pp.1033-1046, 2015.

P. K. Gupta and P. M. Hopkins, Diagnosis and management of malignant hyperthermia, vol.17, pp.249-254, 2017.

F. Alele, B. Malau-aduli, A. Malau-aduli, and M. Crowe, Systematic review of gender differences in the epidemiology and risk factors of exertional heat illness and heat tolerance in the armed forces, BMJ, vol.2020, 31825.

S. Treves, A. A. Anderson, S. Ducreux, A. Divet, C. Bleunven et al., Ryanodine receptor 1 mutations, dysregulation of calcium homeostasis and neuromuscular disorders, Neuromuscul. Disord, vol.15, pp.577-587, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00087672

N. Roux-buisson, N. Monnier, E. Sagui, A. Abriat, C. Brosset et al., Identification of variants of the ryanodine receptor type 1 in patients with exertional heat stroke and positive response to the malignant hyperthermia in vitro contracture test, Br. J. Anaesth, vol.116, pp.566-568, 2016.

H. Rosenberg, N. Sambuughin, S. Riazi, and R. Dirksen, Malignant Hyperthermia Susceptibility. In GeneReviews ®

M. P. Adam, H. H. Ardinger, R. A. Pagon, S. E. Wallace, L. J. Bean et al., , 1993.

D. D. Wasserman, J. A. Creech, and M. Healy, Cooling Techniques For Hyperthermia, StatPearls, 2020.

B. Glenmark, M. Nilsson, H. Gao, J. Gustafsson, K. Dahlman-wright et al., Difference in skeletal muscle function in males vs. females: role of estrogen receptor-?, Am. J. Physiol. Endocrinol. Metab, vol.287, pp.1125-1131, 2004.

K. M. Haizlip, B. C. Harrison, and L. A. Leinwand, Sex-Based Differences in Skeletal Muscle Kinetics and Fiber-Type Composition, Physiology, vol.30, pp.30-39, 2015.

M. Oydanich, D. Babici, J. Zhang, N. Rynecki, D. E. Vatner et al., Mechanisms of sex differences in exercise capacity, Am. J. Physiol. Regul. Integr. Comp. Physiol, vol.316, pp.832-838, 2019.

C. Inprasit, Y. Huang, and Y. Lin, Evidence for acupoint catgut embedding treatment and TRPV1 gene deletion increasing weight control in murine model, Int. J. Mol. Med, vol.2020, pp.779-792

Á. Montilla-garcía, M. Á. Tejada, G. Perazzoli, J. M. Entrena, E. Portillo-salido et al., Grip strength in mice with joint inflammation: A rheumatology function test sensitive to pain and analgesia, Neuropharmacology, vol.125, pp.231-242, 2017.

R. L. Hechanova, J. L. Wegler, and C. P. Forest, Exercise: A vitally important prescription, JAAPA, vol.30, pp.17-22, 2017.

J. Vina, F. Sanchis-gomar, V. Martinez-bello, and M. C. Gomez-cabrera, Exercise acts as a drug; the pharmacological benefits of exercise, Br. J. Pharmacol, vol.167, pp.1-12, 2012.

J. Lin, H. Wu, P. T. Tarr, C. Zhang, Z. Wu et al., Transcriptional co-activator PGC-1|[alpha]| drives the formation of slow-twitch muscle fibres, Nature, vol.418, pp.797-801, 2002.

Z. Sun, J. Han, W. Zhao, Y. Zhang, S. Wang et al., TRPV1 activation exacerbates hypoxia/reoxygenation-induced apoptosis in H9C2 cells via calcium overload and mitochondrial dysfunction, Int. J. Mol. Sci, vol.15, pp.18362-18380, 2014.

X. Wei, X. Wei, Z. Lu, L. Li, Y. Hu et al., Activation of TRPV1 channel antagonizes diabetic nephropathy through inhibiting endoplasmic reticulum-mitochondria contact in podocytes

E. O. Gracheva, J. F. Cordero-morales, J. A. González-carcacía, N. T. Ingolia, C. Manno et al., Ganglion-specific splicing of TRPV1 underlies infrared sensation in vampire bats, Nature, vol.476, pp.88-91, 2011.

G. Bidaux, D. Gordienko, G. Shapovalov, V. Farfariello, A. Borowiec et al., 4TM-TRPM8 channels are new gatekeepers of the ER-mitochondria Ca 2+ transfer, Biochim. Biophys. Acta Mol. Cell Res, vol.1865, pp.981-994, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01847399

M. Naticchioni, R. Karani, M. A. Smith, E. Onusko, N. Robbins et al., Transient Receptor Potential Vanilloid 2 Regulates Myocardial Response to Exercise, PLoS ONE, vol.10, 2015.

B. W. Pritschow, T. Lange, J. Kasch, C. Kunert-keil, W. Liedtke et al., Functional TRPV4 channels are expressed in mouse skeletal muscle and can modulate resting Ca 2+ influx and muscle fatigue. Pflügers Arch, Eur. J. Physiol, vol.461, pp.115-122, 2010.

X. Trujillo, M. Ortiz-mesina, T. Uribe, E. Castro, R. Montoya-pérez et al., Capsaicin and N-Arachidonoyl-dopamine (NADA) Decrease Tension by Activating Both Cannabinoid and Vanilloid Receptors in Fast Skeletal Muscle Fibers of the Frog, J. Membr. Biol, vol.248, pp.31-38, 2015.

L. Travnik and F. Pernus, Erzen, I. Histochemical and morphometric characteristics of the normal human vastus medialis longus and vastus medialis obliquus muscles, J. Anat, vol.187, pp.403-411, 1995.

V. R. Edgerton, J. L. Smith, and D. R. Simpson, Muscle fibre type populations of human leg muscles, J. Mol. Histol, vol.7, pp.259-266, 1975.

M. Elbaz, A. Ruiz, S. Nicolay, C. Tupini, C. Bachmann et al., Bi-allelic expression of the RyR1 p.A4329D mutation decreases muscle strength in slow-twitch muscles in mice, J. Biol. Chem, 2020.

J. B. Kazman, D. L. Purvis, Y. Heled, P. Lisman, D. Atias et al., Women and exertional heat illness: identification of gender specific risk factors, US Army Med. Dep. J, pp.58-66, 2015.

A. Lafoux, C. Baudry, C. Bonhomme, P. Le-ruyet, and C. Huchet, Soluble Milk Protein Supplementation with Moderate Physical Activity Improves Locomotion Function in Aging Rats, PLoS ONE, vol.11, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01831752

A. D. Luca, Available online: /paper/ Use-of-grip-strength-meter-to-assess-the-limb-of-Luca/e1ba11125203577be100bda8f6f733a9f9686ec8, p.26, 2020.

G. Auda-boucher, T. Rouaud, A. Lafoux, D. Levitsky, C. Huchet-cadiou et al., Fetal muscle-derived cells can repair dystrophic muscles in mdx mice, Exp. Cell Res, vol.313, pp.997-1007, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00161348

M. Carre-pierrat, A. Lafoux, G. Tanniou, L. Chambonnier, A. Divet et al., Pre-clinical study of 21 approved drugs in the mdx mouse, Neuromuscul. Disord, vol.21, pp.313-327, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02881168

, This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license, © 2020 by the authors. Licensee MDPI