R. Alvarez--jimenez, G. J. Groeneveld, J. M. Gerven, . Van, S. C. Goulooze et al., Model-based exposure-response analysis to quantify age related differences in the response to scopolamine in healthy subjects, Br. J. Clin. Pharmacol, vol.82, pp.1011-1021, 2016.

J. S. Andrews, J. H. Jansen, S. Linders, and A. Princen, Effects of disrupting the cholinergic system on short-term spatial memory in rats, Psychopharmacology (Berl.), vol.115, pp.485-494, 1994.

J. Blin, T. N. Chase, and M. F. Piercey, Do the effects of muscarinic receptor blockade on brain glucose consumption mimic the cortical and subcortical metabolic pattern of Alzheimer's disease in normal volunteers, pp.123-132, 1995.

D. Boido, R. L. Rungta, B. Osmanski, M. Roche, T. Tsurugizawa et al., Mesoscopic and microscopic imaging of sensory responses in the same animal, Nat. Commun, vol.10, pp.1-13, 2019.

O. Carmichael, A. J. Schwarz, C. H. Chatham, D. Scott, J. A. Turner et al., The role of fMRI in drug development, Drug Discov. Today, vol.23, pp.333-348, 2018.

S. R. Cherry, Fundamentals of positron emission tomography and applications in preclinical drug development, J. Clin. Pharmacol, vol.41, pp.482-491, 2001.

J. P. Chhatwal, A. P. Schultz, T. Hedden, B. P. Boot, S. Wigman et al., Anticholinergic amnesia is mediated by alterations in human network connectivity architecture, Cereb. Cortex, vol.29, pp.3445-3456, 2019.

K. Chuang and F. A. Nasrallah, Functional networks and network perturbations in rodents, NeuroImage, vol.163, pp.419-436, 2017.

C. Demené, T. Deffieux, M. Pernot, B. Osmanski, V. Biran et al., Spatiotemporal clutter filtering of ultrafast ultrasound data highly increases doppler and fultrasound sensitivity, IEEE Trans. Med. Imaging, vol.34, pp.2271-2285, 2015.

G. Deng, C. Wu, X. Rong, S. Li, Z. Ju et al., Ameliorative effect of deoxyvasicine on scopolamine-induced cognitive dysfunction by restoration of cholinergic function in mice, Phytomedicine, vol.63, p.153007, 2019.

J. A. Deutsch, The cholinergic synapse and the site of memory, Science, vol.174, pp.788-794, 1971.

A. Dizeux, M. Gesnik, H. Ahnine, K. Blaize, F. Arcizet et al., Functional ultrasound imaging of the brain reveals propagation of task-related brain activity in behaving primates, Nat. Commun, vol.10, pp.1-9, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02094654

U. Ebert, M. Siepmann, R. Oertel, K. A. Wesnes, and W. Kirch, Pharmacokinetics and pharmacodynamics of scopolamine after subcutaneous administration, J. Clin. Pharmacol, vol.38, pp.720-726, 1998.

S. K. Falsafi, A. Deli, H. Höger, A. Pollak, and G. Lubec, Scopolamine administration modulates muscarinic, nicotinic and nmda receptor systems, PLoS ONE, 2012.

J. Ferrier, E. Tiran, T. Deffieux, M. Tanter, and Z. Lenkei, Functional imaging evidence for task-induced deactivation and disconnection of a major default mode network hub in the mouse brain, Proc. Natl. Acad. Sci, 2020.
URL : https://hal.archives-ouvertes.fr/inserm-02969064

C. Guo, J. Shen, Z. Meng, X. Yang, and F. Li, Neuroprotective effects of polygalacic acid on scopolamine-induced memory deficits in mice, Phytomedicine, vol.23, pp.149-155, 2016.

S. Haider, S. Tabassum, and T. Perveen, Scopolamine-induced greater alterations in neurochemical profile and increased oxidative stress demonstrated a better model of dementia: a comparative study, Brain Res. Bull, vol.127, pp.234-247, 2016.

C. Halldin, B. Gulyas, and L. Farde, PET studies with carbon-11 radioligands in neuropsychopharmacological drug development, Curr. Pharm. Des, vol.7, pp.1907-1929, 2001.

G. P. Ketih-franlkin, Paxinos and Franklin's the Mouse Brain in Stereotaxic Coordinates, 2011.

M. Kikuchi, Y. Wada, Y. Nanbu, A. Nakajima, H. Tachibana et al., EEG changes following scopolamine administration in healthy subjects, Neuropsychobiology, vol.39, pp.219-226, 1999.

I. Klinkenberg and A. Blokland, The validity of scopolamine as a pharmacological model for cognitive impairment: A review of animal behavioral studies, Neurosci. Biobehav. Rev, vol.34, pp.1307-1350, 2010.

J. Lee, J. H. Park, J. H. Ahn, J. Park, I. H. Kim et al., Effects of chronic scopolamine treatment on cognitive impairment and neurofilament expression in the mouse hippocampus, Mol. Med. Rep, vol.17, pp.1625-1632, 2018.

J. Lee, S. Hong, H. Kim, H. Lee, W. Kim et al., Gongjin-Dan enhances hippocampal memory in a mouse model of scopolamineinduced amnesia, PLoS ONE, vol.11, 2016.

M. Liem--moolenaar, P. Boer, . De, M. Timmers, R. C. Schoemaker et al., Pharmacokinetic-pharmacodynamic relationships of central nervous system effects of scopolamine in healthy subjects, Br. J. Clin. Pharmacol, vol.71, pp.886-898, 2011.

J. Lin, L. Huang, J. Yu, S. Xiang, J. Wang et al., Fucoxanthin, a marine carotenoid, reverses scopolamine-induced cognitive impairments in mice and inhibits acetylcholinesterase in vitro, Mar. Drugs, vol.14, p.67, 2016.

E. Macé, G. Montaldo, I. Cohen, M. Baulac, M. Fink et al., Functional ultrasound imaging of the brain, Nat. Methods, vol.8, pp.662-664, 2011.

E. Mace, G. Montaldo, B. Osmanski, I. Cohen, M. Fink et al., Functional ultrasound imaging of the brain: theory and basic principles, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol.60, pp.492-506, 2013.

R. A. Marawar, H. J. Yeh, C. J. Carnabatu, and J. M. Stern, Functional MRI correlates of resting-state temporal theta and delta eeg rhythms, J. Clin. Neurophysiol, vol.34, pp.69-76, 2017.

D. C. Mash and L. T. Potter, Autoradiographic localization of M1 and M2 muscarine receptors in the rat brain, Neuroscience, vol.19, issue.86, pp.90280-90280, 1986.

A. E. Mechling, N. S. Hübner, H. Lee, J. Hennig, D. Von-elverfeldt et al., Fine-grained mapping of mouse brain functional connectivity with resting-state fMRI, NeuroImage, vol.96, pp.203-215, 2014.

M. Méndez-lópez, M. Méndez, L. López, and J. L. Arias, Memory performance and scopolamine: hypoactivity of the thalamus revealed by cytochrome oxidase histochemistry, Acta Histochem, vol.113, pp.465-471, 2011.


S. E. Molchan, J. A. Matochik, A. J. Zametkin, H. V. Szymanski, M. Cantillon et al., A double FDG/PET study of the effects of scopolamine in older adults, Neuropsychopharmacology, vol.10, pp.191-198, 1994.

. Mp and H. Van-den, A cross-disorder connectome landscape of brain dysconnectivity, Nat. Rev. Neurosci, vol.20, pp.435-446, 2019.

T. Muhammad, T. Ali, M. Ikram, A. Khan, S. I. Alam et al., Melatonin rescue oxidative stress-mediated neuroinflammation/ neurodegeneration and memory impairment in scopolamine-induced amnesia mice model, J. Neuroimmune Pharmacol, vol.14, pp.278-294, 2019.

P. J. Nathan, K. L. Phan, C. J. Harmer, M. A. Mehta, and E. T. Bullmore, Increasing pharmacological knowledge about human neurological and psychiatric disorders through functional neuroimaging and its application in drug discovery, Curr. Opin. Pharmacol, vol.14, pp.54-61, 2014.

B. Osmanski, S. Pezet, A. Ricobaraza, Z. Lenkei, and M. Tanter, Functional ultrasound imaging of intrinsic connectivity in the living rat brain with high spatiotemporal resolution, Nat. Commun, vol.5, pp.1-14, 2014.

H. R. Park, H. Lee, H. Park, W. Cho, and J. Y. Ma, Fermented sipjeondaebo-tang alleviates memory deficits and loss of hippocampal neurogenesis in scopolamine-induced amnesia in mice, Sci. Rep, vol.6, p.22405, 2016.

M. Piel, I. Vernaleken, and F. Rösch, Positron emission tomography in CNS drug discovery and drug monitoring, J. Med. Chem, vol.57, pp.9232-9258, 2014.

R. H. Pruim, M. Mennes, J. K. Buitelaar, and C. F. Beckmann, Evaluation of ICA-AROMA and alternative strategies for motion artifact removal in resting state fMRI, NeuroImage, vol.112, pp.278-287, 2015.

C. Rabut, M. Correia, V. Finel, S. Pezet, M. Pernot et al., 4D functional ultrasound imaging of whole-brain activity in rodents, Nat. Methods, vol.16, pp.994-997, 2019.

W. G. Sannita, L. Maggi, and G. Rosadini, Effects of scopolamine (0.25-0.75 mg i.m.) on the quantitative EEG and the neuropsychological status of healthy volunteers, Neuropsychobiology, vol.17, pp.199-205, 1987.

C. Schwab, G. Brückner, T. Rothe, C. Castellano, and A. Oliverio, Autoradiography of muscarinic cholinergic receptors in cortical and subcortical brain regions of C57BL/6 and DBA/2 mice, Neurochem. Res, vol.17, pp.1057-1062, 1992.

D. Shah, I. Blockx, P. Guns, P. P. De-deyn, D. Van-dam et al., Acute modulation of the cholinergic system in the mouse brain detected by pharmacological resting-state functional MRI, NeuroImage, vol.109, pp.151-159, 2015.

L. Sieu, A. Bergel, E. Tiran, T. Deffieux, M. Pernot et al., EEG and functional ultrasound imaging in mobile rats, Nat. Methods, vol.12, pp.831-834, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01541358

S. Simpraga, R. Alvarez-jimenez, H. D. Mansvelder, J. M. Gerven, . Van et al., EEG machine learning for accurate detection of cholinergic intervention and Alzheimer's disease, Sci. Rep, vol.7, pp.1-11, 2017.

R. Sperling, D. Greve, A. Dale, R. Killiany, J. Holmes et al., Functional MRI detection of pharmacologically induced memory impairment, Proc. Natl. Acad. Sci, vol.99, pp.455-460, 2002.

E. Tiran, J. Ferrier, T. Deffieux, J. Gennisson, S. Pezet et al., Transcranial functional ultrasound imaging in freely moving awake mice and anesthetized young rats without contrast agent, Ultrasound Med. Biol, vol.43, pp.1679-1689, 2017.

B. Wandschneider and M. J. Koepp, Pharmaco fMRI: Determining the functional anatomy of the effects of medication, NeuroImage Clin, vol.12, pp.691-697, 2016.

A. M. Wink, F. Bernard, R. Salvador, E. Bullmore, and J. Suckling, Age and cholinergic effects on hemodynamics and functional coherence of human hippocampus, Neurobiol. Aging, vol.27, pp.1395-1404, 2006.

H. Xu, Z. You, Z. Wu, L. Zhou, J. Shen et al., WY14643 Attenuates the Scopolamine-Induced Memory Impairments in Mice, Neurochem. Res, vol.41, pp.2868-2879, 2016.