N. Alva-murillo, J. E. López-meza, A. Ochoa-zarzosa, K. Artavanis-tsakonas, P. V. Kasperkovitz et al., The tetraspanin CD82 is specifically recruited to fungal and bacterial phagosomes prior to acidification, BioMed Research International, vol.538546, pp.1098-1106, 2011.

A. Asadi, S. Razavi, M. Talebi, and M. Gholami, A review on antiadhesion therapies of bacterial diseases, Infection, vol.47, pp.13-23, 2019.

W. L. Beatty, Trafficking from CD63-positive late endocytic multivesicular bodies is essential for intracellular development of Chlamydia trachomatis, Journal of Cell Science, vol.119, pp.350-359, 2006.

W. L. Beatty, Late endocytic multivesicular bodies intersect the chlamydial inclusion in the absence of CD63, Infection and Immunity, vol.76, pp.2872-2881, 2008.

C. Boucheix and E. Rubinstein, Tetraspanins. Cellular and Molecular Life Sciences, vol.58, pp.1189-1205, 2001.

J. G. Brown, B. D. Almond, J. G. Naglich, and L. Eidels, Hypersensitivity to diphtheria toxin by mouse cells expressing both diphtheria toxin receptor and CD9 antigen, Proceedings of the National Academy of Sciences of the United States of America, vol.90, pp.8184-8188, 1993.

J. H. Cha, J. S. Brooke, K. N. Ivey, and L. Eidels, Cell surface monkey CD9 antigen is a coreceptor that increases diphtheria toxin sensitivity and diphtheria toxin receptor affinity, The Journal of Biological Chemistry, vol.275, pp.6901-6907, 2000.

S. Charrin, S. Jouannet, C. Boucheix, and E. Rubinstein, Tetraspanins at a glance, Journal of Cell Science, vol.127, pp.3641-3648, 2014.

S. Charrin, F. Le-naour, M. Oualid, M. Billard, G. Faure et al., The major CD9 and CD81 molecular partner. Identification and characterization of the complexes, The Journal of Biological Chemistry, vol.276, pp.14329-14337, 2001.

S. Charrin, S. Manié, M. Billard, L. Ashman, D. Gerlier et al., Multiple levels of interactions within the tetraspanin web, Biochemical and Biophysical Research Communications, vol.304, pp.107-112, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00113052

S. Charrin, F. Le-naour, O. Silvie, P. Milhiet, C. Boucheix et al., Lateral organization of membrane proteins: Tetraspanins spin their web, The Biochemical Journal, vol.420, pp.133-154, 2009.

D. L. Clemens and M. A. Horwitz, Characterization of the Mycobacterium tuberculosis phagosome and evidence that phagosomal maturation is inhibited, The Journal of Experimental Medicine, vol.181, pp.257-270, 1995.

P. Cossart and A. Toledo-arana, Listeria monocytogenes, a unique model in infection biology: An overview, Microbes and Infection, vol.10, pp.1041-1050, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02657194

D. Souza, I. Maïssa, N. Ziveri, J. Morand, P. C. Coureuil et al., Meningococcal disease: A paradigm of type-IV pilus dependent pathogenesis, Cellular Microbiology, vol.22, p.13185, 2020.

C. Eldin, C. Mélenotte, O. Mediannikov, E. Ghigo, M. Million et al., From Q fever to Coxiella burnetii infection: A paradigm change, Clinical Microbiology Reviews, vol.30, pp.115-190, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01496178

A. Elgawidi, M. I. Mohsin, F. Ali, A. Watts, P. N. Monk et al., A role for tetraspanin proteins in regulating fusion induced by Burkholderia thailandensis, Medical Microbiology and Immunology, vol.209, pp.473-487, 2020.

E. Eschenbrenner, S. Jouannet, D. Clay, J. Chaker, C. Boucheix et al., TspanC8 tetraspanins differentially regulate ADAM10 endocytosis and half-life, Biochemical Society Transactions, vol.3, pp.489-497, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02486001

J. Ferreira-coimbra, C. Sarda, and J. Rello, Burden of communityacquired pneumonia and unmet clinical needs, Advances in Therapy, vol.37, pp.1302-1318, 2020.

L. Florin and T. Lang, Tetraspanin assemblies in virus infection. Frontiers in Immunology, vol.9, p.1140, 2018.

W. W. Franke, H. Heid, R. Zimbelmann, C. Kuhn, S. Winter-simanowski et al., Transmembrane protein PERP is a component of tessellate junctions and of other junctional and nonjunctional plasma membrane regions in diverse epithelial and epithelium-derived cells, Cell and Tissue Research, vol.353, pp.99-115, 2013.

G. Gerold, R. Moeller, and T. Pietschmann, Hepatitis C virus entry: Protein interactions and fusion determinants governing productive hepatocyte invasion. Cold Spring Harbor Perspectives in Medicine, Immunotherapy, vol.10, pp.755-774, 2014.

L. R. Green, P. N. Monk, L. J. Partridge, P. Morris, A. R. Gorringe et al., Cooperative role for tetraspanins in adhesinmediated attachment of bacterial species to human epithelial cells, Infection and Immunity, vol.79, pp.2241-2249, 2011.

K. N. Hallstrom and B. A. Mccormick, The type three secreted effector SipC regulates the trafficking of PERP during Salmonella infection, Gut Microbes, vol.7, pp.136-145, 2016.

K. N. Hallstrom, C. V. Srikanth, T. A. Agbor, C. M. Dumont, K. N. Peters et al., PERP, a host tetraspanning membrane protein, is required for Salmonella-induced inflammation, Cellular Microbiology, vol.17, pp.843-859, 2015.

M. P. Hantak, E. Qing, J. T. Earnest, and T. Gallagher, Tetraspanins: Architects of viral entry and exit platforms, Journal of Virology, vol.93, p.1429, 2019.

N. A. Hassuna, P. N. Monk, F. Ali, R. C. Read, and L. J. Partridge, A role for the tetraspanin proteins in Salmonella infection of human macrophages, The Journal of Infection, vol.75, pp.115-124, 2017.

H. Hasuwa, Y. Shishido, A. Yamazaki, T. Kobayashi, X. Yu et al., CD9 amino acids critical for upregulation of diphtheria toxin binding, Biochemical and Biophysical Research Communications, vol.289, pp.782-790, 2001.

D. Howe, J. G. Shannon, S. Winfree, D. W. Dorward, and R. A. Heinzen, Coxiella burnetii phase I and II variants replicate with similar kinetics in degradative phagolysosome-like compartments of human macrophages, Infection and Immunity, vol.78, pp.3465-3474, 2010.

I. H. Igbinosa, E. U. Igumbor, F. Aghdasi, M. Tom, and A. I. Okoh, Emerging Aeromonas species infections and their significance in public health, Scientific World Journal, p.625023, 2012.

H. Jin, J. Cho, and S. Park, Association between CD53 genetic polymorphisms and tuberculosis cases, Genes & Genomics, vol.41, pp.389-395, 2019.

S. Jouannet, J. Saint-pol, L. Fernandez, V. Nguyen, S. Charrin et al., TspanC8 tetraspanins differentially regulate the cleavage of ADAM10 substrates, Notch activation and ADAM10 membrane compartmentalization, Cellular and Molecular Life Sciences, vol.73, pp.1895-1915, 2016.
URL : https://hal.archives-ouvertes.fr/inserm-01677606

V. Kalas, M. E. Hibbing, A. R. Maddirala, R. Chugani, J. S. Pinkner et al., Structure-based discovery of glycomimetic FmlH ligands as inhibitors of bacterial adhesion during urinary tract infection, vol.115, pp.2819-2828, 2018.

W. Kespichayawattana, S. Rattanachetkul, T. Wanun, P. Utaisincharoen, and S. Sirisinha, Burkholderia pseudomallei induces cell fusion and actin-associated membrane protrusion: A possible mechanism for cell-to-cell spreading, Infection and Immunity, vol.68, pp.5377-5384, 2000.

K. Kitadokoro, D. Bordo, G. Galli, R. Petracca, F. Falugi et al., CD81 extracellular domain 3D structure: Insight into the tetraspanin superfamily structural motifs, vol.20, pp.12-18, 2001.

K. Kitadokoro, G. Galli, R. Petracca, F. Falugi, G. Grandi et al., Crystallization and preliminary crystallographic studies on the large extracellular domain of human CD81, a tetraspanin receptor for hepatitis C virus, Acta Crystallographica. Section D, Biological Crystallography, vol.57, pp.156-158, 2001.

K. A. Kline, S. Fälker, S. Dahlberg, S. Normark, and B. Henriques-normark, Bacterial adhesins in host-microbe interactions, Cell Host & Microbe, vol.5, pp.580-592, 2009.

H. Koh, Y. Kim, J. Kim, J. Yun, S. Kim et al., CD82 hypomethylation is essential for tuberculosis pathogenesis via regulation of RUNX1-Rab5/22, Experimental & Molecular Medicine, vol.50, pp.1-15, 2018.

C. Z. Koo, N. Harrison, P. J. Noy, J. Szyroka, A. L. Matthews et al., The tetraspanin Tspan15 is an essential subunit of an ADAM10 scissor complex, Journal of Biological Chemistry, vol.295, pp.12822-12839, 2020.

O. V. Kovalenko, D. G. Metcalf, W. F. Degrado, and M. E. Hemler, Structural organization and interactions of transmembrane domains in tetraspanin proteins, BMC Structural Biology, vol.5, p.11, 2005.

D. Kummer, T. Steinbacher, M. F. Schwietzer, S. Thölmann, and K. Ebnet, Tetraspanins: Integrating cell surface receptors to functional microdomains in homeostasis and disease, Medical Microbiology and Immunology, vol.209, pp.397-405, 2020.

T. Lang and N. Hochheimer, Tetraspanins. Current Biology, vol.30, pp.204-206, 2020.

D. L. Larock, A. Chaudhary, and S. I. Miller, Salmonellae interactions with host processes, Nature Reviews. Microbiology, vol.13, pp.191-205, 2015.

C. L. Larson and R. A. Heinzen, High-content imaging reveals expansion of the endosomal compartment during Coxiella burnetii parasitophorous vacuole maturation, Frontiers in Cellular and Infection Microbiology, vol.7, p.48, 2017.

N. Latysheva, G. Muratov, S. Rajesh, M. Padgett, N. A. Hotchin et al., Syntenin-1 is a new component of tetraspanin-enriched microdomains: Mechanisms and consequences of the interaction of syntenin-1 with CD63, Molecular and Cellular Biology, vol.26, pp.7707-7718, 2006.

S. Levy and T. Shoham, Protein-protein interactions in the tetraspanin web, Physiology (Bethesda), vol.20, pp.218-224, 2005.

A. J. Lewis, A. C. Richards, and M. A. Mulvey, Invasion of host cells and tissues by uropathogenic bacteria, Microbiology Spectrum, vol.4, p.10, 2016.

G. Manzoni, C. Marinach, S. Topçu, S. Briquet, M. Grand et al., Plasmodium P36 determines host cell receptor usage during sporozoite invasion. eLife, vol.6, p.25903, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01556552

G. Martínez-del-hoyo, M. Ramírez-huesca, S. Levy, C. Boucheix, E. Rubinstein et al., CD81 controls immunity to Listeria infection through racdependent inhibition of proinflammatory mediator release and activation of cytotoxic T cells, Journal of Immunology, vol.194, pp.6090-6101, 2015.

P. Meuleman, J. Hesselgesser, M. Paulson, T. Vanwolleghem, I. Desombere et al., Anti-CD81 antibodies can prevent a hepatitis C virus infection in vivo, Hepatology, vol.48, pp.1761-1768, 2008.

T. Mitamura, R. Iwamoto, T. Umata, T. Yomo, I. Urabe et al., The 27-kD diphtheria toxin receptor-associated protein (DRAP27) from vero cells is the monkey homologue of human CD9 antigen: Expression of DRAP27 elevates the number of diphtheria toxin receptors on toxin-sensitive cells, The Journal of Cell Biology, vol.118, pp.1389-1399, 1992.

J. R. Murphy, Corynebacterium Diphtheriae. Medical microbiology, 1996.

Y. Omae, L. Toyo-oka, H. Yanai, S. Nedsuwan, S. Wattanapokayakit et al., Pathogen lineagebased genome-wide association study identified CD53 as susceptible locus in tuberculosis, Journal of Human Genetics, vol.62, pp.1015-1022, 2017.

D. Perez-hernandez, C. Gutiérrez-vázquez, I. Jorge, S. López-martín, A. Ursa et al., The intracellular interactome of tetraspanin-enriched microdomains reveals their function as sorting machineries toward exosomes, The Journal of Biological Chemistry, vol.288, pp.11649-11661, 2013.

J. Pizarro-cerdá and P. Cossart, Bacterial adhesion and entry into host cells, Cell, vol.124, pp.715-727, 2006.

J. Pizarro-cerdá, B. Payrastre, Y. Wang, E. Veiga, H. L. Yin et al., Type II phosphatidylinositol 4-kinases promote Listeria monocytogenes entry into target cells, Cellular Microbiology, vol.9, pp.2381-2390, 2007.

M. S. Pols and J. Klumperman, Trafficking and function of the tetraspanin CD63, Experimental Cell Research, vol.315, pp.1584-1592, 2009.

A. Rajan, B. D. Persson, L. Frängsmyr, A. Olofsson, L. Sandblad et al., Enteric species F human adenoviruses use laminin-binding integrins as co-receptors for infection of Ht-29 cells, Scientific Reports, vol.8, p.10019, 2018.

R. P. Ramachandran, F. Vences-catalán, D. Wiseman, E. Zlotkin-rivkin, E. Shteyer et al., EspH suppresses Erk by spatial segregation from CD81 tetraspanin microdomains. Infection and Immunity, vol.86, p.303, 2018.

F. Ryu, T. Takahashi, K. Nakamura, Y. Takahashi, T. Kobayashi et al., Domain analysis of the tetraspanins: Studies of CD9/CD63 chimeric molecules on subcellular localization and upregulation activity for diphtheria toxin binding, Cell Structure and Function, vol.25, pp.317-327, 2000.

M. M. Sauer, R. P. Jakob, J. Eras, S. Baday, D. Eri? et al., Catch-bond mechanism of the bacterial adhesin FimH, Nature Communications, vol.7, p.10738, 2016.

M. Seigneuret, Complete predicted three-dimensional structure of the facilitator transmembrane protein and hepatitis C virus receptor CD81: Conserved and variable structural domains in the tetraspanin superfamily, Biophysical Journal, vol.90, pp.212-227, 2006.

V. Serru, F. Le-naour, M. Billard, D. O. Azorsa, F. Lanza et al., Selective tetraspan-integrin complexes (CD81/alpha4beta1, CD151/alpha3beta1, CD151/alpha6beta1) under conditions disrupting tetraspan interactions, The Biochemical Journal, vol.340, pp.103-111, 1999.

S. Seto, S. Matsumoto, K. Tsujimura, and Y. Koide, Differential recruitment of CD63 and Rab7-interacting-lysosomal-protein to phagosomes containing Mycobacterium tuberculosis in macrophages, Microbiology and Immunology, vol.54, pp.170-174, 2010.

O. Silvie, S. Charrin, M. Billard, J. Franetich, K. L. Clark et al., Cholesterol contributes to the organization of tetraspanin-enriched microdomains and to CD81-dependent infection by malaria sporozoites, Journal of Cell Science, vol.119, 1992.

O. Silvie, E. Rubinstein, J. Franetich, M. Prenant, E. Belnoue et al., Hepatocyte CD81 is required for Plasmodium falciparum and Plasmodium yoelii sporozoite infectivity, Nature Medicine, vol.9, pp.93-96, 2003.

R. J. Storm, B. D. Persson, L. N. Skalman, L. Frängsmyr, M. Lindström et al., Human adenovirus type 37 uses ?V?1 and ?3?1 integrins for infection of human corneal cells, Journal of Virology, vol.91, 2017.

, Tetraspanins, another piece in the HIV-1 replication puzzle, Frontiers in Immunology, vol.9, p.1811

C. Svanborg and G. Godaly, Bacterial virulence in urinary tract infection, Infectious Disease Clinics of North America, vol.11, pp.513-529, 1997.

H. R. Taylor, M. J. Burton, D. Haddad, S. West, and H. Wright, Lancet, vol.384, pp.2142-2152, 2014.

E. Tejera, V. Rocha-perugini, S. López-martín, D. Pérez-hernández, A. I. Bachir et al., CD81 regulates cell migration through its association with Rac GTPase, Molecular Biology of the Cell, vol.24, pp.261-273, 2013.

A. A. Terbush, F. Hafkamp, H. J. Lee, and L. Coscoy, A Kaposi's sarcoma-associated herpesvirus infection mechanism is independent of integrins ?3?1, ?V?3, and ?V?5, Frontiers in Cell and Development Biology, vol.92, p.34, 2017.

T. N. Tham, E. Gouin, E. Rubinstein, C. Boucheix, P. Cossart et al., Tetraspanin CD81 is required for Listeria monocytogenes invasion, Infection and Immunity, vol.78, pp.204-209, 2010.

Z. Tian, H. Shen, X. Fu, Y. Chen, H. E. Blum et al., Interaction of hepatitis C virus envelope glycoprotein E2 with the large extracellular loop of tupaia CD81, World Journal of Gastroenterology, vol.15, pp.240-244, 2009.

S. Y. Tong, J. S. Davis, E. Eichenberger, T. L. Holland, and V. G. Fowler, Staphylococcus aureus infections: Epidemiology, pathophysiology, clinical manifestations, and management, Clinical Microbiology Reviews, vol.28, pp.603-661, 2015.

R. Umeda, Y. Satouh, M. Takemoto, Y. Nakada-nakura, K. Liu et al., Structural insights into tetraspanin CD9 function, Nature Communications, vol.11, p.1606, 2020.

J. K. Ventress, L. J. Partridge, R. C. Read, D. Cozens, S. Macneil et al., Peptides from tetraspanin CD9 are potent inhibitors of Staphylococcus aureus adherence to keratinocytes, PLoS One, p.160387, 2016.

S. J. Deventer, V. E. Dunlock, and A. B. Van-spriel, Molecular interactions shaping the tetraspanin web, Biochemical Society Transactions, vol.45, pp.741-750, 2017.

V. Winter, S. Zychlinsky, A. Bardoel, and B. W. , , 2016.

M. E. Wand, C. M. Müller, R. W. Titball, and S. L. Michell, Macrophage and Galleria mellonella infection models reflect the virulence of naturally occurring isolates of B. pseudomallei, B. thailandensis and B. oklahomensis, Genome-wide CRISPR screen reveals novel host factors required for Staphylococcus aureus ?-hemolysin-mediated toxicity, vol.6, p.11, 2011.

J. N. Weiser, D. M. Ferreira, and J. C. Paton, Streptococcus pneumoniae: Transmission, colonization and invasion, Nature Reviews. Microbiology, vol.16, pp.355-367, 2018.

A. Wellens, C. Garofalo, H. Nguyen, N. Van-gerven, R. Slättegård et al., Intervening with urinary tract infections using anti-adhesives based on the crystal structure of the FimH-oligomannose-3 complex, PLoS One, vol.3, p.2040, 2008.

W. J. Wiersinga, H. S. Virk, A. G. Torres, B. J. Currie, S. J. Peacock et al., Melioidosis. Nature Reviews. Disease Primers, vol.4, p.17107, 2018.

X. Wu, X. Kong, A. Pellicer, G. Kreibich, and T. Sun, Uroplakins in urothelial biology, function, and disease, Kidney International, vol.75, pp.1153-1165, 2009.

X. R. Wu, T. T. Sun, and J. J. Medina, In vitro binding of type 1-fimbriated Escherichia coli to uroplakins Ia and Ib: Relation to urinary tract infections, Proceedings of the National Academy of Sciences of the United States of America, vol.93, pp.9630-9635, 1996.

J. L. Wylie, G. M. Hatch, and G. Mcclarty, Host cell phospholipids are trafficked to and then modified by Chlamydia trachomatis, Journal of Bacteriology, vol.179, pp.7233-7242, 1997.

R. L. Yauch, F. Berditchevski, M. B. Harler, J. Reichner, and M. E. Hemler, Highly stoichiometric, stable, and specific association of integrin alpha3beta1 with CD151 provides a major link to phosphatidylinositol 4-kinase, and may regulate cell migration, Molecular Biology of the Cell, vol.9, pp.2751-2765, 1998.

R. L. Yauch and M. E. Hemler, Specific interactions among transmembrane 4 superfamily (TM4SF) proteins and phosphoinositide 4-kinase, The Biochemical Journal, vol.351, pp.629-637, 2000.

G. Zhou, W. J. Mo, P. Sebbel, G. Min, T. A. Neubert et al., Uroplakin Ia is the urothelial receptor for uropathogenic Escherichia coli: Evidence from in vitro FimH binding, Journal of Cell Science, vol.114, pp.4095-4103, 2001.

X. Zhou, H. Feng, Q. Guo, and H. Dai, Identification and characterization of the first reptilian CD9, and its expression analysis in response to bacterial infection, Developmental and Comparative Immunology, vol.34, pp.150-157, 2010.

X. Zhou, Q. Guo, and H. Dai, Identification of differentially expressed immune-relevant genes in Chinese soft-shelled turtle (Trionyx sinensis) infected with Aeromonas hydrophila, Veterinary Immunology and Immunopathology, vol.125, pp.82-91, 2008.

X. Zhu, X. Yang, W. He, Y. Xiong, J. Liu et al., Involvement of tetraspanin 8 in the innate immune response of the giant prawn, Macrobrachium rosenbergii, Fish & Shellfish Immunology, vol.86, pp.459-464, 2019.

B. Zimmerman, B. Kelly, B. J. Mcmillan, T. C. Seegar, R. O. Dror et al., Crystal structure of a full-length human tetraspanin reveals a cholesterol-binding pocket, Cellular Microbiology, vol.167, pp.1041-1051, 2016.