L. Vutskits and Z. Xie, Lasting impact of general anaesthesia on the brain: mechanisms and relevance, Nat Rev Neurosci, vol.18, issue.11, pp.705-722, 2016.

S. Chauvette, S. Crochet, M. Volgushev, and I. Timofeev, Properties of Slow Oscillation during Slow-Wave Sleep and Anesthesia in Cats, J Neurosci, vol.31, issue.42, pp.14998-5008, 2011.

J. D. Kenny, M. B. Westover, S. Ching, E. N. Brown, and K. Solt, Propofol and sevoflurane induce distinct burst suppression patterns in rats, Front Syst Neurosci, vol.8, 2014.

A. S. Thrane, V. R. Thrane, D. Zeppenfeld, N. Lou, Q. Xu et al., General anesthesia selectively disrupts astrocyte calcium signaling in the awake mouse cortex, Proc Natl Acad Sci, vol.109, issue.46, pp.18974-18983, 2012.

Y. U. Liu, Y. Ying, Y. Li, U. B. Eyo, T. Chen et al., Neuronal network activity controls microglial process surveillance in awake mice via norepinephrine signaling, Nat Neurosci, vol.22, issue.11, p.31636449, 2019.

D. Gomez-nicola and V. H. Perry, Microglial dynamics and role in the healthy and diseased brain: a paradigm of functional plasticity, Neurosci Rev J Bringing Neurobiol Neurol Psychiatry, vol.21, issue.2, pp.169-84, 2015.

D. Davalos, J. Grutzendler, G. Yang, J. V. Kim, Y. Zuo et al., ATP mediates rapid microglial response to local brain injury in vivo, Nat Neurosci, vol.8, issue.6, pp.752-760, 2005.

H. Wake, A. J. Moorhouse, S. Jinno, S. Kohsaka, and J. Nabekura, Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals, J Neurosci Off J Soc Neurosci, vol.29, issue.13, pp.3974-80, 2009.

M. Tremblay, R. L. Lowery, and A. K. Majewska, Microglial interactions with synapses are modulated by visual experience, PLoS Biol, vol.8, issue.11, p.1000527, 2010.

C. N. Parkhurst, G. Yang, I. Ninan, J. N. Savas, J. R. Yates et al., Microglia promote learningdependent synapse formation through brain-derived neurotrophic factor, Cell, vol.155, issue.7, pp.1596-609, 2013.

R. Akiyoshi, H. Wake, D. Kato, H. Horiuchi, R. Ono et al., Microglia Enhance Synapse Activity to Promote Local Network Synchronization. eNeuro, vol.5, 2018.

C. Madry, V. Kyrargyri, I. L. Arancibia-cá-rcamo, R. Jolivet, S. Kohsaka et al., Microglial Ramification, Surveillance, and Interleukin-1? Release Are Regulated by the Two-Pore Domain K+ Channel THIK-1. Neuron, vol.97, pp.299-312, 2018.

W. Sun, K. Suzuki, D. Toptunov, S. Stoyanov, M. Yuzaki et al., In vivo Two-Photon Imaging of Anesthesia-Specific Alterations in Microglial Surveillance and Photodamage-Directed Motility in Mouse Cortex, Front Neurosci, vol.13, p.421, 2019.

R. D. Stowell, G. O. Sipe, R. P. Dawes, H. N. Batchelor, K. A. Lordy et al., Noradrenergic signaling in the wakeful state inhibits microglial surveillance and synaptic plasticity in the mouse visual cortex, Nat Neurosci, vol.22, issue.11, p.31636451, 2019.

R. Nakki, J. Nickolenko, J. Chang, S. M. Sagar, and F. R. Sharp, Haloperidol prevents ketamine-and phencyclidine-induced HSP70 protein expression but not microglial activation, Exp Neurol, vol.137, issue.2, pp.234-275, 1996.

G. Kannan, S. P. Kambhampati, and S. R. Kudchadkar, Effect of anesthetics on microglial activation and nanoparticle uptake: Implications for drug delivery in traumatic brain injury, J Control Release Off J Control Release Soc, 2017.

Y. Zhao, L. Huang, H. Xu, G. Wu, M. Zhu et al., Neuroinflammation Induced by Surgery Does Not Impair the Reference Memory of Young Adult Mice, Mediators Inflamm, p.3271579, 2016.

E. J. Davis, T. D. Foster, and W. E. Thomas, Cellular forms and functions of brain microglia, Brain Res Bull, vol.34, issue.1, p.8193937, 1994.

F. Verdonk, A. Petit, A. , P. Vinckier, F. Jouvion et al., Microglial production of quinolinic acid as a target and a biomarker of the antidepressant effect of ketamine, Brain Behav Immun, 2019.

K. Nakajima and S. Kohsaka, Microglia: activation and their significance in the central nervous system, J Biochem (Tokyo), vol.130, issue.2, pp.169-75, 2001.

G. O. Sipe, R. L. Lowery, M. Tremblay, E. A. Kelly, C. E. Lamantia et al., Microglial P2Y12 is necessary for synaptic plasticity in mouse visual cortex, Nat Commun, vol.7, 2016.

S. Hellwig, S. Brioschi, S. Dieni, L. Frings, A. Masuch et al., Altered microglia morphology and higher resilience to stress-induced depression-like behavior in CX3CR1-deficient mice, Brain Behav Immun, vol.55, pp.126-163, 2016.

D. Raj, D. Jaarsma, I. R. Holtman, M. Olah, F. M. Ferreira et al., Priming of microglia in a DNA-repair deficient model of accelerated aging, Neurobiol Aging, vol.35, issue.9, pp.2147-60, 2014.

F. Verdonk, P. Roux, P. Flamant, L. Fiette, F. A. Bozza et al., Phenotypic clustering: a novel method for microglial morphology analysis, J Neuroinflammation, vol.13, issue.1, p.27317566, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-01389354

C. J. Green, J. Knight, S. Precious, and S. Simpkin, Ketamine alone and combined with diazepam or xylazine in laboratory animals: a 10 year experience, Lab Anim, vol.15, issue.2, pp.163-70, 1981.

E. F. Naccarato and W. S. Hunter, Anaesthetic effects of various ratios of ketamine and xylazine in rhesus monkeys (Macaca mulatta), Lab Anim, vol.13, issue.4, pp.317-326, 1979.

P. S. Garcia, S. E. Kolesky, and A. Jenkins, General anesthetic actions on GABA(A) receptors. Curr Neuropharmacol, vol.8, pp.2-9, 2010.

W. Lö-scher and M. A. Rogawski, How theories evolved concerning the mechanism of action of barbiturates, Epilepsia, vol.53, issue.8, pp.12-25, 2012.

M. B. Maciver, J. W. Mandema, D. R. Stanski, and B. H. Bland, Thiopental uncouples hippocampal and cortical synchronized electroencephalographic activity, Anesthesiology, vol.84, issue.6, pp.1411-1435, 1996.

A. Goldstein and L. Aronow, The durations of action of thiopental and pentobarbital, J Pharmacol Exp Ther, vol.128, pp.1-6, 1960.

H. S. Lukatch, C. E. Kiddoo, and M. B. Maciver, Anesthetic-induced Burst Suppression EEG Activity Requires Glutamate-mediated Excitatory Synaptic Transmission, Cereb Cortex, vol.15, issue.9, pp.1322-1353, 2005.

H. F. Iaccarino, A. C. Singer, A. J. Martorell, A. Rudenko, F. Gao et al., Gamma frequency entrainment attenuates amyloid load and modifies microglia, Nature, vol.540, issue.7632, pp.230-235, 2016.

A. Nimmerjahn, F. Kirchhoff, and F. Helmchen, Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo, Science, vol.308, issue.5726, pp.1314-1322, 2005.

U. B. Eyo, J. Peng, P. Swiatkowski, A. Mukherjee, A. Bispo et al., Neuronal hyperactivity recruits microglial processes via neuronal NMDA receptors and microglial P2Y12 receptors after status epilepticus, J Neurosci Off J Soc Neurosci, vol.34, issue.32, pp.10528-10568, 2014.

A. M. Fontainhas, M. Wang, K. J. Liang, S. Chen, P. Mettu et al., Microglial morphology and dynamic behavior is regulated by ionotropic glutamatergic and GABAergic neurotransmission, PloS One, vol.6, issue.1, p.15973, 2011.

A. M. Kaindl, V. Degos, S. Peineau, E. Gouadon, V. Chhor et al., Activation of microglial N-methyl-D-aspartate receptors triggers inflammation and neuronal cell death in the developing and mature brain, Ann Neurol, vol.72, issue.4, pp.536-585, 2012.

S. A. Kuhn, F. Van-landeghem, R. Zacharias, K. Fä-rber, A. Rappert et al., Microglia express GABA(B) receptors to modulate interleukin release, Mol Cell Neurosci, vol.25, issue.2, pp.312-334, 2004.

M. K. Ticku, S. K. Kulkarni, and A. K. Mehta, Modulatory role of GABA receptor subtypes and glutamate receptors in the anticonvulsant effect of barbiturates, Epilepsy Res Suppl, vol.8, pp.57-62, 1992.

H. Zhu, J. E. Cottrell, and I. S. Kass, The effect of thiopental and propofol on NMDA-and AMPA-mediated glutamate excitotoxicity, Anesthesiology, vol.87, issue.4, pp.944-51, 1997.

R. Lydic and H. A. Baghdoyan, Ketamine and MK-801 decrease acetylcholine release in the pontine reticular formation, slow breathing, and disrupt sleep, Sleep, vol.25, issue.6, pp.617-639, 2002.

T. Yamakura, L. E. Chavez-noriega, and R. A. Harris, Subunit-dependent inhibition of human neuronal nicotinic acetylcholine receptors and other ligand-gated ion channels by dissociative anesthetics ketamine and dizocilpine, Anesthesiology, vol.92, issue.4, pp.1144-53, 2000.

T. Kubota, K. Hirota, H. Yoshida, S. Takahashi, N. Anzawa et al., Effects of sedatives on noradrenaline release from the medial prefrontal cortex in rats, Psychopharmacology (Berl), vol.146, issue.3, pp.335-343, 1999.

G. Hantal, B. Fá-biá-n, M. Sega, J. Já-rt, B. Jedlovszky et al., Effect of general anesthetics on the properties of lipid membranes of various compositions, Biochim Biophys Acta Biomembr, vol.1861, issue.3, pp.594-609, 201901.
URL : https://hal.archives-ouvertes.fr/hal-02736991

C. Zhou, J. Liu, and X. Chen, General anesthesia mediated by effects on ion channels, World J Crit Care Med, vol.4, issue.3, pp.80-93, 2012.

C. Boucsein, R. Zacharias, K. Fä-rber, S. Pavlovic, U. Hanisch et al., Purinergic receptors on microglial cells: functional expression in acute brain slices and modulation of microglial activation in vitro, Eur J Neurosci, vol.17, issue.11, pp.2267-76, 2003.

L. Dissing-olesen, J. M. Ledue, R. L. Rungta, J. K. Hefendehl, H. B. Choi et al., Activation of neuronal NMDA receptors triggers transient ATP-mediated microglial process outgrowth, J Neurosci Off J Soc Neurosci, vol.34, issue.32, pp.10511-10538, 2014.

L. Ulmann, F. Levavasseur, E. Avignone, R. Peyroutou, H. Hirbec et al., Involvement of P2X4 receptors in hippocampal microglial activation after status epilepticus, Glia, vol.61, issue.8, pp.1306-1325, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02357593

L. Wu, K. I. Vadakkan, and M. Zhuo, ATP-induced chemotaxis of microglial processes requires P2Y receptor-activated initiation of outward potassium currents, Glia, vol.55, issue.8, pp.810-831, 2007.

Y. Pankratov, U. Lalo, A. Verkhratsky, and R. A. North, Vesicular release of ATP at central synapses, Pflugers Arch, vol.452, issue.5, p.16639550, 2006.

N. B. Hamilton and D. Attwell, Do astrocytes really exocytose neurotransmitters?, Nat Rev Neurosci, vol.11, issue.4, pp.227-265, 2010.

S. Gyoneva and S. F. Traynelis, Norepinephrine modulates the motility of resting and activated microglia via different adrenergic receptors, J Biol Chem, vol.288, issue.21, pp.15291-302, 2013.

M. T. Heneka, M. J. Carson, E. Khoury, J. Landreth, G. E. Brosseron et al., Neuroinflammation in Alzheimer's disease, Lancet Neurol, vol.14, issue.4, pp.70016-70021, 2015.

E. Setiawan, S. Attwells, A. A. Wilson, R. Mizrahi, P. M. Rusjan et al., Association of translocator protein total distribution volume with duration of untreated major depressive disorder: a cross-sectional study, Lancet Psychiatry, vol.5, issue.4, pp.30048-30056, 2018.

L. M. De-biase, K. E. Schuebel, Z. H. Fusfeld, K. Jair, I. A. Hawes et al., Local Cues Establish and Maintain Region-Specific Phenotypes of Basal Ganglia Microglia, vol.95, pp.341-356, 2017.

K. Grabert, T. Michoel, M. H. Karavolos, S. Clohisey, J. K. Baillie et al., Microglial brain regiondependent diversity and selective regional sensitivities to aging, Nat Neurosci, vol.19, issue.3, pp.504-520, 2016.

D. Guneykaya, A. Ivanov, D. P. Hernandez, V. Haage, B. Wojtas et al., Transcriptional and Translational Differences of Microglia from Male and Female Brains, Cell Rep, vol.24, issue.10, pp.2773-2783, 2018.

U. Hanisch, Functional diversity of microglia-how heterogeneous are they to begin with?, Front Cell Neurosci, vol.7, 2013.