F. Coccolini and . Carcinomatosis, , vol.19, 2013.

J. P. Desai, F. Moustarah, . Cancer, and . Metastasis, StatPearls, 2020.

N. Vassos and P. Piso, Metastatic Colorectal Cancer to the Peritoneum: Current Treatment Options, Curr. Treat. Options Oncol, vol.19, p.49, 2018.

R. L. Siegel, K. D. Miller, and A. Jemal, Cancer statistics, 2020. CA: A, Cancer J. Clin, vol.70, pp.7-30, 2020.

E. Lengyel, Ovarian Cancer Development and Metastasis, Am. J. Pathol, vol.177, pp.1053-1064, 2010.

I. Thomassen, V. E. Lemmens, S. W. Nienhuijs, M. D. Luyer, Y. L. Klaver et al., Incidence, Prognosis, and Possible Treatment Strategies of Peritoneal Carcinomatosis of Pancreatic Origin: A Population-Based Study, Pancreas, vol.42, pp.72-75, 2013.

L. A. Lambert, Looking up: Recent advances in understanding and treating peritoneal carcinomatosis: Recent Advances in Understanding and Treating Peritoneal Carcinomatosis. CA: A, Cancer J. Clin, vol.65, pp.283-298, 2015.

R. C. Auer, D. Sivajohanathan, J. Biagi, J. Conner, E. Kennedy et al., Indications for hyperthermic intraperitoneal chemotherapy with cytoreductive surgery: A systematic review, Eur. J. Cancer, vol.127, pp.76-95, 2020.

, Cancers, vol.12, 2020.

H. Azaïs, J. P. Estevez, P. Foucher, Y. Kerbage, S. Mordon et al., Dealing with microscopic peritoneal metastases of epithelial ovarian cancer. A surgical challenge, Surg. Oncol, vol.26, pp.46-52, 2017.

I. Thomassen, R. H. Verhoeven, Y. R. Van-gestel, A. J. Van-de-wouw, V. E. Lemmens et al., Population-based incidence, treatment and survival of patients with peritoneal metastases of unknown origin, Eur. J. Cancer, vol.50, pp.50-56, 2014.

V. Narasimhan, M. Britto, T. Pham, S. Warrier, A. Naik et al., Evolution of Cytoreductive Surgery and Hyperthermic Intraperitoneal Chemotherapy for Colorectal Peritoneal Metastases: 8-Year Single-Institutional Experience, Dis. Colon Rectum, vol.62, pp.1195-1203, 2019.

G. Glockzin, F. Zeman, R. S. Croner, A. Königsrainer, J. Pelz et al., Perioperative Systemic Chemotherapy, Cytoreductive Surgery, and Hyperthermic Intraperitoneal Chemotherapy in Patients with Colorectal Peritoneal Metastasis: Results of the Prospective Multicenter Phase 2 COMBATAC Trial, Clin. Colorectal Cancer, vol.17, pp.285-296, 2018.

D. Hompes, A. D'hoore, E. Van-cutsem, S. Fieuws, W. Ceelen et al., The Treatment of Peritoneal Carcinomatosis of Colorectal Cancer with Complete Cytoreductive Surgery and Hyperthermic Intraperitoneal Peroperative Chemotherapy (HIPEC) with Oxaliplatin: A Belgian Multicentre Prospective Phase II Clinical Study, Ann. Surg. Oncol, vol.19, pp.2186-2194, 2012.

F. Quénet, D. Élias, L. Roca, D. Goéré, L. Ghouti et al., A UNICANCER phase III trial of hyperthermic intra-peritoneal chemotherapy (HIPEC) for colorectal peritoneal carcinomatosis (PC): PRODIGE 7, J. Clin. Oncol, vol.36, 2018.

K. Abboud, T. André, M. Brunel, M. Ducreux, C. Eveno et al., Management of colorectal peritoneal metastases: Expert opinion, J. Visc. Surg, vol.156, pp.377-379, 2019.

S. Sinukumar, F. Rajan, S. Mehta, D. Damodaran, S. Zaveri et al., A comparison of outcomes following total and selective peritonectomy performed at the time of interval cytoreductive surgery for advanced serous epithelial ovarian, fallopian tube and primary peritoneal cancer-A study by INDEPSO, Eur. J. Surg. Oncol, 2019.

A. Bhatt, S. Sinukumar, S. Mehta, D. Damodaran, S. Zaveri et al., Patterns of pathological response to neoadjuvant chemotherapy and its clinical implications in patients undergoing interval cytoreductive surgery for advanced serous epithelial ovarian cancer-A study by the Indian Network for Development of Peritoneal Surface Oncology (INDEPSO), Eur. J. Surg. Oncol, vol.45, pp.666-671, 2019.

L. Rodriguez, A. Batlle, G. Di-venosa, S. Battah, P. Dobbin et al., Mechanisms of 5-aminolevulinic acid ester uptake in mammalian cells, Br. J. Pharm, vol.147, pp.825-833, 2006.

M. Wachowska, A. Muchowicz, M. Firczuk, M. Gabrysiak, M. Winiarska et al., Aminolevulinic Acid (ALA) as a Prodrug in Photodynamic Therapy of Cancer, Molecules, vol.16, pp.4140-4164, 2011.

J. P. Celli, B. Q. Spring, I. Rizvi, C. L. Evans, K. S. Samkoe et al., Imaging and photodynamic therapy: Mechanisms, monitoring, and optimization, Chem. Rev, vol.110, pp.2795-2838, 2010.

A. E. O'connor, W. M. Gallagher, and A. T. Byrne, Porphyrin and nonporphyrin photosensitizers in oncology: Preclinical and clinical advances in photodynamic therapy, Photochem. Photobiol, vol.85, pp.1053-1074, 2009.

M. L. Landsman, G. Kwant, G. A. Mook, and W. G. Zijlstra, Light-absorbing properties, stability, and spectral stabilization of indocyanine green, J. Appl. Physiol, vol.40, pp.575-583, 1976.

M. Taniguchi and J. S. Lindsey, Database of Absorption and Fluorescence Spectra of >300 Common Compounds for use in PhotochemCAD, Photochem. Photobiol, vol.94, pp.290-327, 2018.

B. Aveline, T. Hasan, and R. W. Redmond, Photophysical and photosensitizing properties of benzoporphyrin derivative monoacid ring A (BPD-MA), Photochem. Photobiol, vol.59, pp.328-335, 1994.

K. Plaetzer, B. Krammer, J. Berlanda, F. Berr, and T. Kiesslich, Photophysics and photochemistry of photodynamic therapy: Fundamental aspects, Lasers Med. Sci, vol.24, pp.259-268, 2009.

M. Broekgaarden, R. Weijer, T. M. Van-gulik, M. R. Hamblin, and M. Heger, Tumor cell survival pathways activated by photodynamic therapy: A molecular basis for pharmacological inhibition strategies, Cancer Metastasis Rev, vol.34, pp.643-690, 2015.

V. H. Fingar, Vascular effects of photodynamic therapy, J. Clin. Laser Med. Surg, vol.14, pp.323-328, 1996.

A. P. Castano, P. Mroz, and M. R. Hamblin, Photodynamic therapy and anti-tumour immunity, Nat. Rev. Cancer, vol.6, pp.535-545, 2006.

K. Kishi, Y. Fujiwara, M. Yano, M. Inoue, I. Miyashiro et al., Staging laparoscopy using ALA-mediated photodynamic diagnosis improves the detection of peritoneal metastases in advanced gastric cancer, J. Surg. Oncol, vol.106, pp.294-298, 2012.

Y. Murayama, D. Ichikawa, N. Koizumi, S. Komatsu, A. Shiozaki et al., Staging Fluorescence Laparoscopy for Gastric Cancer by Using 5-Aminolevulinic Acid, Anticancer Res, vol.32, pp.5421-5427, 2012.

S. Satou, T. Ishizawa, K. Masuda, J. Kaneko, T. Aoki et al., Indocyanine green fluorescent imaging for detecting extrahepatic metastasis of hepatocellular carcinoma, J. Gastroenterol, vol.48, pp.1136-1143, 2013.

K. Kishi, Y. Fujiwara, M. Yano, M. Motoori, K. Sugimura et al., Diagnostic Laparoscopy with 5-Aminolevulinic-Acid-Mediated Photodynamic Diagnosis Enhances the Detection of Peritoneal Micrometastases in Advanced Gastric Cancer, Oncology, vol.87, pp.257-265, 2014.

Y. Kondo, Y. Murayama, H. Konishi, R. Morimura, S. Komatsu et al., Fluorescent detection of peritoneal metastasis in human colorectal cancer using 5-aminolevulinic acid, Int. J. Oncol, vol.45, pp.41-46, 2014.

Y. Liu, Y. Endo, T. Fujita, H. Ishibashi, T. Nishioka et al., Cytoreductive Surgery Under Aminolevulinic Acid-Mediated Photodynamic Diagnosis Plus Hyperthermic Intraperitoneal Chemotherapy in Patients with Peritoneal Carcinomatosis from Ovarian Cancer and Primary Peritoneal Carcinoma: Results of a Phase I Trial, Ann. Surg. Oncol, vol.21, pp.4256-4262, 2014.

Y. Yonemura, Selection of Patients by Membrane Transporter Expressions for Aminolevulinic Acid (ALA)-Guided Photodynamic Detection of Peritoneal Metastases, Int. J. Sci, vol.4, pp.66-77, 2015.

K. Kishi, Y. Fujiwara, M. Yano, M. Motoori, K. Sugimura et al., Usefulness of diagnostic laparoscopy with 5-aminolevulinic acid (ALA)-mediated photodynamic diagnosis for the detection of peritoneal micrometastasis in advanced gastric cancer after chemotherapy, Surg. Today, vol.46, pp.1427-1434, 2016.

Y. Yonemura, E. Canbay, H. Ishibashi, E. Nishino, Y. Endou et al., 5-Aminolevulinic Acid Fluorescence in Detection of Peritoneal Metastases. Asian Pac, J. Cancer Prev, vol.17, pp.2271-2275, 2016.

P. Hillemanns, P. Wimberger, J. Reif, H. Stepp, and R. Klapdor, Photodynamic diagnosis with 5-aminolevulinic acid for intraoperative detection of peritoneal metastases of ovarian cancer: A feasibility and dose finding study: PHOTODYNAMIC DIAGNOSIS WITH 5-AMINOLEVULINIC ACID, Lasers Surg. Med, vol.49, pp.169-176, 2017.

Y. Ushimaru, Y. Fujiwara, K. Kishi, K. Sugimura, T. Omori et al., Prognostic Significance of Basing Treatment Strategy on the Results of Photodynamic Diagnosis in Advanced Gastric Cancer, Ann. Surg. Oncol, vol.24, pp.983-989, 2017.

K. Harada, Y. Murayama, H. Kubo, H. Matsuo, R. Morimura et al., Photodynamic diagnosis of peritoneal metastasis in human pancreatic cancer using 5-aminolevulinic acid during staging laparoscopy, Oncol. Lett, 2018.

P. H. Sugarbaker, R. Alderman, G. Edwards, C. E. Marquardt, V. Gushchin et al., Prospective morbidity and mortality assessment of cytoreductive surgery plus perioperative intraperitoneal chemotherapy to treat peritoneal dissemination of appendiceal mucinous malignancy, Ann. Surg. Oncol, vol.13, pp.635-644, 2006.

M. Dhir, L. Ramalingam, Y. Shuai, S. Pakrafter, H. L. Jones et al., Cytoreductive Surgery and Hyperthermic Intraperitoneal Chemoperfusion in Adolescent and Young Adults with Peritoneal Metastases, Ann. Surg. Oncol, vol.24, pp.875-883, 2017.

E. Canbay, H. Ishibashi, S. Sako, T. Kitai, E. Nishino et al., Photodynamic detection and management of intraperitoneal spreading of primary peritoneal papillary serous carcinoma in a man: Report of a case, Surg. Today, vol.44, pp.373-377, 2014.

H. Azaïs, G. Canlorbe, Y. Kerbage, A. Grabarz, P. Collinet et al., Image-guided surgery in gynecologic oncology, Future Oncol, vol.13, pp.2321-2328, 2017.

H. Azaïs, N. Betrouni, S. Mordon, and P. Collinet, Targeted approaches and innovative illumination solutions: A new era for photodynamic therapy applications in gynecologic oncology? Photodiagnosis Photodyn, vol.13, pp.128-129, 2016.

H. Azaïs, C. Rebahi, M. Baydoun, B. Serouart, L. Ziane et al., A global approach for the development of photodynamic therapy of peritoneal metastases regardless of their origin

T. Namikawa, K. Fujisawa, E. Munekage, J. Iwabu, S. Uemura et al., Clinical application of photodynamic medicine technology using light-emitting fluorescence imaging based on a specialized luminous source, Med. Mol. Morphol, vol.51, pp.187-193, 2018.

M. Q. Almerie, G. Gossedge, K. E. Wright, and D. G. Jayne, Photodynamic diagnosis for detection of peritoneal carcinomatosis, J. Surg. Res, vol.195, pp.175-187, 2015.

T. Kushibiki, T. Noji, Y. Ebihara, K. Hontani, M. Ono et al., 5-Aminolevulinic-acid-mediated Photodynamic Diagnosis Enhances the Detection of Peritoneal Metastases in Biliary Tract Cancer in Mice, vol.31, pp.905-908, 2017.

H. H. Lee, M. Choi, and T. Hasan, Application of photodynamic therapy in gastrointestinal disorders: An outdated or re-emerging technique?, Korean J. Intern. Med, vol.32, pp.1-10, 2017.

S. Anand, G. Honari, T. Hasan, P. Elson, and E. V. Maytin, Low-dose methotrexate enhances aminolevulinate-based photodynamic therapy in skin carcinoma cells in vitro and in vivo, Clin. Cancer Res, vol.15, pp.3333-3343, 2009.

S. Anand, C. Wilson, T. Hasan, and E. V. Maytin, Vitamin D3 enhances the apoptotic response of epithelial tumors to aminolevulinate-based photodynamic therapy, Cancer Res, vol.71, pp.6040-6050, 2011.

S. Anand, T. Hasan, and E. V. Maytin, Mechanism of differentiation-enhanced photodynamic therapy for cancer: Upregulation of coproporphyrinogen oxidase by C/EBP transcription factors, Mol. Cancer, vol.12, pp.1638-1650, 2013.

S. Anand, K. R. Rollakanti, N. Brankov, D. E. Brash, T. Hasan et al., Fluorouracil Enhances Photodynamic Therapy of Squamous Cell Carcinoma via a p53-Independent Mechanism that Increases Protoporphyrin IX levels and Tumor Cell Death, Mol. Cancer, vol.16, pp.1092-1101, 2017.

E. V. Maytin, S. Anand, M. Riha, S. Lohser, A. Tellez et al., 5-Fluorouracil Enhances Protoporphyrin IX Accumulation and Lesion Clearance during Photodynamic Therapy of Actinic Keratoses: A Mechanism-Based Clinical Trial, Clin. Cancer Res, vol.24, pp.3026-3035, 2018.

K. Berg, H. Anholt, O. Bech, and J. Moan, The influence of iron chelators on the accumulation of protoporphyrin IX in 5-aminolaevulinic acid-treated cells, Br. J. Cancer, vol.74, pp.688-697, 1996.

C. Pourzand, O. Reelfs, E. Kvam, and R. M. Tyrrell, The iron regulatory protein can determine the effectiveness of 5-aminolevulinic acid in inducing protoporphyrin IX in human primary skin fibroblasts, J. Investig. Derm, vol.112, pp.419-425, 1999.

V. M. Alexander, K. Sano, Z. Yu, T. Nakajima, P. L. Choyke et al., Galactosyl human serum albumin-NMP1 conjugate: A near infrared (NIR)-activatable fluorescence imaging agent to detect peritoneal ovarian cancer metastases, Bioconjug. Chem, vol.23, pp.1671-1679, 2012.

G. M. Van-dam, G. Themelis, L. M. Crane, N. J. Harlaar, R. G. Pleijhuis et al., Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-? targeting: First in-human results, Nat. Med, vol.17, pp.1315-1319, 2011.

Q. R. Tummers, C. E. Hoogstins, K. N. Gaarenstroom, C. D. De-kroon, M. I. Van-poelgeest et al., Intraoperative imaging of folate receptor alpha positive ovarian and breast cancer using the tumor specific agent EC17, Oncotarget, vol.7, pp.32144-32155, 2016.

C. E. Hoogstins, Q. R. Tummers, K. N. Gaarenstroom, C. D. De-kroon, J. B. Trimbos et al., A Novel Tumor-Specific Agent for Intraoperative Near-Infrared Fluorescence Imaging: A Translational Study in Healthy Volunteers and Patients with Ovarian Cancer, Clin. Cancer Res, vol.22, pp.2929-2938, 2016.

H. Azaïs, C. Schmitt, M. Tardivel, O. Kerdraon, A. Stallivieri et al., Assessment of the specificity of a new folate-targeted photosensitizer for peritoneal metastasis of epithelial ovarian cancer to enable intraperitoneal photodynamic therapy. A preclinical study. Photodiagnosis Photodyn, vol.13, pp.130-138, 2016.

J. Gravier, R. Schneider, C. Frochot, T. Bastogne, F. Schmitt et al., Improvement of meta-tetra(hydroxyphenyl)chlorin-like photosensitizer selectivity with folate-based targeted delivery. synthesis and in vivo delivery studies, J. Med. Chem, vol.51, pp.3867-3877, 2008.

D. Li, P. Li, H. Lin, Z. Jiang, L. Guo et al., A novel chlorin-PEG-folate conjugate with higher water solubility, lower cytotoxicity, better tumor targeting and photodynamic activity, J. Photochem. Photobiol. B Biol, vol.127, pp.28-37, 2013.

F. Moret, D. Scheglmann, and E. Reddi, Folate-targeted PEGylated liposomes improve the selectivity of PDT with meta-tetra(hydroxyphenyl)chlorin (m-THPC), Photochem. Photobiol. Sci, vol.12, pp.823-834, 2013.

H. Tsujimoto, Y. Morimoto, R. Takahata, S. Nomura, K. Yoshida et al., Photodynamic therapy using nanoparticle loaded with indocyanine green for experimental peritoneal dissemination of gastric cancer, Cancer Sci, vol.105, pp.1626-1630, 2014.

S. Folli, G. Wagnières, A. Pèlegrin, J. M. Calmes, D. Braichotte et al., Immunophotodiagnosis of colon carcinomas in patients injected with fluoresceinated chimeric antibodies against carcinoembryonic antigen, Proc. Natl. Acad. Sci, vol.89, pp.7973-7977, 1992.

B. Q. Spring, A. O. Abu-yousif, A. Palanisami, I. Rizvi, X. Zheng et al., Selective treatment and monitoring of disseminated cancer micrometastases in vivo using dual-function, activatable immunoconjugates, Proc. Natl. Acad. Sci, vol.111, pp.933-942, 2014.

N. Koizumi, Y. Harada, T. Minamikawa, H. Tanaka, E. Otsuji et al., Recent advances in photodynamic diagnosis of gastric cancer using 5-aminolevulinic acid, World J. Gastroenterol, vol.22, pp.1289-1296, 2016.

K. Harada, Y. Harada, M. Beika, N. Koizumi, K. Inoue et al., Detection of lymph node metastases in human colorectal cancer by using 5-aminolevulinic acid-induced protoporphyrin IX fluorescence with spectral unmixing, Int. J. Mol. Sci, vol.14, pp.23140-23152, 2013.

S. Mallidi, S. Anbil, A. Bulin, G. Obaid, M. Ichikawa et al., Beyond the Barriers of Light Penetration: Strategies, Perspectives and Possibilities for Photodynamic Therapy, Theranostics, vol.6, pp.2458-2487, 2016.

W. F. Sindelar, Technique of Photodynamic Therapy for Disseminated Intraperitoneal Malignant Neoplasms: Phase I Study, Arch. Surg, vol.126, pp.318-324, 1991.

T. F. Delaney, W. F. Sindelar, Z. Tochner, P. D. Smith, W. S. Friauf et al., Phase I study of debulking surgery and photodynamic therapy for disseminated intraperitoneal tumors, Int. J. Radiat. Oncol. Biol. Phys, vol.25, pp.445-457, 1993.

S. M. Hahn, A Phase II Trial of Intraperitoneal Photodynamic Therapy for Patients with Peritoneal Carcinomatosis and Sarcomatosis, Clin. Cancer Res, vol.12, pp.2517-2525, 2006.

R. J. Canter, R. Mick, S. B. Kesmodel, D. J. Raz, F. R. Spitz et al., Intraperitoneal Photodynamic Therapy Causes a Capillary-Leak Syndrome, Ann. Surg. Oncol, vol.10, pp.514-524, 2003.

, Cancers, vol.12, p.25, 2020.

S. K. Hendren, S. M. Hahn, F. R. Spitz, T. W. Bauer, S. C. Rubin et al., Phase II Trial of Debulking Surgery and Photodynamic Therapy for Disseminated Intraperitoneal Tumors, Ann. Surg. Oncol, vol.8, pp.65-71, 2001.

O. Glehen, F. Mohamed, and F. N. Gilly, Peritoneal carcinomatosis from digestive tract cancer: New management by cytoreductive surgery and intraperitoneal chemohyperthermia, Lancet Oncol, vol.5, pp.219-228, 2004.

J. Chen, B. Liang, Y. Yuan, C. Liu, L. Li et al., Comprehensive treatment of malignant mesothelioma patients after the failure of systemic chemotherapy, Cryobiology, vol.65, pp.284-288, 2012.

S. M. Hahn, M. E. Putt, J. Metz, D. B. Shin, E. Rickter et al., Photofrin Uptake in the Tumor and Normal Tissues of Patients Receiving Intraperitoneal Photodynamic Therapy, Clin. Cancer Res, vol.12, pp.5464-5470, 2006.

C. Menon, S. N. Kutney, S. C. Lehr, S. K. Hendren, T. M. Busch et al., Vascularity and uptake of photosensitizer in small human tumor nodules: Implications for intraperitoneal photodynamic therapy, Clin. Cancer Res, vol.7, pp.3904-3911, 2001.

T. M. Busch, Hypoxia and Photofrin Uptake in the Intraperitoneal Carcinomatosis and Sarcomatosis of Photodynamic Therapy Patients, Clin. Cancer Res, vol.10, pp.4630-4638, 2004.

R. Weijer, M. Broekgaarden, M. Kos, R. Van-vught, E. A. Rauws et al., Enhancing photodynamic therapy of refractory solid cancers: Combining second-generation photosensitizers with multi-targeted liposomal delivery, J. Photochem. Photobiol. C Photochem. Rev, vol.23, pp.103-131, 2015.

H. Maeda, Toward a full understanding of the EPR effect in primary and metastatic tumors as well as issues related to its heterogeneity, Adv. Drug Deliv. Rev, vol.91, pp.3-6, 2015.

S. Oliveira, R. Heukers, J. Sornkom, R. J. Kok, and P. M. Van-bergen-en-henegouwen, Targeting tumors with nanobodies for cancer imaging and therapy, J. Control. Release, vol.172, pp.607-617, 2013.

M. Broekgaarden, R. Van-vught, S. Oliveira, R. C. Roovers, P. M. Van-bergen-en-henegouwen et al., Site-specific conjugation of single domain antibodies to liposomes enhances photosensitizer uptake and photodynamic therapy efficacy, Nanoscale, vol.8, pp.6490-6494, 2016.

G. Obaid, S. Bano, S. Mallidi, M. Broekgaarden, J. Kuriakose et al., Impacting pancreatic cancer therapy in heterotypic in vitro organoids and in vivo tumors with specificity-tuned, NIR-activable photoimmuno-nanoconjugates: Towards conquering desmoplasia?, Nano Lett, vol.19, pp.7573-7587, 2019.

G. Obaid, M. Broekgaarden, A. Bulin, H. Huang, J. Kuriakose et al., Photonanomedicine: A convergence of photodynamic therapy and nanotechnology, Nanoscale, vol.8, pp.12471-12503, 2016.

A. Pinto and M. Pocard, Photodynamic therapy and photothermal therapy for the treatment of peritoneal metastasis: A systematic review, Pleura Peritoneum, vol.3, 2018.

M. Baydoun, O. Moralès, C. Frochot, C. Ludovic, B. Leroux et al., Photodynamic Therapy Using a New Folate Receptor-Targeted Photosensitizer on Peritoneal Ovarian Cancer Cells Induces the Release of Extracellular Vesicles with Immunoactivating Properties, J. Clin. Med, vol.2020, 1185.
URL : https://hal.archives-ouvertes.fr/hal-02912728

M. Q. Almerie, G. Gossedge, K. E. Wright, and D. G. Jayne, Treatment of peritoneal carcinomatosis with photodynamic therapy: Systematic review of current evidence. Photodiagnosis Photodyn, vol.20, pp.276-286, 2017.

A. Quilbe, O. Moralès, M. Baydoun, A. Kumar, R. Mustapha et al., An Efficient Photodynamic Therapy Treatment for Human Pancreatic Adenocarcinoma, J. Clin. Med, vol.2020
URL : https://hal.archives-ouvertes.fr/hal-02914182

T. Michy, T. Massias, C. Bernard, L. Vanwonterghem, M. Henry et al., Verteporfin-Loaded Lipid Nanoparticles Improve Ovarian Cancer Photodynamic Therapy In Vitro and In Vivo, Cancers, vol.11, 1760.
URL : https://hal.archives-ouvertes.fr/hal-02373996

L. Guyon, M. Farine, J. C. Lesage, A. Gevaert, S. Simonin et al., Photodynamic therapy of ovarian cancer peritoneal metastasis with hexaminolevulinate: A toxicity study. Photodiagnosis Photodyn, vol.11, pp.265-274, 2014.

L. Guyon, M. Ascencio, P. Collinet, and S. Mordon, Photodiagnosis and photodynamic therapy of peritoneal metastasis of ovarian cancer. Photodiagnosis Photodyn, vol.9, pp.16-31, 2012.

I. Rizvi, J. P. Celli, C. L. Evans, A. O. Abu-yousif, A. Muzikansky et al., Synergistic enhancement of carboplatin efficacy with photodynamic therapy in a three-dimensional model for micrometastatic ovarian cancer, Cancer Res, vol.70, pp.9319-9328, 2010.

E. Debefve, B. Pegaz, J. Ballini, Y. N. Konan, and H. Van-den-bergh, Combination therapy using aspirin-enhanced photodynamic selective drug delivery, Vasc. Pharm, vol.46, pp.171-180, 2007.

M. Broekgaarden, I. Rizvi, A. Bulin, L. Petrovic, R. Goldschmidt et al., Neoadjuvant photodynamic therapy augments immediate and prolonged oxaliplatin efficacy in metastatic pancreatic cancer organoids, Oncotarget, vol.9, pp.13009-13022, 2018.

J. Xin, S. Wang, L. Zhang, B. Xin, Y. He et al., Comparison of the synergistic anticancer activity of AlPcS4 photodynamic therapy in combination with different low-dose chemotherapeutic agents on gastric cancer cells, Oncol. Rep, vol.40, pp.165-178, 2018.

L. W. Ma, J. Moan, K. Berg, Q. Peng, and H. B. Steen, Potentiation of photodynamic therapy by mitomycin C in cultured human colon adenocarcinoma cells, Radiat. Res, vol.134, pp.22-28, 1993.

L. W. Ma, J. Moan, H. B. Steen, and V. Iani, Anti-tumour activity of photodynamic therapy in combination with mitomycin C in nude mice with human colon adenocarcinoma, Br. J. Cancer, vol.71, pp.950-956, 1995.

L. Guyon, J. C. Lesage, N. Betrouni, and S. Mordon, Development of a new illumination procedure for photodynamic therapy of the abdominal cavity, J. Biomed. Opt, vol.17, p.38001, 2012.

S. Mordon, C. Cochrane, J. B. Tylcz, N. Betrouni, L. Mortier et al., Light emitting fabric technologies for photodynamic therapy. Photodiagnosis Photodyn, vol.12, pp.1-8, 2015.
URL : https://hal.archives-ouvertes.fr/inserm-01115477

T. Krueger, H. J. Altermatt, D. Mettler, B. Scholl, L. Magnusson et al., Experimental photodynamic therapy for malignant pleural mesothelioma with pegylated mTHPC, Lasers Surg. Med, vol.32, pp.61-68, 2003.

C. Dujardin, E. Auffray, E. Bourret-courchesne, P. Dorenbos, P. Lecoq et al., Needs, Trends, and Advances in Inorganic Scintillators, IEEE Trans. Nucl. Sci, vol.65, 1977.
URL : https://hal.archives-ouvertes.fr/hal-01909235

J. Hu, Y. Tang, A. H. Elmenoufy, H. Xu, Z. Cheng et al., Nanocomposite-Based Photodynamic Therapy Strategies for Deep Tumor Treatment, vol.11, pp.5860-5887, 2015.

W. Fan, P. Huang, and X. Chen, Overcoming the Achilles' heel of photodynamic therapy, Chem. Soc. Rev, vol.45, pp.6488-6519, 2016.

A. Kamkaew, F. Chen, Y. Zhan, R. L. Majewski, and W. Cai, Scintillating Nanoparticles as Energy Mediators for Enhanced Photodynamic Therapy, ACS Nano, vol.10, pp.3918-3935, 2016.

L. Larue, A. Ben-mihoub, Z. Youssef, L. Colombeau, S. Acherar et al., Using X-rays in photodynamic therapy: An overview, Photochem. Photobiol. Sci, vol.17, pp.1612-1650, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02058221

X. Chen, J. Song, X. Chen, and H. Yang, X-ray-activated nanosystems for theranostic applications, Chem. Soc. Rev, vol.48, pp.3073-3101, 2019.

W. Sun, Z. Zhou, G. Pratx, X. Chen, and H. Chen, Nanoscintillator-Mediated X-Ray Induced Photodynamic Therapy for Deep-Seated Tumors: From Concept to Biomedical Applications, Theranostics, vol.10, pp.1296-1318, 2020.

T. Petit, M. Velten, A. Hombres, C. Marchal, X. Montbarbon et al., Long-term survival of 106 stage III ovarian cancer patients with minimal residual disease after second-look laparotomy and consolidation radiotherapy, Gynecol. Oncol, vol.104, pp.104-108, 2007.

G. C. Iorio, S. Martini, F. Arcadipane, U. Ricardi, and P. Franco, The role of radiotherapy in epithelial ovarian cancer: A literature overview, Med. Oncol, vol.36, 2019.

A. Goldhirsch, R. Greiner, E. Dreher, C. Sessa, F. Krauer et al., Treatment of advanced ovarian cancer with surgery, chemotherapy, and consolidation of response by whole-abdominal radiotherapy, Cancer, vol.62, pp.40-47, 1988.

H. Pickel, M. Lahousen, E. Petru, H. Stettner, A. Hackl et al., Consolidation radiotherapy after carboplatin-based chemotherapy in radically operated advanced ovarian cancer, Gynecol. Oncol, vol.72, pp.215-219, 1999.

N. Einhorn, M. Lundell, B. Nilsson, B. Ragnarsson-olding, and K. Sjövall, Is there place for radiotherapy in the treatment of advanced ovarian cancer?, Radiother. Oncol, vol.53, pp.213-218, 1999.

R. Dinniwell, M. Lock, M. Pintilie, A. Fyles, S. Laframboise et al., Consolidative abdominopelvic radiotherapy after surgery and carboplatin/paclitaxel chemotherapy for epithelial ovarian cancer, Int. J. Radiat. Oncol. Biol. Phys, vol.62, pp.104-110, 2005.

B. Sorbe, Consolidation treatment of advanced (FIGO stage III) ovarian carcinoma in complete surgical remission after induction chemotherapy: A randomized, controlled, clinical trial comparing whole abdominal radiotherapy, chemotherapy, and no further treatment, Int. J. Gynecol. Cancer, vol.13, pp.278-286, 2003.

L. Hong, K. Alektiar, C. Chui, T. Losasso, M. Hunt et al., IMRT of large fields: Whole-abdomen irradiation, Int. J. Radiat. Oncol. Biol. Phys, vol.54, pp.278-289, 2002.

N. Arians, M. Kieser, L. Benner, N. Rochet, S. Katayama et al., Adjuvant Intensity Modulated Whole-Abdominal Radiation Therapy for High-Risk Patients With Ovarian Cancer (International Federation of Gynecology and Obstetrics Stage III): First Results of a Prospective Phase 2 Study, Int. J. Radiat. Oncol. Biol. Phys, vol.99, pp.912-920, 2017.

N. Arians, M. Kieser, L. Benner, N. Rochet, L. Schröder et al., Adjuvant intensity modulated whole-abdominal radiation therapy for high-risk patients with ovarian cancer FIGO stage III: Final results of a prospective phase 2 study, Radiat. Oncol, vol.14, p.179, 2019.

N. Rochet, F. Sterzing, A. D. Jensen, J. Dinkel, K. K. Herfarth et al., Intensity-modulated whole abdominal radiotherapy after surgery and carboplatin/taxane chemotherapy for advanced ovarian cancer: Phase I study, Int. J. Radiat. Oncol. Biol. Phys, vol.76, pp.1382-1389, 2010.

N. Rochet, M. Kieser, F. Sterzing, S. Krause, K. Lindel et al., Phase II study evaluating consolidation whole abdominal intensity-modulated radiotherapy (IMRT) in patients with advanced ovarian cancer stage FIGO III-the, BMC Cancer, vol.11, 2011.

K. A. Reiss, J. M. Herman, M. Zahurak, A. Brade, L. A. Dawson et al., A Phase I study of veliparib (ABT-888) in combination with low-dose fractionated whole abdominal radiation therapy in patients with advanced solid malignancies and peritoneal carcinomatosis, Clin. Cancer Res, vol.21, pp.68-76, 2015.

M. Broekgaarden, S. Anbil, A. Bulin, G. Obaid, Z. Mai et al., Modulation of redox metabolism negates cancer-associated fibroblasts-induced treatment resistance in a heterotypic 3D culture platform of pancreatic cancer, Biomaterials, vol.222, 2019.

K. Satoh, S. Yachida, M. Sugimoto, M. Oshima, T. Nakagawa et al., Global metabolic reprogramming of colorectal cancer occurs at adenoma stage and is induced by MYC, Proc. Natl. Acad. Sci, vol.114, pp.7697-7706, 2017.

O. G. Mcdonald, X. Li, T. Saunders, R. Tryggvadottir, S. J. Mentch et al., Epigenomic reprogramming during pancreatic cancer progression links anabolic glucose metabolism to distant metastasis, Nat. Genet, vol.49, pp.367-376, 2017.

A. Daemen, D. Peterson, N. Sahu, R. Mccord, X. Du et al., Metabolite profiling stratifies pancreatic ductal adenocarcinomas into subtypes with distinct sensitivities to metabolic inhibitors, Proc. Natl. Acad. Sci, vol.112, pp.4410-4417, 2015.

S. Anbil, M. Pigula, H. Huang, S. Mallidi, M. Broekgaarden et al., Vitamin D receptor activation and photodynamic priming enable durable low-dose chemotherapy, Mol. Cancer, 2020.