Neuronavigated Repetitive Transcranial Ultrasound Stimulation Induces Long-Lasting and Reversible Effects on Oculomotor Performance in Non-human Primates - Inserm - Institut national de la santé et de la recherche médicale Accéder directement au contenu
Article Dans Une Revue Frontiers in Physiology Année : 2020

Neuronavigated Repetitive Transcranial Ultrasound Stimulation Induces Long-Lasting and Reversible Effects on Oculomotor Performance in Non-human Primates

Résumé

Since the late 2010s, Transcranial Ultrasound Stimulation (TUS) has been used experimentally to carryout safe, non-invasive stimulation of the brain with better spatial resolution than Transcranial Magnetic Stimulation (TMS). This innovative stimulation method has emerged as a novel and valuable device for studying brain function in humans and animals. In particular, single pulses of TUS directed to oculomotor regions have been shown to modulate visuomotor behavior of non-human primates during 100 ms ultrasound pulses. In the present study, a sustained effect was induced by applying 20-s trains of neuronavigated repetitive Transcranial Ultrasound Stimulation (rTUS) to oculomotor regions of the frontal cortex in three non-human primates performing an antisaccade task. With the help of MRI imaging and a frame-less stereotactic neuronavigation system (SNS), we were able to demonstrate that neuronavigated TUS (outside of the MRI scanner) is an efficient tool to carry out neuromodulation procedures in non-human primates. We found that, following neuronavigated rTUS, saccades were significantly modified, resulting in shorter latencies compared to no-rTUS trials. This behavioral modulation was maintained for up to 20 min. Oculomotor behavior returned to baseline after 18-31 min and could not be significantly distinguished from the no-rTUS condition. This study is the first to show that neuronavigated rTUS can have a persistent effect on monkey behavior with a quantified return-time to baseline. The specificity of the effects could not be explained by auditory confounds.
Fichier principal
Vignette du fichier
Pouget et al Front Physiol. 2020.pdf (1.99 Mo) Télécharger le fichier
Origine : Publication financée par une institution
Loading...

Dates et versions

inserm-02971422 , version 1 (19-10-2020)

Identifiants

Citer

Pierre Pouget, Stephen Frey, Harry Ahnine, David Attali, Julien Claron, et al.. Neuronavigated Repetitive Transcranial Ultrasound Stimulation Induces Long-Lasting and Reversible Effects on Oculomotor Performance in Non-human Primates. Frontiers in Physiology, 2020, 11, pp.1042. ⟨10.3389/fphys.2020.01042⟩. ⟨inserm-02971422⟩
50 Consultations
121 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More