K. N. Adams, K. Takaki, L. E. Connolly, H. Wiedenhoft, K. Winglee et al., Drug tolerance in replicating mycobacteria mediated by a macrophage-induced efflux mechanism, Cell, vol.145, pp.39-53, 2011.

L. Alibaud, Y. Rombouts, X. Trivelli, A. Burguière, S. L. Cirillo et al., A Mycobacterium marinum TesA mutant defective for major cell wall-associated lipids is highly attenuated in Dictyostelium discoideum and zebrafish embryos, Mol. Microbiol, vol.80, pp.919-934, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00641589

R. D. Berg and L. Ramakrishnan, Insights into tuberculosis from the zebrafish model, Trends Mol. Med, vol.18, pp.689-690, 2012.

A. Bernut, C. Dupont, N. V. Ogryzko, A. Neyret, J. Herrmann et al., CFTR protects against Mycobacterium abscessus infection by fine-tuning host oxidative defenses, Cell Rep, vol.26, pp.1828-1840, 2019.

A. Bernut, C. Dupont, A. Sahuquet, J. Herrmann, G. Lutfalla et al., Deciphering and imaging pathogenesis and cording of Mycobacterium abscessus in zebrafish embryos, J. Vis. Exp, vol.103, p.53130, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02086982

A. Bernut, J. Herrmann, K. Kissa, J. Dubremetz, J. Gaillard et al., Mycobacterium abscessus cording prevents phagocytosis and promotes abscess formation, Proc. Natl. Acad. Sci. U.S.A, vol.111, pp.943-952, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02088315

A. Bernut, V. Le-moigne, T. Lesne, G. Lutfalla, J. Herrmann et al., In vivo assessment of drug efficacy against Mycobacterium abscessus using the embryonic zebrafish test system, Antimicrob. Agents Chemother, vol.58, pp.4054-4063, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02088311

A. Bernut, M. Nguyen-chi, I. Halloum, J. Herrmann, G. Lutfalla et al., Mycobacterium abscessus-induced granuloma formation is strictly dependent on TNF signaling and neutrophil trafficking, PLoS Pathog, vol.12, p.1005986, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02086787

A. Bernut, A. Viljoen, C. Dupont, G. Sapriel, M. Blaise et al., Insights into the smooth-to-rough transitioning in Mycobacterium bolletii unravels a functional Tyr residue conserved in all mycobacterial MmpL family members, Mol. Microbiol, vol.99, pp.866-883, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02137603

B. A. Brown-elliott, L. B. Mann, D. Hail, C. Whitney, and R. J. Wallace, Antimicrobial susceptibility of nontuberculous mycobacteria from eye infections, Cornea, vol.31, pp.900-906, 2012.

B. A. Brown-elliott and J. V. Philley, Rapidly growing mycobacteria, Microbiol. Spectr, vol.5, pp.1-19, 2017.

B. A. Brown-elliott and R. J. Wallace, Clinical and taxonomic status of pathogenic nonpigmented or late-pigmenting rapidly growing mycobacteria, Clin. Microbiol. Rev, vol.15, pp.716-746, 2002.

P. H. Cândido, L. S. Nunes, E. A. Marques, T. W. Folescu, F. S. Coelho et al., Multidrug-resistant nontuberculous mycobacteria isolated from cystic fibrosis patients, J. Clin. Microbiol, vol.52, pp.2990-2997, 2014.

C. J. Cambier, K. K. Takaki, R. P. Larson, R. E. Hernandez, D. M. Tobin et al., Mycobacteria manipulate macrophage recruitment through coordinated use of membrane lipids, Nature, vol.505, pp.218-222, 2014.

R. Carvalho, J. De-sonneville, O. W. Stockhammer, N. D. Savage, W. J. Veneman et al., A high-throughput screen for tuberculosis progression, PLoS ONE, vol.6, p.16779, 2011.

H. Clay, J. M. Davis, D. Beery, A. Huttenlocher, S. E. Lyons et al., Dichotomous role of the macrophage in early Mycobacterium marinum infection of the zebrafish, Cell Host Microbe, vol.2, pp.29-39, 2007.

S. Das, T. Garg, S. Chopra, and A. Dasgupta, Repurposing disulfiram to target infections caused by non-tuberculous mycobacteria, J. Antimicrob. Chemother, vol.74, pp.1317-1322, 2019.

D. Datta, P. Khatri, A. Singh, D. R. Saha, G. Verma et al., Mycobacterium fortuitum-induced ER-mitochondrial calcium dynamics promotes calpain/caspase-12/caspase-9 mediated apoptosis in fish macrophages, Cell Death Discov, vol.4, p.30, 2018.

J. M. Davis, H. Clay, J. L. Lewis, N. Ghori, P. Herbomel et al., Real-time visualization of mycobacterium-macrophage interactions leading to initiation of granuloma formation in zebrafish embryos, Immunity, vol.17, pp.693-702, 2002.

J. M. Davis and L. Ramakrishnan, The role of the granuloma in expansion and dissemination of early tuberculous infection, Cell, vol.136, pp.37-49, 2009.

V. Dubée, A. Bernut, M. Cortes, T. Lesne, D. Dorchene et al., ?-Lactamase inhibition by avibactam in Mycobacterium abscessus, J. Antimicrob. Chemother, vol.70, pp.1051-1058, 2015.

E. Dumas, C. Boritsch, E. Vandenbogaert, M. Rodríguez-de-la, R. C. Vega et al., Mycobacterial pan-genome analysis suggests important role of plasmids in the radiation of type VII secretion systems, Genome Biol. Evol, vol.8, pp.387-402, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01291528

C. Dupont, A. Viljoen, S. Thomas, F. Roquet-banères, J. Herrmann et al., Bedaquiline inhibits the ATP synthase in Mycobacterium abscessus and is effective in infected zebrafish, Antimicrob. Agents Chemother, vol.61, pp.1225-1242, 2017.

F. M. Entwistle and P. J. Coote, Evaluation of greater wax moth larvae, Galleria mellonella, as a novel in vivo model for non-tuberculosis mycobacteria infections and antibiotic treatments, J. Med. Microbiol, vol.67, pp.585-597, 2018.

M. García-coca, J. J. Aguilera-correa, A. Ibáñez-apesteguía, G. Rodríguez-sevilla, D. Romera-garcía et al., Non-pigmented rapidly growing mycobacteria smooth and rough colony phenotypes pathogenicity evaluated using in vitro and experimental models, Pathog. Dis, vol.77, p.51, 2019.

M. S. Glickman, J. S. Cox, and W. R. Jacobs, A novel mycolic acid cyclopropane synthetase is required for cording, persistence, and virulence of Mycobacterium tuberculosis, Mol. Cell, vol.5, pp.80250-80256, 2000.

M. C. Gomes and S. Mostowy, The case for modeling human infection in zebrafish, Trends Microbiol, vol.28, pp.10-18, 2020.

D. Houben, C. Demangel, J. Van-ingen, J. Perez, L. Baldeón et al., ESX-1-mediated translocation to the cytosol controls virulence of mycobacteria, Cell. Microbiol, vol.14, pp.1287-1298, 2012.

M. D. Johansen, J. Herrmann, and L. Kremer, Non-tuberculous mycobacteria and the rise of Mycobacterium abscessus, Nat. Rev. Microbiol, vol.18, pp.392-407, 2020.
URL : https://hal.archives-ouvertes.fr/inserm-02494720

M. D. Johansen and L. Kremer, A zebrafish model of Mycobacterium kansasii infection reveals large extracellular cord formation, J. Infect. Dis, 2020.

L. Laencina, V. Dubois, V. Le-moigne, A. Viljoen, L. Majlessi et al., Identification of genes required for Mycobacterium abscessus growth in vivo with a prominent role of the ESX-4 locus, Proc. Natl. Acad. Sci. U.S.A, vol.115, pp.1002-1011, 2018.
URL : https://hal.archives-ouvertes.fr/pasteur-02046027

S. L. Martiniano, J. A. Nick, and C. L. Daley, Nontuberculous mycobacterial infections in cystic fibrosis, Clin. Chest Med, vol.37, pp.83-96, 2016.

S. H. Oehlers, M. R. Cronan, N. R. Scott, M. I. Thomas, K. S. Okuda et al., Interception of host angiogenic signalling limits mycobacterial growth, Nature, vol.517, pp.612-615, 2015.

A. J. Pagán and L. Ramakrishnan, The formation and function of granulomas, Annu. Rev. Immunol, vol.36, pp.639-665, 2018.

R. P. Parti, R. Shrivastava, S. Srivastava, A. R. Subramanian, R. Roy et al., A transposon insertion mutant of Mycobacterium fortuitum attenuated in virulence and persistence in a murine infection model that is complemented by Rv3291c of Mycobacterium tuberculosis, Microb. Pathog, vol.45, pp.370-376, 2008.

R. P. Parti, S. Srivastava, R. Gachhui, K. K. Srivastava, and R. Srivastava, Murine infection model for Mycobacterium fortuitum, Microbes Infect, vol.7, pp.349-355, 2005.

T. K. Prajsnar, V. T. Cunliffe, S. J. Foster, and S. A. Renshaw, A novel vertebrate model of Staphylococcus aureus infection reveals phagocyte-dependent resistance of zebrafish to non-host specialized pathogens, Cell. Microbiol, vol.10, pp.2312-2325, 2008.

T. K. Prajsnar, S. A. Renshaw, N. V. Ogryzko, S. J. Foster, P. Serror et al., Zebrafish as a novel vertebrate model to dissect enterococcal pathogenesis, Infect. Immun, vol.81, pp.4271-4279, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01004553

C. N. Ratnatunga, V. P. Lutzky, A. Kupz, D. L. Doolan, D. W. Reid et al., The rise of non-tuberculosis mycobacterial lung disease, Front. Immunol, vol.11, p.303, 2020.

C. Raynaud, W. Daher, M. Johansen, F. Roquet-baneres, M. Blaise et al., Active benzimidazole derivatives targeting the MmpL3 transporter in Mycobacterium abscessus, ACS Infect. Dis, vol.6, pp.324-337, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02424752

C. J. Richards and K. N. Olivier, Nontuberculous mycobacteria in cystic fibrosis, Semin. Respir. Crit. Care Med, vol.40, pp.737-750, 2019.

A. Roux, E. Catherinot, F. Ripoll, N. Soismier, E. Macheras et al., Multicenter study of prevalence of nontuberculous mycobacteria in patients with cystic fibrosis in france, J. Clin. Microbiol, vol.47, pp.4124-4128, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01857711

A. Roux, A. Viljoen, A. Bah, R. Simeone, A. Bernut et al., The distinct fate of smooth and rough Mycobacterium abscessus variants inside macrophages, Open Biol, vol.6, p.160185, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01438481

H. Saito and H. Tasaka, Comparison of the pathogenicity for mice of Mycobacterium fortuitum and Mycobacterium abscessus, J. Bacteriol, vol.99, pp.851-855, 1969.

I. Sermet-gaudelus, L. Bourgeois, M. Pierre-audigier, C. Offredo, C. Guillemot et al., Mycobacterium abscessus and children with cystic fibrosis, Emerging Infect. Dis, vol.9, pp.1587-1591, 2003.

K. Skolnik, G. Kirkpatrick, and B. S. Quon, Nontuberculous mycobacteria in cystic fibrosis, Curr. Treat Options Infect. Dis, vol.8, pp.259-274, 2016.

J. F. Staropoli and J. A. Branda, Cord formation in a clinical isolate of Mycobacterium marinum, J. Clin. Microbiol, vol.46, pp.2814-2816, 2008.

K. Takaki, C. L. Cosma, M. A. Troll, and L. Ramakrishnan, An in vivo platform for rapid high-throughput antitubercular drug discovery, Cell Rep, vol.2, pp.175-184, 2012.

A. M. Talaat, M. Trucksis, A. S. Kane, and R. Reimschuessel, Pathogenicity of Mycobacterium fortuitum and Mycobacterium smegmatis to goldfish, Carassius auratus, Vet. Microbiol, vol.66, pp.151-164, 1999.

D. M. Tobin, J. C. Vary, J. P. Ray, G. S. Walsh, S. J. Dunstan et al., The lta4h locus modulates susceptibility to mycobacterial infection in zebrafish and humans, Cell, vol.140, pp.717-730, 2010.

V. Torraca and S. Mostowy, Zebrafish infection: from pathogenesis to cell biology, Trends Cell Biol, vol.28, pp.143-156, 2018.

E. Tortoli, T. Fedrizzi, C. J. Meehan, A. Trovato, A. Grottola et al., The new phylogeny of the genus Mycobacterium: the old and the news, Infect. Genet. Evol, vol.56, pp.19-25, 2017.

A. M. Van-der-sar, B. J. Appelmelk, C. M. Vandenbroucke-grauls, and W. Bitter, A star with stripes: zebrafish as an infection model, Trends Microbiol, vol.12, pp.451-457, 2004.

A. C. Vergunst, A. H. Meijer, S. A. Renshaw, and D. Callaghan, Burkholderia cenocepacia creates an intramacrophage replication niche in zebrafish embryos, followed by bacterial dissemination and establishment of systemic infection, Infect. Immun, vol.78, pp.1495-1508, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02381194

C. Vilchèze, V. Molle, S. Carrère-kremer, J. Leiba, L. Mourey et al., Phosphorylation of KasB regulates virulence and acid-fastness in Mycobacterium tuberculosis, PLoS Pathog, vol.10, p.1004115, 2014.

A. Viljoen, A. Gutiérrez, V. Dupont, C. Ghigo, E. Kremer et al., A simple and rapid gene disruption strategy in Mycobacterium abscessus: on the design and application of glycopeptidolipid mutants, Front. Cell. Infect. Microbial, vol.8, p.69, 2018.

H. E. Volkman, H. Clay, D. Beery, J. C. Chang, D. R. Sherman et al., Tuberculous granuloma formation is enhanced by a mycobacterium virulence determinant, PLoS Biol, vol.2, p.367, 2004.

R. J. Wallace, J. M. Swenson, V. A. Silcox, R. C. Good, J. A. Tschen et al., Spectrum of disease due to rapidly growing mycobacteria, Rev. Infect. Dis, vol.5, pp.657-679, 1983.