J. Greenwald and R. Riek, Biology of amyloid: Structure, function, and regulation. Structure, vol.18, pp.1244-1260, 2010.

D. Otzen, R. Riek, and . Amyloids, Cold Spring Harb. Perspect. Biol, vol.11, p.33860, 2019.

M. Jucker and L. C. Walker, Self-propagation of pathogenic protein aggregates in neurodegenerative diseases, Nature, vol.501, pp.45-51, 2013.

A. Ruiz-riquelme, H. H. Lau, E. Stuart, A. N. Goczi, Z. Wang et al., Prion-like propagation of ?-amyloid aggregates in the absence of APP overexpression, Acta Neuropathol. Commun, vol.6, 2018.

C. Haass, C. Kaether, G. Thinakaran, and S. Sisodia, Trafficking and proteolytic processing of APP. Cold Spring Harb

D. J. Selkoe and J. Hardy, The amyloid hypothesis of Alzheimer's disease at 25 years, EMBO Mol. Med, vol.8, pp.595-608, 2016.

R. A. Nixon, P. M. Mathews, and A. M. Cataldo, The neuronal endosomal-lysosomal system in Alzheimer's disease. J. Alzheimer's Dis, vol.3, pp.97-107, 2001.

R. J. O'brien and P. C. Wong, Amyloid precursor protein processing and Alzheimer's disease, Annu. Rev. Neurosci, vol.34, pp.185-204, 2011.

R. Vassar, B. D. Bennett, S. Babu-khan, S. Kahn, E. A. Mendiaz et al., Secretase cleavage of Alzheimer's amyloid precursor protein by the transmembrane aspartic protease BACE, Science, vol.286, pp.735-741, 1999.

M. Willem, S. Tahirovic, M. A. Busche, S. V. Ovsepian, M. Chafai et al., ?-Secretase processing of APP inhibits neuronal activity in the hippocampus, Nature, vol.526, pp.443-447, 2015.

K. Baranger, Y. Marchalant, A. E. Bonnet, N. Crouzin, A. Carrete et al., MT5-MMP is a new pro-amyloidogenic proteinase that promotes amyloid pathology and cognitive decline in a transgenic mouse model of Alzheimer's disease, Cell. Mol. life Sci, vol.73, pp.217-236, 2016.

G. Almeida, C. Sadat-mirfakhar, F. Perdigão, C. Burrinha, and T. , Impact of late-onset Alzheimer's genetic risk factors on beta-amyloid endocytic production, Cell. Mol. Life Sci, vol.75, pp.2577-2589, 2018.

Z. P. Van-acker, M. Bretou, and W. Annaert, Endo-lysosomal dysregulations and late-onset Alzheimer's disease: Impact of genetic risk factors, Mol. Neurodegener, vol.14, pp.1-20, 2019.

J. Z. Tan and P. A. Gleeson, The role of membrane trafficking in the processing of amyloid precursor protein and production of amyloid peptides in Alzheimer's disease, Biochim. Biophys. Acta-Biomembr, pp.697-712, 1861.

K. Ando, K. I. Iijima, J. I. Elliott, Y. Kirino, and T. Suzuki, Phosphorylation-dependent regulation of the interaction of amyloid precursor protein with Fe65 affects the production of beta-amyloid, J. Biol. Chem, vol.276, pp.40353-40361, 2001.

G. Chen, T. Xu, Y. Yan, Y. Zhou, Y. Jiang et al., Amyloid beta: Structure, biology and structure-based therapeutic development, Acta Pharmacol. Sin, vol.38, pp.1205-1235, 2017.

R. Sannerud, I. Declerck, A. Peric, T. Raemaekers, G. Menendez et al., factor 6 (ARF6) controls amyloid precursor protein (APP) processing by mediating the endosomal sorting of BACE1, Proc. Natl. Acad. Sci, vol.108, 2011.

D. J. Colacurcio, A. Pensalfini, Y. Jiang, and R. A. Nixon, Dysfunction of autophagy and endosomal-lysosomal pathways: Roles in pathogenesis of Down syndrome and Alzheimer's Disease. Free Radic, Biol. Med, vol.114, pp.40-51, 2018.

M. E. Orr and S. Oddo, Autophagic/lysosomal dysfunction in Alzheimer's disease. Alzheimer's Res. Ther, vol.53, 2013.

L. Zhang, R. Sheng, and Z. Qin, The lysosome and neurodegenerative diseases, Acta Biochim. Biophys. Sin, vol.41, pp.437-445, 2009.

A. M. Cataldo, J. L. Barnett, C. Pieroni, and R. A. Nixon, Increased neuronal endocytosis and protease delivery to early endosomes in sporadic Alzheimer's disease: Neuropathologic evidence for a mechanism of increased ?-amyloidogenesis, J. Neurosci, vol.17, pp.6142-6151, 1997.

A. M. Cataldo, C. M. Peterhoff, J. C. Troncoso, T. Gomez-isla, B. T. Hyman et al., Endocytic pathway abnormalities precede amyloid ? deposition in sporadic alzheimer's disease and down syndrome: Differential effects of APOE genotype and presenilin mutations, Am. J. Pathol, vol.157, pp.277-286, 2000.

A. M. Cataldo, S. Petanceska, N. B. Terio, C. M. Peterhoff, R. Durham et al., A? localization in abnormal endosomes: Association with earliest A? elevations in AD and Down syndrome, Neurobiol. Aging, vol.25, pp.1263-1272, 2004.

R. A. Nixon, J. Wegiel, A. Kumar, W. H. Yu, C. Peterhoff et al., Extensive involvement of autophagy in Alzheimer disease: An immuno-electron microscopy study, J. Neuropathol. Exp. Neurol, vol.64, pp.113-122, 2005.

Y. Jiang, K. A. Mullaney, C. M. Peterhoff, S. Che, S. D. Schmidt et al., Alzheimer's-related endosome dysfunction in Down syndrome is A?-independent but requires APP and is reversed by BACE-1 inhibition, Proc. Natl. Acad. Sci, vol.107, pp.1630-1635, 2010.

S. Kim, Y. Sato, P. S. Mohan, C. Peterhoff, A. Pensalfini et al., Evidence that the rab5 effector APPL1 mediates APP-?CTF-induced dysfunction of endosomes in Down syndrome and Alzheimer's disease, Mol. Psychiatry, vol.21, pp.707-716, 2016.

W. Xu, A. M. Weissmiller, J. A. White, F. Fang, X. Wang et al., Amyloid precursor protein-mediated endocytic pathway disruption induces axonal dysfunction and neurodegeneration, J. Clin. Investig, vol.126, pp.1815-1833, 2016.

N. Takasugi, R. Araya, Y. Kamikubo, N. Kaneshiro, R. Imaoka et al., TMEM30A is a candidate interacting partner for the ?-carboxyl-terminal fragment of amyloid-? precursor protein in endosomes, PLoS ONE, vol.13, 2018.

D. Kwart, A. Gregg, C. Scheckel, E. Murphy, D. Paquet et al., A Large Panel of Isogenic APP and PSEN1 Mutant Human iPSC Neurons Reveals Shared Endosomal Abnormalities Mediated by APP ?-CTFs, Not A?, Neuron, vol.104, pp.256-270, 2019.

C. O. Hung and F. J. Livesey, Altered ?-Secretase Processing of APP Disrupts Lysosome and Autophagosome Function in Monogenic Alzheimer's Disease, Cell Rep, vol.25, pp.3647-3660, 2018.

S. S. Hébert, K. Horré, L. Nicolaï, A. S. Papadopoulou, W. Mandemakers et al., Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer's disease correlates with increased BACE1/beta-secretase expression, Proc. Natl. Acad. Sci, vol.105, pp.6415-6420, 2008.

M. Pera, D. Alcolea, R. Sánchez-valle, C. Guardia-laguarta, M. Colom-cadena et al., Distinct patterns of APP processing in the CNS in autosomal-dominant and sporadic Alzheimer disease, Acta Neuropathol, vol.125, pp.201-213, 2013.

J. C. Cossec, A. Simon, C. Marquer, R. X. Moldrich, C. Leterrier et al., Clathrin-dependent APP endocytosis and A? secretion are highly sensitive to the level of plasma membrane cholesterol, Biochim. Biophys. Acta-Mol. Cell Biol. Lipids, vol.1801, pp.846-852, 2010.

C. Marquer, V. Devauges, J. Cossec, G. Liot, S. Lécart et al., Local cholesterol increase triggers amyloid precursor protein-Bacel clustering in lipid rafts and rapid endocytosis, FASEB J, vol.25, pp.1295-1305, 2011.

M. Jovic, M. Sharma, J. Rahajeng, and S. Caplan, The early endosome: A busy sorting station for proteins at the crossroads, Histol. Histopathol, vol.25, pp.99-112, 2010.

T. E. Willnow and O. M. Andersen, Sorting receptor SORLA-A trafficking path to avoid Alzheimer disease, J. Cell Sci, vol.126, pp.2751-2760, 2013.

S. A. Small, K. Kent, A. Pierce, C. Leung, M. S. Kang et al., Model-guided microarray implicates the retromer complex in Alzheimer's disease, Ann. Neurol, vol.58, pp.909-919, 2005.

O. M. Andersen, J. Reiche, V. Schmidt, M. Gotthardt, R. Spoelgen et al., Neuronal sorting protein-related receptor sorLA/LR11 regulates processing of the amyloid precursor protein, Proc. Natl. Acad. Sci, vol.102, pp.13461-13466, 2005.

S. Bera, S. Camblor-perujo, E. Calleja-barca, A. Negrete-hurtado, J. Racho et al., AP-2 reduces amyloidogenesis by promoting BACE 1 trafficking and degradation in neurons

S. Baulac, M. J. Lavoie, W. T. Kimberly, J. Strahle, M. S. Wolfe et al., Functional ?-secretase complex assembly in Golgi/trans-Golgi network: Interactions among presenilin, nicastrin, Aph1, Pen-2, and ?-secretase substrates, Neurobiol. Dis, vol.14, pp.194-204, 2003.

D. Dries and G. Yu, Assembly, Maturation, and Trafficking of the ?-Secretase Complex in Alzheimers Disease, Curr. Alzheimer Res, vol.5, pp.132-146, 2008.

M. J. Lavoie, P. C. Fraering, B. L. Ostaszewski, W. Ye, W. T. Kimberly et al., Assembly of the ?-secretase complex involves early formation of an intermediate subcomplex of Aph-1 and nicastrin, J. Biol. Chem, vol.278, pp.37213-37222, 2003.

R. Sannerud, C. Esselens, P. Ejsmont, R. Mattera, L. Rochin et al., Restricted Location of PSEN2/?-Secretase Determines Substrate Specificity and Generates an Intracellular A? Pool, Cell, vol.166, pp.193-208, 2016.

K. Kanatsu, Y. Hori, I. Ebinuma, Y. W. Chiu, and T. Tomita, Retrograde transport of ?-secretase from endosomes to the trans-Golgi network regulates A?42 production, J. Neurochem, vol.147, pp.110-123, 2018.

J. G. Li, J. Chiu, and D. Praticò, Full recovery of the Alzheimer's disease phenotype by gain of function of vacuolar protein sorting 35, Mol. Psychiatry, vol.2019, pp.1-11

K. L. Sager, J. Wuu, S. E. Leurgans, H. D. Rees, M. Gearing et al., Neuronal LR11/sorLA expression is reduced in mild cognitive impairment, Ann. Neurol, vol.62, pp.640-647, 2007.

G. Van-niel, G. Angelo, and G. Raposo, Shedding light on the cell biology of extracellular vesicles, Nat. Rev. Mol. Cell Biol, vol.19, pp.213-228, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02359760

E. Morel, Z. Chamoun, Z. M. Lasiecka, R. B. Chan, R. L. Williamson et al., PI3P regulates sorting and processing of amyloid precursor protein through the endosomal system, Nat. Commun, 2013.

R. L. Williamson, K. Laulagnier, A. M. Miranda, M. A. Fernandez, M. S. Wolfe et al., Disruption of amyloid precursor protein ubiquitination selectively increases amyloid ? (A?) 40 levels via presenilin 2-mediated cleavage, J. Biol. Chem, vol.292, 2017.

R. Allison, J. R. Edgar, G. Pearson, T. Rizo, T. Newton et al., Defects in ER-endosome contacts impact lysosome function in hereditary spastic paraplegia, J. Cell Biol, vol.216, pp.1337-1355, 2017.

L. Rajendran, M. Honsho, T. R. Zahn, P. Keller, K. D. Geiger et al., Alzheimer's disease beta-amyloid peptides are released in association with exosomes, Proc. Natl. Acad. Sci, vol.103, pp.11172-11177, 2006.

C. Falker, A. Hartmann, I. Guett, F. Dohler, H. Altmeppen et al., Exosomal cellular prion protein drives fibrillization of amyloid beta and counteracts amyloid beta-mediated neurotoxicity, J. Neurochem, vol.137, pp.88-100, 2016.

K. Yuyama, H. Sun, S. Sakai, S. Mitsutake, M. Okada et al., Decreased amyloid-? pathologies by intracerebral loading of glycosphingolipid-enriched exosomes in Alzheimer model mice, J. Biol. Chem, vol.289, pp.24488-24498, 2014.

K. Yuyama, H. Sun, S. Usuki, S. Sakai, H. Hanamatsu et al., A potential function for neuronal exosomes: Sequestering intracerebral amyloid-? peptide, FEBS Lett, vol.589, pp.84-88, 2015.

K. Laulagnier, C. Javalet, F. J. Hemming, M. Chivet, G. Lachenal et al., Amyloid precursor protein products concentrate in a subset of exosomes specifically endocytosed by neurons, Cell. Mol. Life Sci, vol.75, pp.757-773, 2018.

I. Lauritzen, A. Bécot, A. Bourgeois, R. Pardossi-piquard, M. G. Biferi et al., Targeting ?-secretase triggers the selective enrichment of oligomeric APP-CTFs in brain extracellular vesicles from Alzheimer cell and mouse models, Transl. Neurodegener, vol.8, p.35, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02556329

R. Perez-gonzalez, S. A. Gauthier, A. Kumar, and E. Levy, The Exosome Secretory Pathway Transports Amyloid Precursor Protein Carboxyl-terminal Fragments from the Cell into the Brain Extracellular Space, J. Biol. Chem, vol.287, pp.43108-43115, 2012.

R. A. Sharples, L. J. Vella, R. M. Nisbet, R. Naylor, K. Perez et al., Inhibition of ?-secretase causes increased secretion of amyloid precursor protein C-terminal fragments in association with exosomes, FASEB J, vol.22, pp.1469-1478, 2008.

V. Vingtdeux, M. Hamdane, A. Loyens, P. Gelé, H. Drobeck et al., Alkalizing Drugs Induce Accumulation of Amyloid Precursor Protein By-products in Luminal Vesicles of Multivesicular Bodies, J. Biol. Chem, vol.282, pp.18197-18205, 2007.

F. Ubelmann, T. Burrinha, L. Salavessa, R. Gomes, C. Ferreira et al., Guimas Almeida, C. Bin1 and CD2AP polarise the endocytic generation of beta-amyloid, EMBO Rep, vol.18, pp.102-122, 2017.

J. R. Edgar, K. Willén, G. K. Gouras, and C. E. Futter, ESCRTs regulate amyloid precursor protein sorting in multivesicular bodies and intracellular amyloid-? accumulation, J. Cell Sci, vol.128, pp.2520-2528, 2015.

T. Watanabe, Y. Hikichi, A. Willuweit, Y. Shintani, and T. Horiguchi, FBL2 regulates amyloid precursor protein (APP) metabolism by promoting ubiquitination-dependent APP degradation and inhibition of APP endocytosis, J. Neurosci. Off. J. Soc. Neurosci, vol.32, pp.3352-3365, 2012.

S. I. Buschow, E. N. Nolte-'t-hoen, G. Van-niel, M. S. Pols, T. Ten-broeke et al., MHC II In dendritic cells is targeted to lysosomes or t cell-induced exosomes via distinct multivesicular body pathways, Traffic, vol.10, pp.1528-1542, 2009.

A. M. Miranda, Z. M. Lasiecka, Y. Xu, J. Neufeld, S. Shahriar et al., Neuronal lysosomal dysfunction releases exosomes harboring APP C-terminal fragments and unique lipid signatures, Nat. Commun, vol.9, p.219, 2018.

M. F. Baietti, Z. Zhang, E. Mortier, A. Melchior, G. Degeest et al., Syndecan-syntenin-ALIX regulates the biogenesis of exosomes, Nat. Cell Biol, vol.14, pp.677-685, 2012.

G. Van-niel, S. Charrin, S. Simoes, M. Romao, L. Rochin et al., The Tetraspanin CD63 Regulates ESCRT-Independent and -Dependent Endosomal Sorting during Melanogenesis, Dev. Cell, vol.21, pp.708-721, 2011.

K. Trajkovic, C. Hsu, S. Chiantia, L. Rajendran, D. Wenzel et al., Ceramide triggers budding of exosome vesicles into multivesicular endosomes, Science, vol.319, pp.1244-1247, 2008.

J. Larios, V. Mercier, A. Roux, and J. Gruenberg, ALIX-And ESCRT-III-dependent sorting of tetraspanins to exosomes, J. Cell Biol, vol.219, 2020.

F. X. Guix, R. Sannerud, F. Berditchevski, A. M. Arranz, K. Horré et al., Tetraspanin 6: A pivotal protein of the multiple vesicular body determining exosome release and lysosomal degradation of amyloid precursor protein fragments, Mol. Neurodegener, vol.12, p.25, 2017.

R. Ghossoub, M. Chéry, S. Audebert, R. Leblanc, A. L. Egea-jimenez et al., Tetraspanin-6 negatively regulates exosome production, Proc. Natl. Acad. Sci. USA 2020, vol.117, pp.5913-5922
URL : https://hal.archives-ouvertes.fr/hal-02496544

V. Filippov, M. A. Song, K. Zhang, H. V. Vinters, S. Tung et al., Increased ceramide in brains with alzheimer's and other neurodegenerative diseases, J, vol.29, pp.537-547, 2012.

L. Puglielli, B. C. Ellis, A. J. Saunders, and D. M. Kovacs, Ceramide stabilizes ?-site amyloid precursor protein-cleaving enzyme 1 and promotes amyloid ?-peptide biogenesis, J. Biol. Chem, vol.278, 2003.

M. B. Dinkins, J. Enasko, C. Hernandez, G. Wang, J. Kong et al., Neutral Sphingomyelinase-2 Deficiency Ameliorates Alzheimer's Disease Pathology and Improves Cognition in the 5XFAD Mouse, J. Neurosci. Off. J. Soc. Neurosci, vol.36, pp.8653-8667, 2016.

P. J. Barrett, Y. Song, W. D. Van-horn, E. J. Hustedt, J. M. Schafer et al., The amyloid precursor protein has a flexible transmembrane domain and binds cholesterol, Science, vol.336, pp.1168-1171, 2012.

A. J. Beel, M. Sakakura, P. J. Barrett, and C. R. Sanders, Direct Binding of Cholesterol to the Amyloid Precursor Protein: An Important Interaction in Lipid-Alzheimer's Disease Relationships?, Biochim. Biophys. Acta (BBA) Mol. Cell Biol. Lipids, vol.1801, pp.975-982, 2010.

K. Tekirdag and A. M. Cuervo, Chaperone-mediated autophagy and endosomal microautophagy: Joint by a chaperone, J. Biol. Chem, vol.293, pp.5414-5424, 2018.

R. Sahu, S. Kaushik, C. C. Clement, E. S. Cannizzo, B. Scharf et al., Microautophagy of Cytosolic Proteins by Late Endosomes, Dev. Cell, vol.20, pp.131-139, 2011.

L. Murrow, R. Malhotra, and J. Debnath, ATG12-ATG3 interacts with Alix to promote basal autophagic flux and late endosome function, Nat. Cell Biol, vol.17, pp.300-310, 2015.

A. M. Leidal, H. H. Huang, T. Marsh, T. Solvik, D. Zhang et al., The LC3-conjugation machinery specifies the loading of RNA-binding proteins into extracellular vesicles, Nat. Cell Biol, vol.22, pp.187-199, 2020.

J. Mejlvang, H. Olsvik, S. Svenning, J. A. Bruun, Y. P. Abudu et al., Starvation induces rapid degradation of selective autophagy receptors by endosomal microautophagy, J. Cell Biol, vol.217, pp.3640-3655, 2018.

J. Vaz-silva, P. Gomes, Q. Jin, M. Zhu, V. Zhuravleva et al., Endolysosomal degradation of Tau and its role in glucocorticoid-driven hippocampal malfunction, EMBO J, vol.37, 2018.

J. S. Park, D. H. Kim, and S. Y. Yoon, Regulation of amyloid precursor protein processing by its KFERQ motif, BMB Rep, vol.49, pp.337-342, 2016.

B. Roucourt, S. Meeussen, J. Bao, P. Zimmermann, and G. David, Heparanase activates the syndecan-syntenin-ALIX exosome pathway, Cell Res, vol.25, pp.412-428, 2015.

L. Seipold and P. Saftig, The Emerging Role of Tetraspanins in the Proteolytic Processing of the Amyloid Precursor Protein, Front. Mol. Neurosci, vol.9, p.149, 2016.

T. Wakabayashi, K. Craessaerts, L. Bammens, M. Bentahir, F. Borgions et al., Analysis of the gamma-secretase interactome and validation of its association with tetraspanin-enriched microdomains, Nat. Cell Biol, vol.11, pp.1340-1346, 2009.

I. Lauritzen, R. Pardossi-piquard, C. Bauer, E. Brigham, J. Abraham et al., The -Secretase-Derived C-Terminal Fragment of APP, C99, But Not A, Is a Key Contributor to Early Intraneuronal Lesions in Triple-Transgenic Mouse Hippocampus, J. Neurosci, vol.32, pp.16243-16255, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02361307

C. G. Almeida, R. H. Takahashi, and G. K. Gouras, ?-amyloid accumulation impairs multivesicular body sorting by inhibiting the ubiquitin-proteasome system, J. Neurosci, vol.26, pp.4277-4288, 2006.

R. H. Takahashi, T. A. Milner, F. Li, E. E. Nam, M. A. Edgar et al., Intraneuronal Alzheimer A?42 accumulates in multivesicular bodies and is associated with synaptic pathology, Am. J. Pathol, vol.161, pp.1869-1879, 2002.

I. Lauritzen, R. Pardossi-piquard, A. Bourgeois, S. Pagnotta, M. Biferi et al., Intraneuronal aggregation of the ?-CTF fragment of APP (C99) induces A?-independent lysosomal-autophagic pathology, Acta Neuropathol, vol.132, pp.257-276, 2016.

A. J. Yang, D. Chandswangbhuvana, L. Margol, and C. G. Glabe, Loss of endosomal/lysosomal Membrane Impermeability Is an Early Event in Amyloid Abeta1-42 Pathogenesis, J. Neurosci. Res, vol.52, pp.691-698, 1998.

K. Ditaranto, T. L. Tekirian, and A. J. Yang, Lysosomal membrane damage in soluble A?-mediated cell death in Alzheimer's disease, Neurobiol. Dis, vol.8, pp.19-31, 2001.

A. C. Johansson, H. Appelqvist, C. Nilsson, K. Kågedal, K. Roberg et al., Regulation of apoptosis-associated lysosomal membrane permeabilization, Apoptosis, vol.15, pp.527-540, 2010.

N. W. Andrews and M. Corrotte, Plasma membrane repair, Curr. Biol, vol.28, pp.392-397, 2018.

J. J. Chen, D. L. Nathaniel, P. Raghavan, M. Nelson, R. Tian et al., Compromised function of the ESCRT pathway promotes endolysosomal escape of tau seeds and propagation of tau aggregation, J. Biol. Chem, vol.294, pp.18952-18966, 2019.

K. R. Parzych and D. J. Klionsky, An overview of autophagy: Morphology, mechanism, and regulation, Antioxid. Redox Signal, vol.20, pp.460-473, 2014.

N. Mizushima, Autophagy: Process and function, Genes Dev, vol.21, pp.2861-2873, 2007.

N. V. Gorantla and S. Chinnathambi, Autophagic Pathways to Clear the Tau Aggregates in Alzheimer's Disease, Cell. Mol. Neurobiol, 2020.

I. Dikic and Z. Elazar, Mechanism and medical implications of mammalian autophagy, Nat. Rev. Mol. Cell Biol, vol.19, pp.349-364, 2018.

M. Filimonenko, S. Stuffers, C. Raiborg, A. Yamamoto, L. Malerød et al., Functional multivesicular bodies are required for autophagic clearance of protein aggregates associated with neurodegenerative disease, J. Cell Biol, vol.179, pp.485-500, 2007.

Y. Takahashi, H. He, Z. Tang, T. Hattori, Y. Liu et al., An autophagy assay reveals the ESCRT-III component CHMP2A as a regulator of phagophore closure, Nat. Commun, vol.9, 2018.

H. Guo, M. Chitiprolu, L. Roncevic, C. Javalet, F. J. Hemming et al., Atg5 Disassociates the V1V0-ATPase to Promote Exosome Production and Tumor Metastasis Independent of Canonical Macroautophagy, Dev. Cell, vol.43, 2017.

Z. Szatmári, V. Kis, M. Lippai, K. Hegedus, T. Faragó et al., Rab11 facilitates cross-talk between autophagy and endosomal pathway through regulation of Hook localization, Mol. Biol. Cell, vol.25, pp.522-531, 2014.

E. Barbero-camps, V. Roca-agujetas, I. Bartolessis, C. De-dios, J. C. Fernández-checa et al., Cholesterol impairs autophagy-mediated clearance of amyloid beta while promoting its secretion, Autophagy, vol.14, pp.1129-1154, 2018.

Y. Wei, J. Zhou, J. Wu, and J. Huang, ER? promotes A? degradation via the modulation of autophagy, Cell Death Dis, vol.10, 2019.

Y. Tian, V. Bustos, M. Flajolet, and P. Greengard, A small-molecule enhancer of autophagy decreases levels of A? and APP-CTF via Atg5-dependent autophagy pathway, FASEB J, vol.25, 1934.

S. J. Cho, H. J. Lim, C. Jo, M. H. Park, C. Han et al., Plasma ATG5 is increased in Alzheimer's disease, Sci. Rep, vol.9, p.4741, 2019.

Y. Tian, J. C. Chang, E. Y. Fan, M. Flajolet, and P. Greengard, Adaptor complex AP2/PICALM, through interaction with LC3, targets Alzheimer's APP-CTF for terminal degradation via autophagy, Proc. Natl. Acad. Sci, vol.110, pp.17071-17076, 2013.

K. Kanatsu, Y. Morohashi, M. Suzuki, H. Kuroda, T. Watanabe et al., Decreased CALM expression reduces A?42 to total A? ratio through clathrin-mediated endocytosis of ?-secretase, Nat. Commun, vol.5, 2014.

S. M. Son, E. S. Jung, H. J. Shin, J. Byun, and I. Mook-jung, A?-induced formation of autophagosomes is mediated by RAGE-CaMKK?-AMPK signaling, Neurobiol. Aging, vol.33, pp.11-1006, 1006.

A. S. Chesser, S. M. Pritchard, and G. V. Johnson, Tau clearance mechanisms and their possible role in the pathogenesis of Alzheimer disease, Front. Neurol, 2013.

S. Malampati, J. Song, B. Tong, A. Nalluri, C. Yang et al.,

C. Papadopoulos and H. Meyer, Detection and Clearance of Damaged Lysosomes by the Endo-Lysosomal Damage Response and Lysophagy, Curr. Biol, vol.27, pp.1330-1341, 2017.

A. M. Cuervo and E. Wong, Chaperone-mediated autophagy: Roles in disease and aging, Cell Res, vol.24, pp.92-104, 2014.

S. Kaushik and A. M. Cuervo, The coming of age of chaperone-mediated autophagy, Nat. Rev. Mol. Cell Biol, vol.19, pp.365-381, 2018.

G. Wang and Z. Mao, Chaperone-mediated autophagy: Roles in neurodegeneration, Transl. Neurodegener, 1920.

M. Bordi, M. J. Berg, P. S. Mohan, C. M. Peterhoff, M. J. Alldred et al., Autophagy flux in CA1 neurons of Alzheimer hippocampus: Increased induction overburdens failing lysosomes to propel neuritic dystrophy, Autophagy, vol.12, pp.2467-2483, 2016.

A. Caccamo, S. Majumder, A. Richardson, R. Strong, and S. Oddo, Molecular interplay between mammalian target of rapamycin (mTOR), amyloid-beta, and Tau: Effects on cognitive impairments, J. Biol. Chem, vol.285, pp.13107-13120, 2010.

J. S. Talboom, R. Velazquez, and S. Oddo, The mammalian target of rapamycin at the crossroad between cognitive aging and Alzheimer's disease. npj Aging Mech

A. Tramutola, J. C. Triplett, F. Di-domenico, D. M. Niedowicz, M. P. Murphy et al., Alteration of mTOR signaling occurs early in the progression of Alzheimer disease (AD): Analysis of brain from subjects with pre-clinical AD, amnestic mild cognitive impairment and late-stage AD, J. Neurochem, vol.133, pp.739-749, 2015.

J. P. Luzio, Y. Hackmann, N. M. Dieckmann, and G. M. Griffiths, The biogenesis of lysosomes and lysosome-related organelles, Cold Spring Harb. Perspect. Biol, vol.6, 2014.

H. Xu, D. Ren, and . Physiology, Annu. Rev. Physiol, vol.77, pp.57-80, 2015.

R. E. Lawrence and R. Zoncu, The lysosome as a cellular centre for signalling, metabolism and quality control, Nat. Cell Biol, vol.21, pp.133-142, 2019.

C. Bissig, L. Rochin, and G. Van-niel, PMEL amyloid fibril formation: The bright steps of pigmentation, Int. J. Mol. Sci, vol.17, 1438.

H. M. Brothers, M. L. Gosztyla, and S. R. Robinson, The Physiological Roles of Amyloid-? Peptide Hint at New Ways to Treat Alzheimer's Disease. Front, Aging Neurosci, vol.10, 2018.

U. C. Müller, T. Deller, and M. Korte, Not just amyloid: Physiological functions of the amyloid precursor protein family, Nat. Rev. Neurosci, vol.18, pp.281-298, 2017.

L. Rochin, I. Hurbain, L. Serneels, C. Fort, B. Watt et al., BACE2 processes PMEL to form the melanosome amyloid matrix in pigment cells, Proc. Natl. Acad. Sci, vol.110, pp.10658-10663, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02328958

B. Watt, D. Tenza, M. A. Lemmon, S. Kerje, G. Raposo et al., Mutations in or near the Transmembrane Domain Alter PMEL Amyloid Formation from Functional to Pathogenic, PLoS Genet, 2011.

G. Van-niel, P. Bergam, A. Di-cicco, I. Hurbain, A. Lo-cicero et al., Apolipoprotein E Regulates Amyloid Formation within Endosomes of Pigment Cells. Cell Rep, vol.13, pp.43-51, 2015.

T. V. Huynh, A. A. Davis, J. D. Ulrich, and D. M. Holtzman, Apolipoprotein E and Alzheimer's disease: The influence of apolipoprotein E on amyloid-? and other amyloidogenic proteins, J. Lipid Res, vol.58, pp.824-836, 2017.

L. S. Whyte, A. A. Lau, K. M. Hemsley, J. J. Hopwood, and T. J. Sargeant, Endo-lysosomal and autophagic dysfunction: A driving factor in Alzheimer's disease?, J. Neurochem, vol.140, pp.703-717, 2017.

L. Yu, C. K. Mcphee, L. Zheng, G. A. Mardones, Y. Rong et al., Termination of autophagy and reformation of lysosomes regulated by mTOR, Nature, vol.465, pp.942-946, 2010.

Y. Chen and L. Yu, Recent progress in autophagic lysosome reformation, vol.18, pp.358-361, 2017.

C. Bissig, I. Hurbain, G. Raposo, and G. Van-niel, PIKfyve activity regulates reformation of terminal storage lysosomes from endolysosomes, vol.18, pp.747-757, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02359729

J. Magalhaes, M. E. Gegg, A. Migdalska-richards, M. K. Doherty, P. D. Whitfield et al., Autophagic lysosome reformation dysfunction in glucocerebrosidase deficient cells: Relevance to Parkinson disease, Hum. Mol. Genet, vol.25, pp.3432-3445, 2016.

J. Chang, S. Lee, and C. Blackstone, Spastic paraplegia proteins spastizin and spatacsin mediate autophagic lysosome reformaton, J. Clin. Investig, vol.124, pp.5249-5262, 2014.

J. R. Mcdermott and A. M. Gibson, Degradation of Alzheimer's beta-amyloid protein by human and rat brain peptidases: Involvement of insulin-degrading enzyme, Neurochem. Res, vol.22, pp.49-56, 1997.

E. J. Goetzl, A. Boxer, J. B. Schwartz, E. L. Abner, R. C. Petersen et al., Altered lysosomal proteins in neural-derived plasma exosomes in preclinical Alzheimer disease, Neurology, vol.85, pp.40-47, 2015.

J. Lee, W. H. Yu, A. Kumar, S. Lee, P. S. Mohan et al., Lysosomal proteolysis and autophagy require presenilin 1 and are disrupted by Alzheimer-related PS1 mutations, Cell, vol.141, pp.1146-1158, 2010.

J. Lee, M. K. Mcbrayer, D. M. Wolfe, L. J. Haslett, A. Kumar et al., Presenilin 1 Maintains Lysosomal Ca 2+ Homeostasis via TRPML1 by Regulating vATPase-Mediated Lysosome Acidification, Cell Rep, vol.12, pp.1430-1444, 2015.

D. Scala, C. Yahi, N. Boutemeur, S. Flores, A. Rodriguez et al., Common molecular mechanism of amyloid pore formation by Alzheimer's ?-amyloid peptide and ?-synuclein, Sci. Rep, 2016.

M. Oku and Y. Sakai, Three Distinct Types of Microautophagy Based on Membrane Dynamics and Molecular Machineries, BioEssays, vol.40, 2018.

G. Kaur, M. Pawlik, S. E. Gandy, M. E. Ehrlich, J. F. Smiley et al., Lysosomal dysfunction in the brain of a mouse model with intraneuronal accumulation of carboxyl terminal fragments of the amyloid precursor protein, Mol. Psychiatry, vol.22, pp.981-989, 2017.

Z. Ji, K. Müllendorff, I. H. Cheng, R. D. Miranda, Y. Huang et al., Reactivity of apolipoprotein E4 and amyloid beta peptide: Lysosomal stability and neurodegeneration, J. Biol. Chem, vol.281, pp.2683-2692, 2006.

R. W. Mahley and Y. Huang, Apolipoprotein (apo) E4 and Alzheimer's disease: Unique conformational and biophysical properties of apoE4 can modulate neuropathology, Acta Neurol. Scand. Suppl, vol.185, pp.8-14, 2006.

M. S. Hipp, P. Kasturi, and F. U. Hartl, The proteostasis network and its decline in ageing, Nat. Rev. Mol. Cell Biol, vol.20, pp.421-435, 2019.

J. V. Ferreira, A. Rosa-soares, J. S. Ramalho, T. Ribeiro-rodrigues, C. Máximo et al., Exosomes and STUB1/CHIP cooperate to maintain intracellular proteostasis, PLoS ONE, vol.14, 2019.

C. Harding, J. Heuser, and P. Stahl, Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes, J. Cell Biol, vol.97, pp.329-339, 1983.

B. T. Pan and R. M. Johnstone, Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: Selective externalization of the receptor, Cell, vol.33, pp.967-978, 1983.

C. Z. Lim, Y. Zhang, Y. Chen, H. Zhao, M. C. Stephenson et al., Subtyping of circulating exosome-bound amyloid ? reflects brain plaque deposition, Nat. Commun, vol.10, 1144.

S. Xin, L. Tan, X. Cao, J. Yu, and L. Tan, Clearance of Amyloid Beta and Tau in Alzheimer's Disease: From Mechanisms to Therapy, Neurotox. Res, vol.34, pp.733-748, 2018.

Z. Y. Cai, M. Xiao, S. Quazi, and Z. Y. Ke, Exosomes: A novel therapeutic target for Alzheimer's disease?, Neural Regen. Res, vol.13, pp.930-935, 2018.

K. Yuyama, H. Sun, S. Mitsutake, and Y. Igarashi, Sphingolipid-modulated exosome secretion promotes clearance of amyloid-? by microglia, J. Biol. Chem, vol.287, pp.10977-10989, 2012.

A. Bulloj, M. C. Leal, H. Xu, E. M. Castaño, and L. Morelli, Insulin-degrading enzyme sorting in exosomes: A secretory pathway for a key brain amyloid-beta degrading protease, J. Alzheimer's Dis, vol.19, pp.79-95, 2010.

T. Katsuda, R. Tsuchiya, N. Kosaka, Y. Yoshioka, K. Takagaki et al., Human adipose tissue-derived mesenchymal stem cells secrete functional neprilysin-bound exosomes, Sci. Rep, 1197.

I. Y. Tamboli, E. Barth, L. Christian, M. Siepmann, S. Kumar et al., Statins promote the degradation of extracellular amyloid ?-peptide by microglia via stimulation of exosome-associated insulin-degrading enzyme (IDE) secretion, J. Biol. Chem, vol.285, pp.37405-37414, 2010.

R. Kulkarni, M. Bajaj, S. Ghode, S. Jalnapurkar, L. Limaye et al., Intercellular Transfer of Microvesicles from Young Mesenchymal Stromal Cells Rejuvenates Aged Murine Hematopoietic Stem Cells, Stem Cells, vol.36, pp.420-433, 2018.

Y. Qu, Q. Zhang, X. Cai, F. Li, Z. Ma et al., Exosomes derived from miR-181-5p-modified adipose-derived mesenchymal stem cells prevent liver fibrosis via autophagy activation, J. Cell. Mol. Med, vol.21, pp.2491-2502, 2017.

T. Takeuchi, M. Suzuki, N. Fujikake, H. A. Popiel, H. Kikuchi et al., Intercellular chaperone transmission via exosomes contributes to maintenance of protein homeostasis at the organismal level, Proc. Natl. Acad. Sci, vol.112, pp.2497-2506, 2015.

M. B. Dinkins, S. Dasgupta, G. Wang, G. Zhu, and E. Bieberich, Exosome reduction in vivo is associated with lower amyloid plaque load in the 5XFAD mouse model of Alzheimer's disease, Neurobiol. Aging, vol.35, pp.1792-1800, 2014.

A. Fernandes, A. R. Ribeiro, M. Monteiro, G. Garcia, A. R. Vaz et al., Secretome from SH-SY5Y APPSwe cells trigger time-dependent CHME3 microglia activation phenotypes, ultimately leading to miR-21 exosome shuttling, Biochimie, vol.155, pp.67-82, 2018.

J. C. Polanco, C. Li, N. Durisic, R. Sullivan, and J. Götz, Exosomes taken up by neurons hijack the endosomal pathway to spread to interconnected neurons, Acta Neuropathol. Commun, vol.6, 2018.

S. Sinha, M. Ansell-schultz, A. Civitelli, L. Hildesjö, C. Larsson et al., Alzheimer's disease pathology propagation by exosomes containing toxic amyloid-beta oligomers, Acta Neuropathol, vol.136, pp.41-56, 2018.

T. Zheng, J. Pu, Y. Chen, Z. Guo, H. Pan et al., Exosomes Secreted from HEK293-APP Swe/Ind Cells Impair the Hippocampal Neurogenesis, Neurotox. Res, vol.32, pp.82-93, 2017.

H. Asai, S. Ikezu, S. Tsunoda, M. Medalla, J. Luebke et al., Depletion of microglia and inhibition of exosome synthesis halt tau propagation, Nat. Neurosci, vol.18, pp.1584-1593, 2015.

P. Joshi, E. Turola, A. Ruiz, A. Bergami, D. D. Libera et al., Microglia convert aggregated amyloid-? into neurotoxic forms through the shedding of microvesicles, Cell Death Differ, vol.21, pp.582-593, 2014.

M. R. Minter, J. M. Taylor, and P. J. Crack, The contribution of neuroinflammation to amyloid toxicity in Alzheimer's disease, J. Neurochem, vol.136, pp.457-474, 2016.

M. Pascual, F. Ibáñez, and C. Guerri, Exosomes as mediators of neuron-glia communication in neuroinflammation, Neural Regen. Res, vol.15, 2020.

K. Strauss, C. Goebel, H. Runz, W. Möbius, S. Weiss et al., Exosome secretion ameliorates lysosomal storage of cholesterol in Niemann-Pick type C disease, J. Biol. Chem, vol.285, pp.26279-26288, 2010.

H. Zhu, S. Guariglia, R. Y. Yu, W. Li, D. Brancho et al., Mutation of SIMPLE in Charcot-Marie-Tooth 1C alters production of exosomes, Mol. Biol. Cell, vol.24, pp.1619-1637, 2013.

M. Colombo, C. Moita, G. Van-niel, J. Kowal, J. Vigneron et al., Analysis of ESCRT functions in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles, J. Cell Sci, vol.126, pp.5553-5565, 2013.

O. Moreno-gonzalo, C. Villarroya-beltri, and F. Sã¡nchez-madrid, Post-Translational Modifications of Exosomal Proteins. Front. Immunol, vol.5, 2014.

M. Valapala and J. K. Vishwanatha, Lipid raft endocytosis and exosomal transport facilitate extracellular trafficking of annexin A2, J. Biol. Chem, vol.286, pp.30911-30925, 2011.

C. Villarroya-beltri, F. Baixauli, M. Mittelbrunn, I. Fernández-delgado, D. Torralba et al., ISGylation controls exosome secretion by promoting lysosomal degradation of MVB proteins, Nat. Commun, 2016.

X. Cheng, Y. Xie, B. Zhou, N. Huang, T. Farfel-becker et al., Characterization of LAMP1-labeled nondegradative lysosomal and endocytic compartments in neurons, J. Cell Biol, vol.217, pp.3127-3139, 2018.

C. C. Yap, L. Digilio, L. P. Mcmahon, A. D. Garcia, and B. Winckler, Degradation of dendritic cargos requires Rab7-dependent transport to somatic lysosomes, J. Cell Biol, vol.217, pp.3141-3159, 2018.

V. V. Kulkarni and S. Maday, Neuronal endosomes to lysosomes: A journey to the soma, J. Cell Biol, vol.217, pp.2977-2979, 2018.

B. Winckler, V. Faundez, S. Maday, Q. Cai, C. Guimas-almeida et al., The Endolysosomal System and Proteostasis: From Development to Degeneration, J. Neurosci, vol.38, pp.9364-9374, 2018.

J. S. Bonifacino and B. Glick, The mechanisms of vesicle budding and fusion, Cell, vol.116, pp.153-166, 2004.

E. Eitan, C. Suire, S. Zhang, and M. P. Mattson, Impact of lysosome status on extracellular vesicle content and release, Ageing Res. Rev, vol.32, pp.65-74, 2016.

L. Alvarez-erviti, Y. Seow, A. H. Schapira, C. Gardiner, I. L. Sargent et al., Lysosomal dysfunction increases exosome-mediated alpha-synuclein release and transmission, Neurobiol. Dis, vol.42, pp.360-367, 2011.

S. N. Hurwitz, M. R. Cheerathodi, D. Nkosi, S. B. York, and D. G. Meckes, Tetraspanin CD63 Bridges Autophagic and Endosomal Processes To Regulate Exosomal Secretion and Intracellular Signaling of Epstein-Barr Virus LMP1, J. Virol, vol.92, 2017.

G. Minakaki, S. Menges, A. Kittel, E. Emmanouilidou, I. Schaeffner et al., Autophagy inhibition promotes SNCA/alpha-synuclein release and transfer via extracellular vesicles with a hybrid autophagosome-exosome-like phenotype, Autophagy, vol.14, pp.98-119, 2018.

M. V. Dias, B. L. Teixeira, B. R. Rodrigues, R. Sinigaglia-coimbra, I. Porto-carreiro et al., PRNP/prion protein regulates the secretion of exosomes modulating CAV1/caveolin-1-suppressed autophagy, Autophagy, vol.12, pp.2113-2128, 2016.

N. P. Hessvik, A. Øverbye, A. Brech, M. L. Torgersen, I. S. Jakobsen et al., PIKfyve inhibition increases exosome release and induces secretory autophagy, Cell. Mol. Life Sci, vol.73, pp.4717-4737, 2016.

P. Van-oosten-hawle, R. S. Porter, and R. I. Morimoto, Regulation of Organismal Proteostasis by Transcellular Chaperone Signaling, Cell, vol.153, pp.1366-1378, 2013.

P. Van-oosten-hawle and R. I. Morimoto, Organismal proteostasis: Role of cell-nonautonomous regulation and transcellular chaperone signaling, Genes Dev, vol.28, pp.1533-1543, 2014.

M. García-ayllón, I. Lopez-font, C. P. Boix, J. Fortea, R. Sánchez-valle et al., Sáez-Valero, J. C-terminal fragments of the amyloid precursor protein in cerebrospinal fluid as potential biomarkers for Alzheimer disease, 2017.

A. Badhwar and A. S. Haqqani, Biomarker potential of brain-secreted extracellular vesicles in blood in Alzheimer's disease. Alzheimer's Dement, Diagn. Assess. Dis. Monit, vol.12, 2020.

M. S. Fiandaca, D. Kapogiannis, M. Mapstone, A. Boxer, E. Eitan et al., Identification of preclinical Alzheimer's disease by a profile of pathogenic proteins in neurally derived blood exosomes: A case-control study, J. Alzheimer's Assoc, vol.11, pp.600-607, 2015.

C. N. Winston, E. J. Goetzl, J. C. Akers, B. S. Carter, E. M. Rockenstein et al., Prediction of conversion from mild cognitive impairment to dementia with neuronally derived blood exosome protein profile, Diagn. Assess. Dis. Monit, vol.3, pp.63-72, 2016.

L. Jia, Q. Qiu, H. Zhang, L. Chu, Y. Du et al., Concordance between the assessment of A?42, T-tau, and P-T181-tau in peripheral blood neuronal-derived exosomes and cerebrospinal fluid, Alzheimers. Dement, vol.15, pp.1071-1080, 2019.

D. Kapogiannis, M. Mustapic, M. D. Shardell, S. T. Berkowitz, T. C. Diehl et al., Association of Extracellular Vesicle Biomarkers With Alzheimer Disease in the Baltimore Longitudinal Study of Aging, JAMA Neurol, vol.76, 2019.

E. J. Goetzl, M. Mustapic, D. Kapogiannis, E. Eitan, I. V. Lobach et al., Cargo Proteins of Plasma Astrocyte-Derived Exosomes in Alzheimer's Disease, FASEB J, vol.30, pp.3853-3859, 2016.

J. Chen, B. Zhao, J. Zhao, and S. Li, Potential Roles of Exosomal MicroRNAs as Diagnostic Biomarkers and Therapeutic Application in Alzheimer's Disease, Neural Plast, 2017.

G. Lugli, A. M. Cohen, D. A. Bennett, R. C. Shah, C. J. Fields et al., Plasma Exosomal miRNAs in Persons with and without Alzheimer Disease: Altered Expression and Prospects for Biomarkers, PLoS ONE, vol.10, 2015.

P. Spitzer, L. Mulzer, T. J. Oberstein, L. E. Munoz, P. Lewczuk et al., Microvesicles from cerebrospinal fluid of patients with Alzheimer's disease display reduced concentrations of tau and APP protein, Sci. Rep, vol.9, p.7089, 2019.

K. Yuyama and Y. Igarashi, Exosomes as Carriers of Alzheimer's Amyloid-ß, Front. Neurosci, vol.11, p.229, 2017.

N. Perets, O. Betzer, R. Shapira, S. Brenstein, A. Angel et al., Golden Exosomes Selectively Target Brain Pathologies in Neurodegenerative and Neurodevelopmental Disorders, Nano Lett, vol.19, pp.3422-3431, 2019.

L. Alvarez-erviti, Y. Seow, H. Yin, C. Betts, S. Lakhal et al., Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes, Nat. Biotechnol, vol.29, pp.341-345, 2011.

R. Kojima, D. Bojar, G. Rizzi, G. C. Hamri, .. El-baba et al., Designer exosomes produced by implanted cells intracerebrally deliver therapeutic cargo for Parkinson's disease treatment, Nat. Commun, vol.9, p.1305, 2018.

N. Yim and C. Choi, Extracellular vesicles as novel carriers for therapeutic molecules, BMB Rep, vol.49, pp.585-586, 2016.

H. Wang, H. Sui, Y. Zheng, Y. Jiang, Y. Shi et al., Curcumin-primed exosomes potently ameliorate cognitive function in AD mice by inhibiting hyperphosphorylation of the Tau protein through the AKT/GSK-3? pathway, Nanoscale, vol.11, pp.7481-7496, 2019.

F. J. Verweij, C. Revenu, G. Arras, F. Dingli, D. Loew et al., Live Tracking of Inter-organ Communication by Endogenous Exosomes In Vivo, Dev. Cell, vol.48, pp.573-589, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02359686

D. Wang, J. Li, L. Yu, M. Wu, L. Sun et al., Desipramine improves depression-like behavior and working memory by up-regulating p-CREB in Alzheimer's disease associated mice, J. Integr. Neurosci, vol.15, pp.247-260, 2016.

, This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license, © 2020 by the authors. Licensee MDPI