N. S. Hübner, The connectomics of brain demyelination: functional and structural patterns in the cuprizone mouse model, NeuroImage, vol.146, pp.1-18, 2017.

I. A. Mckenzie, Motor skill learning requires active central myelination, Science, vol.346, pp.318-322, 2014.

S. Pajevic, P. J. Basser, and R. D. Fields, Role of myelin plasticity in oscillations and synchrony of neuronal activity, Neuroscience, vol.276, pp.135-147, 2014.

A. S. Saab and K. Nave, Myelin dynamics: protecting and shaping neuronal functions, Curr. Opin. Neurobiol, vol.47, pp.104-112, 2017.

J. Stedehouder and S. A. Kushner, Myelination of parvalbumin interneurons: a parsimonious locus of pathophysiological convergence in schizophrenia, Mol. Psychiatry, vol.22, pp.4-12, 2017.

M. Balia, N. Benamer, and M. C. Angulo, A specific GABAergic synapse onto oligodendrocyte precursors does not regulate cortical oligodendrogenesis, Glia, vol.65, pp.1821-1832, 2017.

K. D. Micheva, A large fraction of neocortical myelin ensheathes axons of local inhibitory neurons, vol.5, p.15784, 2016.

D. Orduz, Developmental cell death regulates lineage-related interneuron-oligodendroglia functional clusters and oligodendrocyte homeostasis, Nat. Commun, vol.10, p.4249, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02302596

J. Stedehouder, Fast-spiking parvalbumin interneurons are frequently myelinated in the cerebral cortex of mice and humans, Cereb. Cortex, vol.27, pp.5001-5013, 2017.

M. Zonouzi, Individual oligodendrocytes show bias for inhibitory axons in the neocortex, Cell Rep, vol.27, pp.2799-2808, 2019.

H. Hu, J. Gan, P. Jonas, and . Interneurons, Fast-spiking, parvalbumin + GABAergic interneurons: from cellular design to microcircuit function, Science, vol.345, p.1255263, 2014.

C. C. Petersen, Sensorimotor processing in the rodent barrel cortex, Nat. Rev. Neurosci, vol.20, pp.533-546, 2019.

H. Hu and P. Jonas, A supercritical density of Na(+) channels ensures fast signaling in GABAergic interneuron axons, Nat. Neurosci, vol.17, pp.686-693, 2014.

D. Orduz, Interneurons and oligodendrocyte progenitors form a structured synaptic network in the developing neocortex, vol.4, p.6953, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02302602

N. Benamer, M. Vidal, and M. C. Angulo, The cerebral cortex is a substrate of multiple interactions between GABAergic interneurons and oligodendrocyte lineage cells, Neurosci. Lett, vol.715, p.134615, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02383717

C. Habermacher, M. C. Angulo, and N. Benamer, Glutamate versus GABA in neuron-oligodendroglia communication, Glia, vol.67, pp.2092-2106, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02302599

R. A. Hill, K. D. Patel, C. M. Goncalves, J. Grutzendler, and A. Nishiyama, Modulation of oligodendrocyte generation during a critical temporal window after NG2 cell division, Nat. Neurosci, vol.17, pp.1518-1527, 2014.

M. Balia, Postnatal down-regulation of the GABAA receptor gamma2 subunit in neocortical NG2 cells accompanies synaptic-toextrasynaptic switch in the GABAergic transmission mode, Cereb. Cortex, vol.25, pp.1114-1123, 2015.

P. P. Maldonado, M. Velez-fort, F. Levavasseur, and M. C. Angulo, Oligodendrocyte precursor cells are accurate sensors of local K+ in mature gray matter, J. Neurosci, vol.33, pp.2432-2442, 2013.

S. Rama, M. Zbili, and D. Debanne, Signal propagation along the axon, Curr. Opin. Neurobiol, vol.51, pp.37-44, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01963472

I. L. Arancibia-cárcamo, Node of Ranvier length as a potential regulator of myelinated axon conduction speed, vol.6, p.23329, 2017.

M. Kukley, A. Nishiyama, and D. Dietrich, The fate of synaptic input to NG2 glial cells: neurons specifically downregulate transmitter release onto differentiating oligodendroglial cells, J. Neurosci, vol.30, pp.8320-8331, 2010.

M. S. Grubb and J. Burrone, Activity-dependent relocation of the axon initial segment fine-tunes neuronal excitability, Nature, vol.465, pp.1070-1074, 2010.

M. C. Angulo, J. F. Staiger, J. Rossier, and E. Audinat, Developmental synaptic changes increase the range of integrative capabilities of an identified excitatory neocortical connection, J. Neurosci, vol.19, pp.1566-1576, 1999.

L. De-lecea, J. A. Del-rio, and E. Soriano, Developmental expression of parvalbumin mRNA in the cerebral cortex and hippocampus of the rat, Brain Res. Mol. Brain Res, vol.32, pp.1-13, 1995.

B. W. Okaty, M. N. Miller, K. Sugino, C. M. Hempel, and S. B. Nelson, Transcriptional and electrophysiological maturation of neocortical fastspiking GABAergic interneurons, J. Neurosci, vol.29, pp.7040-7052, 2009.

D. Ortolani, B. Manot-saillet, D. Orduz, F. C. Ortiz, and M. C. Angulo, Optogenetic approach to study neuron-oligodendroglia interactions in mouse pups, Front Cell Neurosci, vol.12, p.477, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02302601

S. J. Cruikshank, T. J. Lewis, and B. W. Connors, Synaptic basis for intense thalamocortical activation of feedforward inhibitory cells in neocortex, Nat. Neurosci, vol.10, pp.462-468, 2007.

M. I. Daw, M. C. Ashby, and J. T. Isaac, Coordinated developmental recruitment of latent fast spiking interneurons in layer IV barrel cortex, Nat. Neurosci, vol.10, pp.453-461, 2007.

A. Buhr and E. Sigel, A point mutation in the gamma2 subunit of gammaaminobutyric acid type A receptors results in altered benzodiazepine binding site specificity, Proc. Natl Acad. Sci. USA, vol.94, pp.8824-8829, 1997.

M. Salami, C. Itami, T. Tsumoto, and F. Kimura, Change of conduction velocity by regional myelination yields constant latency irrespective of distance between thalamus and cortex, Proc. Natl Acad. Sci. USA, vol.100, pp.6174-6179, 2003.

S. Boudkkazi, Release-dependent variations in synaptic latency: a putative code for short-and long-term synaptic dynamics, Neuron, vol.56, pp.1048-1060, 2007.
URL : https://hal.archives-ouvertes.fr/inserm-00184608

C. Koelbl, M. Helmstaedter, J. Lübke, and D. Feldmeyer, A barrel-related interneuron in layer 4 of rat somatosensory cortex with a high intrabarrel connectivity, Cereb. Cortex, vol.25, pp.713-725, 2015.

Q. Sun, J. R. Huguenard, and D. A. Prince, Barrel cortex microcircuits: thalamocortical feedforward inhibition in spiny stellate cells is mediated by a small number of fast-spiking interneurons, J. Neurosci, vol.26, pp.1219-1230, 2006.

H. A. Swadlow, Fast-spike interneurons and feedforward inhibition in awake sensory neocortex, Cereb. Cortex, vol.13, pp.25-32, 2003.

H. P. Wu, J. C. Ioffe, M. M. Iverson, J. M. Boon, and R. H. Dyck, Novel, whisker-dependent texture discrimination task for mice, Behav. Brain Res, vol.237, pp.238-242, 2013.

J. Stedehouder, Local axonal morphology guides the topography of interneuron myelination in mouse and human neocortex, vol.8, p.48615, 2019.

N. Kessaris, Competing waves of oligodendrocytes in the forebrain and postnatal elimination of an embryonic lineage, Nat. Neurosci, vol.9, pp.173-179, 2006.

B. Wamsley and G. Fishell, Genetic and activity-dependent mechanisms underlying interneuron diversity, Nat. Rev. Neurosci, vol.18, pp.299-309, 2017.

D. G. Southwell, Intrinsically determined cell death of developing cortical interneurons, Nature, vol.491, pp.109-113, 2012.

A. Voronova, Migrating interneurons secrete fractalkine to promote oligodendrocyte formation in the developing mammalian brain, Neuron, vol.94, p.9, 2017.

M. S. Hamada and M. H. Kole, Myelin loss and axonal ion channel adaptations associated with gray matter neuronal hyperexcitability, J. Neurosci, vol.35, pp.7272-7286, 2015.

L. M. Palmer and G. J. Stuart, Site of action potential initiation in layer 5 pyramidal neurons, J. Neurosci, vol.26, pp.1854-1863, 2006.

A. Erisir, D. Lau, B. Rudy, and C. S. Leonard, Function of specific K(+) channels in sustained high-frequency firing of fast-spiking neocortical interneurons, J. Neurophysiol, vol.82, pp.2476-2489, 1999.

R. D. Fields, White matter in learning, cognition and psychiatric disorders, Trends Neurosci, vol.31, pp.361-370, 2008.

T. Barron, J. Saifetiarova, M. A. Bhat, and J. H. Kim, Myelination of Purkinje axons is critical for resilient synaptic transmission in the deep cerebellar nucleus, Sci. Rep, vol.8, p.1022, 2018.

M. Zonouzi, GABAergic regulation of cerebellar NG2 cell development is altered in perinatal white matter injury, Nat. Neurosci, vol.18, pp.674-682, 2015.

S. N. Tuncdemir, Early Somatostatin interneuron connectivity mediates the maturation of deep layer cortical circuits, Neuron, vol.89, pp.521-535, 2016.

C. Allène, Sequential generation of two distinct synapse-driven network patterns in developing neocortex, J. Neurosci, vol.28, pp.12851-12863, 2008.

G. Buzsáki and X. Wang, Mechanisms of gamma oscillations, Annu. Rev. Neurosci, vol.35, pp.203-225, 2012.

D. A. Maas, Interneuron hypomyelination is associated with cognitive inflexibility in a rat model of schizophrenia, Nat. Commun, vol.11, p.2329, 2020.
URL : https://hal.archives-ouvertes.fr/inserm-02625865

J. S. Rothman and R. A. Silver, NeuroMatic: an integrated open-source software toolkit for acquisition, analysis and simulation of electrophysiological data, Front Neuroinform, vol.12, p.14, 2018.

C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, NIH Image to ImageJ: 25 years of image analysis, Nat. Methods, vol.9, pp.671-675, 2012.

A. G. Richardson, C. C. Mcintyre, and W. M. Grill, Modelling the effects of electric fields on nerve fibres: influence of the myelin sheath, Med Biol. Eng. Comput, vol.38, pp.438-446, 2000.